用户名: 密码: 验证码:
Cu基形状记忆合金单晶制备技术及DSCC过程闭环模糊控制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
形状记忆合金是一种重要的功能材料,其中应用最广泛的是钛镍形状记忆合金,而铜基形状记忆合金有很好的形状记忆特性和超弹性,但有很高的弹性各向异性因子(A)。这导致了该材料延性差、易发生晶界破坏以及疲劳寿命短,冷加工性能很差,疲劳强度也极低等问题,致使价格低廉、性能良好的铜基形状记忆合金无法得到真正意义上的工程应用。本论文从铜基形状记忆合金单晶化入手,以定向凝固连铸技术(Directional Solidification Continuous Casting)为技术路线,在对定向凝固连铸过程计算机模拟研究的基础上,提出了定向凝固连铸过程纠扰闭环控制总体思路,解决了实施中的关键技术,开发出铜基形状记忆合金单晶材料的产业化生产技术,并完成了定向凝固连铸设备设计、制造,从根本上来解决铜基形状记忆合金单晶材料产业化生产问题,为价格低廉、性能良好的铜基形状记忆合金实现真正意义上的工程应用提供手段。
     本论文围绕这一目的,首先用自行设计的HRS法高温度梯度定向凝固炉和带有引晶器单晶模壳制备出了CuAl系形状记忆合金单晶单体试样。
     对铜基形状记忆合的性能测试表明,对于有弹性各向异性的Cu基形状记忆合金而言,CuAl系形状记忆合金冷热循环疲劳特性和可恢复应变特性对晶界非常敏感。无晶界的单晶材料具有最佳的冷热循环疲劳特性、可恢复应变特性和力学性能。CuAlNiBe单晶,其抗拉强度α_b=780MPa,延伸率ε%=17%;冷热疲劳循环疲劳断裂次数可达750次左右;最大可回复应变达到10%,已与TiNi形状记忆合金的最大可恢复应变量8~9%相当。
     但是,实验室的单晶制备方法由于其效率低、成本高并不适合于进行产业化生产。相比之下,一种兼顾产品质量、生产效率、成品率和制备成本的成熟、经济、有效的单晶形成技术一定向凝固连铸技术(DSCC技术)则是铜基形状记忆合金产业化生产优选的技术路线。
     借鉴现有的生产铜单晶的定向凝固连铸装置样机,对生产型的多通道水平式热型连铸设备进行了设计。设计包括以下部分:熔炼部分、保温部分、液面控制部分、连铸炉部分(该部分在多通道拉铸过程中表现为分流槽)、铸型部分、冷却部分、铸锭牵引部分、导流部分和溢流保护部分。
     铜单晶生产实践和研究表明,单晶制备过程既是一种要求工艺参数控制精度要求很高的定向凝固过程,同时又结合了连铸技术。制备单晶的定向凝固连铸过程控制的关键的环节必须要实现过程的闭环控制。
     为制订制备单晶的定向凝固连铸过程控制的总体实施方案,从定向凝固连铸(DSCC)的基本原理出发,以计算机模拟技术为基础,建立了定向凝固连铸过程的数字模型,确定液固界面位置Z为定向凝固连铸凝固过程考察的主要目标控制量,并引入形状因子作为辅助控制量,开展计算机实验,以获得对制备单晶的定向凝固连铸过程有一个深入的认识。
     通过对模拟结果的分析发现,在定向凝固连铸过程中冷却距离L(铸型至水冷端的距离)、牵引速度V和铸型内壁温度Tm对温度分布曲线的变化有比较明显的影响。通过计算机拟合后获得了这三个工艺参数与液固界面位置和形状因子之间的函数关系:
     工艺参数L、V、T_m对形状因子X的函数关系的回归函数式如下:
     模拟还表明,熔体温度T_b、冷却水温度T_w、冷却水流量Q这三个工艺参数取值的变化对温度分布曲线基本上没有很明显的影响。而液面高度h对过程的影响主要表现在,液固界面位置位于结晶器口以外时,如果液面高度h过高,则所产生的附加压力将可能无法被金属液体的表面张力所平衡,而发生漏液,破坏连铸过程。模拟计算确定了定向凝固连铸过程中稳定生长的液固界面位置(Z)的极限安全范围为(-4mm,+1.79mm)。
     模拟还首次发现了目标量(液固界面位置ZE)的变化并不仅仅是L、V两个变量单独调整引起变化的简单数字迭加,而是出现了加强关系,其响应函数关系中增加了λ_Lλ_V加强项:
     对在实际的定向凝固连铸过程中温度分布的实际测量表明,计算机模拟的理论数据与实际相差仅在20℃上下,计算机模拟具有较高的可信度。
     基于对计算机模拟结果的分析,并根据凝固原理和定向凝固连铸过程的传热特点,提出了以纠扰控制作为该过程控制总体方案的主线,将液固界面位置Z作为了纠扰控制过程的目标控制量,并为定向凝固连铸过程设定了Z的极限安全范围,进行定向凝固连铸过程的纠扰闭环控制。确定以冷却距离L和牵引速度V作为纠扰控制系统中的可调整参量。而对目标参量的影响最大的铸型内壁温度Tm,在控制过程中,作为人工介入应急处理时调整量。即当目标量(Z)波动变化太大或者目标量(Z)很难在短时间内回复到安全范围时,采用调整铸型内壁温度T_m。其他参数在正常运行中采用恒定量控制方案实施。
     利用ANSYS分析软件,分析了冷却距离L和牵引速度V变化过程中温度场分布的变化,确定了无任何干扰的情况下工艺参数与目标控制量Z之间的时间分布函数,建立了系统模型。并选择了模糊控制方法,对定向凝固连铸过程系统目标量与变量之间的非线性关系进行了控制算法的设计。利用MATLAB软件对定向凝固连铸过程的纠扰控制过程进行了计算机仿真实验,并对结果进行了分析。证实了所设计的定向凝固连铸过程的控制系统和模糊控制器能够很好的满足定向凝固连铸过程的实际要求,具备实际操作的可行性。
     根据定向凝固连铸过程的技术特点和制订的纠扰闭环控制方案,完成了相应的定向凝固连铸过程中的整体的控制系统的硬件和软件的系统设计:
     ●完成工控机的选择、恒温控制的冷却水循环系统、液位恒定控制系统、过程液固界面位置的纠扰控制系统和电源抗干扰系统的设计。
     ●选择了以现有的商业软件作为控制系统的开发平台,并确定工业控制中常用的组态软件作为主控应用程序。
     ●根据组态软件的特点,采用单元化设计的思路。将整个工程划分为多个部分进行开发。通过对各部分的编制、设计,完成了具有良好的直观性和简单的操作性,更加适合企业现场实用性的人机界面。
     通过上述几方面的工作,构成了定向凝固连铸过程的控制系统的一个软、硬件网络,为最终完成定向凝固连铸过程中各工艺参数的实时闭环控制系统的顺利工作提供了保障。
     应该看到,所完成的定向凝固连铸设备及整个控制系统,由于时间及种种原因,虽已制造出来,但最终并没有真正投入到实际生产过程中应用。因此,无法对所设计的设备和相应的控制系统,作出完整的正确评价。应该说,技术路线是可行的,但应用到实际生产过程中,并形成一个比较完善的控制系统开发平台,仍然有很多工作需要进一步进行。这些工作的深入必将为铜基形状记忆合金的制备及其定向凝固连铸过程控制起到重要的推动作用,也必将为多元合金单晶连铸领域乃至冶金行业的多因素系统的控制开发提供了一个比较可行的方向。
Shape memory alloys (SMA) are a kind of important functional materials. Ti-Ni SMA had got the most widespread availability. However, Copper base SMA didn't get real application up to now, although Cu-base SMA has good shape memory performance and super elasticity. That was because that it's found that there were some questions such as bad ductility, easy intercrystalline failure and short fatigue life in the application process of the Cu-base SMA. Moreover, its cold-workability was very bad, and its fatigue strength was very low, too. The main reason of these questions was high anisotropic elastic behavior of the polycrystalline Cu-based SMA.
     In the paper a manufacturing technical route about preparing single crystal of Cu-base SMA, that is the directional solidification continuous casting (DSCC) technology, was presented. Based on the computer simulation study of the DSCC processing, the closed-loop control programme with correction of the disturbances in the DSCC processing was introduced. Solved the key skill craft in the manufacturing technique and completed the DSCC equipment's design and manufacture the question of Cu-base SMA single crystal industrialization product was settled at root. Thus a path to really actualize the engineering appliance of Cu-base SMA was provided.
     The experimental results showed the cooling-heating cyclic fatigue performance and recoverable deformation performance of Cu-Al series SMA were highly sensitive to grain boundaries in the material which is of high anisotropic elastic behavior. The single crystal of the Cu based SMA which is without grain boundaries had the best cooling-heating cyclic fatigue performance and recoverable deformation performance. For the single crystal samples of CuAlNiBe alloy, the strength of extension (σ_b) was 780MPa; the extensibility(ε%) was 17%; the break number of the cooling-heating cyclic fatigue was about 750 times and the maximum recoverable deformation was 10% being more than a match for the Ti-Ni alloys' 8~9%.
     However, a single crystal preparation way in laboratory was not fit for industrialization because of its low efficiency and high cost. Consequently, DSCC technology was the primary selection because of its satisfying requirement of product quality, production coefficient, yield and manufacturing cost.
     And a multichannel horizontal DS continuous casting equipment was designed referencing the model machine made before. The equipment's designs included following parts: melting part, insulation part, liquid-level controller part, continuous casting furnace part (this part was splitter box in multichannel equipment), casting mould part, cooling part, casting ingot pulling part, river diversion part, overflowing protect part and so on.
     The product experience and reseaches before showed that DSCC processing had strict requirements in technological parameters' control. And it also combined with continuous casting technique. Therefore, the key was to realize the closed-loop control in this process.
     In order to build the closed-loop control programme with correction of the disturbances in the DSCC processing a mathematical model of DSCC processing was built, which confirmed the location (Z) of the liquid-solid (L/S) interface as main control object and imported shape factor (X) as an assistant control object. With the model computer experiments to abtain deep acquaintance for the DSCC processing were underwent.
     Through analysing the simulation results, it was found , that the cooling distance (L), the pulling speed (V) and the inner temperature in the crystallizer (T_m) had obvious influence to the temperature distribution curve. The relationship functions between above three parameters and L/S interface location(Z) and shape factor (X) had abtained through computer simulation. The functions showed in following:
     1) Functions between parameters and Z were: L: Z_E =-0.58 + 1.55λ_LV: Z_E = -0.58 + 0.5λ_V + 0.25λ_V~2T_m: Z_E =-0.58 + 87.1λ_(Tm)-1199.3λ_(Tm)~2
     2) Functions between parameters and X were: L: X = 0.25-0.17λ_LV: X = 0.25-0.06λ_VT_m: X = 0.25-4.32λ_(Tm)
     The simulation results also showed that the melt temperature Tb, the cooling water temperature Tw and the cooling water flow Q had not obvious influence to the temperature distribution curves. And the influences of the liquid surface level (h) mainly took place while L/S interface location (Z) at the out of crystallizer. Under this condication, if h was too high, its additional force couldn't be balanced by melt liquid surfacial force. Consquently, melt liquid leaked out and continuous casting process failed.
     The ultimate safe range of Z that DS continuous casting process was steadly on was from -4mm to 1.79mm from the simulation results.
     At the same time, the simulation results also indicated at first time that the relationship between Z and L or V was not simply plus, but a reinforcing relationship. The relationship function was shown as following:Z_E =-0.58+1.55λ_L +0.55λ_V +0.25λ_V~2 + 0.99λ_Lλ_V.
     From above functions, it could be found there was a reinforcing factor 0.99 between L and V.
     The difference between real measuring and computer simulation results of the temperature distributions was only about 20℃. That is to show the computer simulation had high reliability.
     Based on the analysis of the computer simulation results about the solidification principles and heat tansfer features of DSCC processing, the closed-loop control programme with correction of the disturbances in the DSCC processing was introduced. In the programme with correction of the disturbances in the DSCC processing the L/S interface location(Z) at the out of crystallizer was set as the object control variable and a ultimate safe range of Z also was confirmed. Then, L and V were set as the adjustable variables. And the inner temperature in the crystallizer (T_m), which disturbence was the most obvious, was set as the lash-up treating variable. That is to say, the T_m was adjusted while fluctuate of Z was too sharp or Z could not return back to the safe range in short time. The other parameters were keept to constant.
     With ANSYS software the fuzzy control system model with the temporal distribution functions between Z and L, V without any disturbance was set up and its control algorithms of nonlinear relation between object variable and adjustment variables in the DSCC processing were designed
     The closed-loop fuzzy control processes of DSCC processing were simulated through MATLAB software. The simulation results proved the designed control system and the fuzzy control device satified the requirments of the control of the DSCC processing.
     Based on the technical features of the DSCC proceessing and the control program, following software and hardware system were also designed and prepared:
     Complete the following work: selecting a suitable computer, designing a constant temperature cooling water circulating system, a liquid level constant control system, a L/S interface location correction disturbance control system and an electric source anti-interference system.
     Select a commercial software as the control system development flatform. And confirm a configuration software as the main conrol application program.
     Adopting the blocking design method , base on configuration software feature, the whole project was partitioned to several parts. The direct-viewing man-machine interface was completed through designing every part. The results showed the interface was simplicity of operator and more fit for factory production.
     Through above works, the soft and hard parts constituted the control system used to the control of the DSCC processing, which became the base of real-time closed-loop control successful operation.
     However, although the design and manufacture of the DSCC equipment and the control system were completed, they were not put to use in the actual production process because of the limit of object condition. Therefore, the integrated correct judge about the designed equipment and control system could not be confirmed. We may believe that the technical route is feasible, but there is much more works to do before the designed equipment and control system put to use in actual production. And these works will be important in pushing development of Cu-base SMA single crystal preparation and the DSCC processing control system. And it also supplys a feasible way of the development of multi-factors control system in complex alloy single crystal continuous casting field, even in whole metallurgy industry.
引文
[1]徐祖耀等,形状记忆材料,第一版,上海:上海交通大学出版社,2000
    [2]Chang L.C., Read T.A., AIME, 1951,189:47
    [3]Wayman CM., J. Metals, 1980,32:129
    [4]Otsuka K., Shimizu K., Scr. Metall., 1970,4:469
    [5]Delaey L., Copper-Zinc-Aluminum Shape Memory Alloys, Brochure Kathiolieke University, Leuven, 1978
    [6]Maki T., Kobayashi, K., Minato M, Tamura I., Scr. Metall., 1984,18:105
    [7]Maki T, Furutani S, Tamura I., ISIJ. Inter., 1989, 29:438
    [8]Sato A, Chishima E., Soma K., Mori T., Acta Metall, 1982, 30:1177
    [9]谭树松,形状记忆合金研究的最新进展及应用,功能材料,1991,22(3):185-190
    [10]徐祖耀,马氏体相变的分类,金属学报,1997,33(1):47-48
    [11]Gui Jianian. The effect of thermal treatment on the structure and fine structure of Cu-Zn-Al martensite.J of Mat Sci,1990,25:1675-1680.
    [12]Saburi T, Wayman C M, Takata T, Smenno,The shape memory effect in 18R CuZnAl and CuZnGa martensites.Act Met, 1980,28:14-16
    [13]张婕,周乐文,姜东慧,蒋传贵,胡新,文飞,高温形状记忆合金,贵金属,2001,(4):20-23
    [14]Tadaki T. Cu-Based shape memory alloys. Shape memory Materials, Cambridge UniversityPress, 1998 .97-126
    [15]Ling H. C., Owen W.S., Scr. Metall., 1981,15:1115
    [16]Ling H. C., Owen W.S., Acta Metall, 1981,29:1721
    [17]孟祥龙,王中,赵连城,NiTiHf高温记忆合金的研究进展,宇航材料工艺,1999,(6):20-24
    [18]赵连城,蔡伟,郑玉峰,合金的形状记忆效应与超弹性,第一版,北京: 国防工业出版社,2002
    [19]陈邦义,梁成浩,铜基形状记忆合金及其耐蚀性研究进展,腐蚀科学与防护技术,2003,15(6):337-341
    [20]刘丽荣,陈庆福,Cu-Al-Ni形状记忆合金的发展,辽宁工学院学报,2000,20(4):4-10
    [21]H.Sakamoto, K.Shimizu, The Fracture of Cu-Al-Ni Memory Alloy, Transaction of the Japan Institute of Metals, 1981, 22 (4): 244-252
    [22]Loughran GM, Shield TW, Leo PH, Fracture of shape memory CuAlNi single crystals, International Journal of Solids and Structures, 2003, 40(2):271-294
    [23]芦笙,林萍华,陈静,组织及相结构对Cu-Al-Be-B形状记忆合金阻尼与力学性能的影响,中国有色金属学报,2002,12(6):1123-1128
    [24]Z.L.Song, J.S.Zhu, Y.S.Qian, S.A.Aruna, Y.N.Wang, C.Xie, Low frequency damping properties of Cu-Al-Be alloy during the phase transformation, Solid Communications, 2001, 118: 257-260
    [25]陈明,何丽珠,王天民,CuAlBeCr形状记忆合金组织结构与形状记忆效应的研究,功能材料,1993,24(6):548-552
    [26]芦笙,林萍华,陈静,Cu-Al-Be形状记忆合金的应力腐蚀性能,腐蚀科学与防护技术,2002,14(5):267-270
    [27]芦笙,林萍华,陈静,铸造CuAlBe系高阻尼合金的优化设计,铸造,2001,50(9):527-532
    [28]王建民,陈翌庆,许云祥,张莲芳,方世良,傅世军,用回转水纺丝法制备Cu-Al-Ni形状记忆合金细丝,新技术新工艺,1995(5):24、25
    [29]黎沃光,陈先朝,余业球,王德芳,热型连铸法制取CuAlNi形状记忆合金丝,功能材料,2000,31(6):605-607
    [30]兼良高宏,高橋輝男,林行信,元山宗之, Microstructure and Characteristics of Cu-Al-Ni Shape Memory Alloy Prepared by Mechanical Alloying, 日本金属学会志, 1992, 56 (5): 517-523
    [31]司乃潮,赵国旗,杨道清,复合稀土对CuZnAl形状记忆合金力学性能的影响, 中国有色金属学报,2003.13(2):393-398
    [32]娄明珠,阎晓东,王碧文等,晶粒细化对Cu-12.2Al-4.0Mn形状记忆合金加工性能的影响,中国有色金属学报,1999,(9):12-15
    [33]王海龙,周健,朱治愿,CuAlBeB形状记忆合金冷却方式研究,机械工程材料,2005,29(9):54-57
    [34]谢春生,王海龙,吕秀芬,任合,朱治愿,硼对CuAlBe形状记忆合金组织和性能的影响,机械工程材料,2001,(12):15-17
    [35]司乃潮,贾志宏,孙少纯,CuZnAI(Re)形状记忆合金马氏体稳定性研究及解决措施,中国稀土学报,2002,10(12):44-48
    [36]李在先,郭士文,段发来,快速凝固Cu-AI-Ni合金的记忆性能及时效稳定性,1993,14(3):261-264
    [37]舟九保熙康编,形状记忆合金,产业图书,昭和59年
    [38]村上树等,日本金属学会志,1984(2):115
    [39]黎沃光,陈先朝,余业球,王德芳,热型连铸制取形状记忆合金,功能材料,2003,6
    [40]尹占华,黎沃光,余业球,热型连铸CuAlNi形状记忆合金丝的性能研究,材料工程,2004,(5):26-29
    [41]蔡莲淑,余业球,黎沃光,尹占华,热型连铸柱晶CuAlNi合金丝记忆状态下的拉伸疲劳材料工程,2006,(6):47-50
    [42]Greninger A B, Moonradian V G. Strain transformation in metastable betacopper-zinc and beta copper-tin .alloys. AIME Transactions, 1938, 128: 337-368
    [43]宋高峰,毛协民,徐华苹,李重河,王乐酉,朱明;Cu-Al-Ni-Be形状记忆合金单晶制备及其性能特性研究;功能材料,
    [44]蔡莲淑,余业球,黎沃光,罗继辉,超弹性柱晶组织CuAlNi合金丝的弯曲疲劳金属功能材料,2006,13(3):14-16
    [45]Ohno, Casting of Near Net Shape Products, The Metallurgical Society, 1988: 177-184
    [46]马颖,郝远,刘洪军等,Zn-Al合金热型连铸定向凝固的晶体生长机理,金属学报,2001,37(2):202-206
    [47]黎沃光,热型连铸法的原理及应用,铸造,1996,(12):39-44
    [48]黄武,Cu基形状记忆合金多股热型连铸工艺与设备的研究,广东工业大学硕士论文,2007
    [49]Suzuki, Hiroo, Yamamoto, Koichi, Ohno, Yasuhide, Miyamura, Kou, Prevention of cracking of continuously cast steel slabs containing boron[P], United States Patent: 4,379,482, April 12, 1983
    [50]尹占华,黎沃光,余业球,热型连铸CuAlNi形状记忆合金丝的性能研究,材料工程,2004(5):26-29
    [51]本保元次郎,金子雅紀,藤原靖幸,早田博,Continuous Casting of Shape Memory Cu-Al-Ni Alloy Wires by OCC Process,铸造工学,1998,70(9):635-640
    [52]郭太明,李晨希,定向凝固过程中的不规则固液界面形貌,人工晶体学报,2003,32(3):495-501
    [53]王琳琳,林鑫,黄卫东,苏云鹏,李涛,单相合金定向凝固的特征尺度和过冷度研究金属学报,2006,42(10):1025-1030
    [54]苗传荣,毛协民,欧阳志英,韩奎,章光全,超强磁场定向凝固试验装置的研制,中国铸造装备与技术,2003,(5):10-13
    [55]毕晓勤,胡锐,李金山,傅恒志,高梯度定向凝固设备铸造技术,铸造技术,2003,24(3):184-185
    [56]马长文,沈厚发,黄天佑,柳百成,定向凝固通道偏析的数值模拟,清华大学学报:自然科学版,2003,43(11):1444-1447
    [57]谢发勤,张军,毛协民,李德林,傅恒志,深过冷熔体激发快速定向凝固[J],材料科学工艺,1996,4(3):102-106
    [58]胡汉起,金属凝固原理,机械工业出版社,2000.10
    [59]本保元次郎,茂木徹一,大野篤美, Structures and Workability of Unidirectionally Solidified Sn-Zn Alloy Ingots Obtained by a New Continuous Casting Process, 日本金属学会志, 1987, 51 (10): 935-940
    [60]大野篤美, Development of advanced materials by the OCC process,轻金属, 1989, 39 (10): 735-740
    [61]本保元次郎,大野篤美, Mechanical properties and structures of Al-Cu alloys produced by Heated Mold Continuous Casting Method (OCC), 轻金属, 1989, 39 (1): 38-44
    [62]本保元次郎,大野篤美, Workability and Structures of Sn-Pb Alloy Solder Produced by the Heated Mold Continuous Casting Method(OCC), 日本金属学会志, 1990, 54 (3): 321-327
    [63]山崎裕之,大野篤美,本保元次郎,清水亨,早田博, Casting of Stellite Welding Rod by the Vertical OCC Process,日本金属学会志, 1993, 57 (2): 190-194
    [64]多田弘一,大野篤美, Influence of Casting Speed on Surface Appearance and Solidified Structure of Aluminum Strips Produced by the OSC Process, 日本金属学会志, 1993, 57 (9): 1072-1077
    [65]Y.H.Wang, Y.J.KIM, S.KOU, Thermal measurement and computer modeling of heat and fluid flow in crystal growth by Ohno Continuous Casting, Journal of Crystal Growth, 1988, 91: 50-56
    [66]Chabchoub. F., Mostaghimi, J., Argyropoulos, S. A., Three dimensional mathematical model for the horizontal ohno continuous casting process, American Society of Mechanical Engineers, 1992, 96: 69-74
    [67]许广济,丁宗富,丁雨田,兰晓峰,寇生中,刘广林,封存利,杨新山,热型连铸单晶铜工艺参数对铸棒表面质量的影响,铸造,2002,51(9):550-553
    [68]丁雨田,许广济,郭法文,寇生中,刘广林,封存利,热型连铸单晶铜铸型温度控制的研究,铸造,2003,54(4):249-251
    [69]P.Carter, D.C.Cox, P.C.Reed, Process modeling of grain selection during the solidification of single crystal superalloy castings, Materials Science and Engineering, 2000, A280: 233-246
    [70]岳留振,倪锋,张永振,龙锐,热型连铸过程的一维稳态传热模型,铸造 设备研究,2005(3):8-15
    [71]王维,倪锋,热型连铸过程的二维稳态传热模型,沈阳工程学院学报,2005,1(4):76-78
    [72]岳留震,倪锋,张永振,龙锐,热型连铸的发展与应用,铸造设备研究,2004(1):14-18
    [73]张立宝,黎沃光,于业球,PLC在热型连铸温度控制系统中的应用,机电工程,2004,21(11):13-15
    [74]孙彦广,冶金自动化技术现在和发展趋势,冶金自动化,2004,(1):1-5
    [75]翁宇庆,我国冶金工业在新世纪最初几年的科技进步,中国钢铁协会论文集(1),北京:冶金工业出版社,2003:13-21
    [76]李桃,范小慧,姜涛,冯其明,冶金过程的自适应模糊控制研究与应用,矿冶工程,2000,23(3):34-36
    [77]黄席樾,熊庆宇,石为人。柴毅,冶金连铸工业过程实时专家控制系统的设计与实现,自动化学报,1998,24(3):404-408
    [78]唐少先,陈建二,张泰山,周永孝,冶金过程智能控制系统知识库开发的关键环节,计算机工程与应用,2004,31:225-229
    [79]刘文仲,李君,郭强,基于PC服务器的过程控制计算机系统在冶金工业过程控制中的发展趋势,冶金自动化,2006,S2(增刊):23-25
    [80]马竹梧,信息化、自动化的进展与钢铁工业自动化,冶金自动化,2003。27(增刊):5-16
    [81]孙浩,涂序彦,薛兴昌,真空冶金过程自动控制技术的进展,冶金自动化,2003(2):8-10
    [82]石杰,陈辉,PLC与DCS在冶金生产过程控制系统中的应用,山东冶金,2001,23(4):20-22
    [83]林润轻,Premium PLC在冶金行业连铸生产线的应用,PLC、工控机与集散控制系统,2006(12):41-45
    [84]栾元迪,刘建,王英红,PLC、DCS及FCS在中小型冶金生产过程控制系统中的应用,自动化博览,2002(3):18-19
    [85]阎建兵,王文瑞,宝钢分公司连铸过程控制系统,冶金自动化,2008,32(1):7-21
    [86]吴光恒,陈京兰等,金属单晶生长和相关物理工作的结合,人工晶体学报,2002,31(3):283-287
    [87]郑启,侯桂臣等,单晶高温合金的选晶行为,中国有色金属学报,2001,11(1):176-178
    [88]王弘,晶体生长与外延会议概述,国际学术动态,2001,(2):38-39
    [89]王天泉,电阻炉设计,航空工业出版社,2000,4
    [90]丁宗富,丁雨田,寇生中,许广济,陈宇,热型连铸制备Cu-Cr合金的研究,兰州理工大学学报,2004,30(1):32-34
    [91]王天明,陈明,何丽珠,董元源,达国祖等.热处理对Cu-Al-Be-Cr形状记忆合金性能和结构的影响,机械研究与应用,1994,No.4:8-10
    [92]Chen M. Influence of heat treatment on shape memory properties of a CuAlBe alloy containing chromium. Mater. Sci.Technol., 1993,13, (1):12 13
    [93]Tadaki T. Cu-Based shape memory alloys, Cambridge: Cambridge University Press, 1998 .97-126
    [94]蔡莲淑,余业球,黎沃光,罗继辉,超弹性柱晶组织CuAlNi合金丝的弯曲疲劳,金属功能材料,2006,13(3):14-16
    [95]本保元次郎,茂木徹一,大野篤美, Structures and Workability of Unidirectionally Solidified Sn-Zn Alloy Ingots Obtained by a New Continuous Casting Process, 日本亲属学会, 1987, 51 (10): 935-940
    [96]大野篤美,Development of advanced materials by the OCC process, 轻金属, 1989, 39 (10): 735-740
    [97]本保元次郎,大野篤美, Mechanical properties and structures of Al-Cu alloys produced by Heated Mold Continuous Casting Method (OCC), 轻金属, 1989, 39 (1): 38-44
    [98]Ohno, Atsumi, Continuous metal casting [P], United States Patent: 4,515,204, May 7,1985
    [99]Ohno, Atsumi, Process and apparatus for the horizontal continuous casting of a metal molding [P], United States Patent: 4,605,056, August 12, 1986
    [100]《有色冶金炉设计手册》编委会,有色冶金炉设计手册,北京:冶金工业出版社,2001
    [101]《重有色金属冶炼设计手册》编委会,重有色金属冶炼设计手册,北京:冶金工业出版社,1996
    [103]胡汉起,金属凝固原理,第二版,北京:机械工业出版社,2000
    [104]岳留振,倪锋,张永振,龙锐,热型连铸技术的发展与应用,铸造设备研究,2004,(1):14-18。
    [105]王维,倪锋,热型连铸过程的二维稳态传热模型,沈阳工程学院学报,2005,1(4):76-78。
    [106]徐华苹,毛协民,李重河,梁红玉,热型连铸工艺参数对液固界面形状位置特性影响的仿真研究,特种铸造及有色合金,2007,23(12)
    [107]Xu Z.M., Gen GX., Li J.G., Numerical Analysis for Position and Shape of Solid-Liquid Interface during Continuous Casting of Single Crystal Cu, Journal of Shanghai Jiaotong University, 2001, 35 (3): 406-410。
    [108]范新会,许振明,李建国,傅恒志等,单晶凝固过程温度场数值模拟Ⅰ-温度场的物理模型及数学模型,西安工业学院学报,1998,11(1):46-52。
    [109]王崧,董春敏,金云平等译,有限元分析——ANSYS理论与应用,北京:电子工业出版社,2005。
    [110]彭立明,自生复合电车线连续制备过程中工艺参数的交互作用及其控制研究:[上海大学博士论文],2000:94。
    [111]Y. J. Kim, C. W. Lan and S. Kou, Heat Transfer and Fluid Flow in Directional Solidification, Proceedings of 4th Inter. Confer. On Modeling of Casting and Welding Process, The Minerals, Metals and Materials Society, 1988: 445-457.
    [112]程代展等译,应用非线性控制,北京:机械工业出版社,2006
    [113]王立新,自适应模糊系统与控制设计与稳定性分析,北京:国防工业出版社,2002
    [114]佟绍成.,非线性系统的自适应模糊控制,北京:科学出版社,2006
    [115]李国勇,智能控制及其MATLAB实现,北京:电子工业出版社,2005
    [116]许心传,谈工控机与现场总线,现场总线应用技术选编(上),2003,1:20-23
    [117]阳宪惠,现场总线技术及其应用,北京:清华大学出版社,1999
    [118]王锦标,现场总线控制系统,现场总线应用技术选编(上),2003,1:2-12
    [119]赵海,现场总线控制系统与领域自动化,现场总线应用技术选编(上),2003,1:13-19
    [120]饶运涛,邹继军,郑勇芸,现场总线CAN原理与应用技术,北京:北京航空航天大学出版社,2003
    [121]满庆丰,CAN总线的应用于发展,现场总线应用技术选编(上),2003,1:292-295
    [122]涂时亮,一种新型单片微机局域网——CAN,现场总线应用技术选编(上),2003,1:296-299
    [123]舒彦,安萍,CAN总线系统的实现,现场总线应用技术选编(上),2003,1:305-306
    [124]刘益成,数字信号处理,北京:电子工业出版社,2004
    [125]工控组态软件及其应用现状,http://www.ecaa.com.cn
    [126]组态软件的发展趋势与现状,http://www.ecaa.com.cn
    [127]组态软件的系统构成及其简介,http://www.ecaa.com.cn
    [128]组态软件的系统结构,http://www.ecaa.com.cn
    [129]自动控制系统中的图形用户界面设计分析,http://www.ecaa.com.cn
    [130]周立功,iCAN现场总线原理与应用,北京:北京航空航天大学出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700