用户名: 密码: 验证码:
以纤维素基固定果胶酶及其定向处理造纸DCS的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了进一步节约水资源、节约原料、减少污染,造纸白水封闭循环程度不断提高,导致其中的DCS物质不断积累,给整个造纸系统带来严重的影响。本论文针对DCS中阴离子垃圾的主要贡献组分之一,果胶类物质,采取了生物中的固定化酶方法对其进行定向处理。论文中使用浆料纤维和再生纤维素微球两种载体,通过几种不同的简易、温和、低成本的方法,制备出固定化果胶酶。对制备固定化酶的过程和固定化酶的性质进行了研究,并考察了其降低实际造纸生产中DCS的阳离子需求量的效果。
     以高碘酸钠法氧化得到的氧化针叶木浆料纤维为原料,通过希弗碱反应,得到以浆料纤维为载体的共价结合表面搭载法制得的固定化果胶酶。选用浓度为25.0g/L的高碘酸钠氧化30min得到的氧化纤维来固定酶,此条件下得到的氧化浆料纤维醛基含量较高,且纤维降解不严重。在固定化温度20℃,酶液pH值7.0,酶浓度为0.125%时,得到的固定化酶活力可达到65U/g左右。与游离酶相比,固定化酶在更宽的温度和pH范围内保持较高的活性,最适宜pH由8.0变为8.8,连续使用6次后,仍能保持约60%的初始酶活力。在定向处理造纸生产中的DCS时,能将其阳离子需求量降低37%,基本将其中聚半乳糖醛酸全部降解,并在使用6次后仍能降低15%。
     使用造纸过程中一种常见的化学添加剂-聚乙烯亚胺,来涂覆浆料纤维,再以其作为载体通过离子吸附等作用力将酸性果胶酶固定上。使用聚乙烯亚胺涂覆浆料后充分洗涤,并在固定化酶后不加戊二醛交联,可得到酶活力更高的固定化酸性果胶酶。当PEI浓度、酶稀释液浓度和酶液pH值分别为0.01%(w/v),0.25%(v/v)和7.0时,得到的酶活力最大,约为670U/g。在此条件下,PEI与果胶酶的负载量分别为1.1mg/g绝干浆料纤维和36.4mg/g绝干浆料纤维。与游离酸性果胶酶相比,PEI-涂覆浆料纤维固定化酸性酶的最适pH值由3.5移向4.0,最适使用温度提高,并且有更宽的pH和温度适用范围,具有更好的稳定性和更高的催化分解速率。另外,固定化酶活化能明显下降,其催化果胶分解速率对温度的敏感性降低。在定向处理造纸DCS降低其阳电荷需求量方面,PEI-涂覆浆料纤维固定化酸性果胶酶在连续使用7次后仍有一定的效果。
     以LiCl/DMAC溶剂体系来溶解微晶纤维素,通过简单的滴加方法制备直径1-2mm呈规则的球状的再生纤维素球,对其性质进行了研究。再生纤维素微球表面多孔,内部形成一种三维立体网络结构,具有较大的比表面(108m2/g),是良好的载体或吸收剂。再生纤维素微球仍为纤维素I型结晶态,并且仍为Iβ主导型,但是结晶度大幅度下降。再生纤维素微球具有较好的热稳定性。果胶酶在再生纤维素微球上的等温吸附,符合Langmuir吸附方程,这表明酶分子在再生纤维素微球上的吸附过程是均匀的单层吸附,并且该吸附过程是自发的、易达到吸附平衡的,其最大吸附量为7.39mg/g。另外,再生纤维素球对果胶酶的吸附动力学,符合准二级动力学方程,化学吸附是控制吸附速率的主要因素。这为使用再生纤维素微球在诸如生物等领域作载体及吸收剂提供了理论支持。
     以再生纤维素微球为载体,分别使用物理吸附法和共价结合法制备出固定化果胶酶。使用物理法时,固定化温度、时间和酶稀释液的pH值分别为20℃,2h和7.0时,得到的酶活力最大,为178U/g固定化酶,蛋白质负载量为2.9mg/g。使用共价结合法制得酶活力100U/g、蛋白质负载量6.7mg/g的固定化果胶酶。与游离果胶酶相比,二者的稳定性均提高,并且都能将漂白塔后浆料滤液的阳离子需求量降低36%左右。共价结合法制得的固定化酶有更好的重复使用性能。除此之外,当重复使用多次后,再生纤维素微球仍保持良好的机械强度,可以再次作为酶的载体使用。
In order to reduce water consumption, economize on raw materials and reduce pollution,it is demanded that the whitewater in papermaking process should be increasingly recycled.Consequently, dissolved and colloid substances accumulate in the system, leading to seriousproblems. In this dissertation, immobilized enzyme was used to deal with pectic substances,one of the major contributions to anionic trash. Pulp fiber in papermaking and regeneratedcellulose beads were utilized as carrier for pectinase via simple, facile and inexpensivemethods, respectively. The preparation and the properties of the resultant enzymes werestudied. Besides, they were tested for reducing cationic demand of practical DCS.
     Pulp fiber was oxidized using NaIO4and then pectinase was coupled on it through Schiffbase reaction. Oxidized pulp fiber by25.0g/L NaIO4for30min was chosen for its relativelyhigh aldehyde content and minor degradation. The enzymatic activity of immobilizedpectinase on pulp fiber reached65U/g when immobilization pH value, temperature and timewere of7.0,20℃and15min, respectively. The immobilized pectinase showed higherthermo stability in a wider temperature range of40–70℃than its free type and its optimalpH shifted from8.0to8.8. About60%of the original activity was maintained after theimmobilized pectinase was used6times. When employed in DCS treatment of papermakingindustry, it reduced the cationic demand by37%, meaning almost all of the polygalacturonicacid depolymerized. Moreover, it still decreased the cationic demand by15%after operatingrepeatedly for6batches.
     Polyethyleneimine is a common used additive in papermaking process. It was used tocoat pulp fiber to produce PEI-coated fiber, which was then employed to immobilize acidicpectinase through ionic adsorption. Immobilized pectinase with higher activity could beobtained if the pulp fiber was thoroughly washed after being coated with PEI and noglutaraldehyde was added for crosslinking. When PEI concentration, enzyme concentrationand pH of enzyme solution were0.01%(w/v),0.25%(v/v) and7, respectively, the resultantimmobilized enzyme exhibited the highest enzymatic activity as about670U/g. The PEIloading and protein loading under the condition were1.1mg/g and36.4mg/g, respectively. Higher thermo and pH stabilities than those of the free enzyme were achieved afterimmobilizing the enzyme on PEI-coated pulp fiber with its optimal pH shifting from3.5to4.0. Furthermore, the bound pectinase depolymerized pectin with a higher rate. Its loweractivatioin energy meant that the catalytic rate was less sensitive to temperature. On top ofthat, the immobilized pectinase effectively decreased the cationic demand of DCS inpapermaking under the practical industrial conditions and still maintained activity afteroperating repeatedly for7batches.
     Porous cellulose beads were prepared through a simple dripping method after dissolvedin LiCl/N, N-Dimethylacetamide. The resultant microspheres exhibited good spherical shapewith a diameter of1-2mm. Their morphology, pore structure, and physical properties werecharacterized. The regenerated cellulose was shown to have a three-dimensional porousstructure, which led to a BET surface area of as large as108m2/g. This may be useful asadsorbents or carriers. Besides, the resultant bead cellulose remained cellulose Ⅰ structureand good thermo stability. The regenerated cellulose maintained Iβtype with substaintaillylower crystalinity. Finally, the cellulose beads were tested in adsorption of pectinase. It wasrevealed that the adsorption was a favorable spontaneous process. Moreover, analysis resultsshowed that the adsorption was in well agreement with Langmuir isotherm with a capacity of7.39mg/g, which meant that pectinase adsorption was a monolayer sorption. It can also beconcluded from the kinetics study that the adsorption followed a pseudo-second-order kineticmodel in the overall process, indicating that chemisorptions were the rate controllingmechanism. This will provide information for the potential utilization of the regeneratedcellulose microspheres as support for enzyme in biotechnology and biochemistry field.
     Pectinase was immobilized on regenerated cellulose beads using physical adsorption andcolavent binding, respectively. By adsorption, the optimum immobilization temperature, timeand pH of the immobilized pectinase on regenerated cellulose beads were20℃,2h and7.0,respectively, under which the enzyme showed high protein loading and enzymatic activity of2.9mg/g and178U/g of the immobilized biocatalyst, respectively. On the other hand, thecolavently immobilized pectinase showed6.7mg/g and100U/g. Compared with the free pectinase, both kinds of the immobilized enzyme showed higher thermo and pH stabilities andeffectively lowered the cationic demand of slurry filtrate by36%. Besides, the immobilizedenzyme obtained through chemical reaction had better reusability. Furthermore, theregenerated cellulose beads maintained good mechanical strength after several batches andcould be resued as support.
引文
[1] arkovi D B, Todorovi N, Rajakovi L V. Simple and cost-effective measures forthe improvement of paper mill effluent treatment–A case study[J]. Journal of CleanerProduction,2011,19(6):764-774
    [2] Zhang X. The potential of using a combined fungal and enzyme treatment system toremove detrimental dissolved and colloidal substances from TMP/newsprint millprocess waters[D].The University of British Columbia,2001
    [3]中国造纸工业2012年度报告[J].造纸信息,2013,(06):11-22
    [4]张明,王仁荣,邢宝珍,等.造纸行业的水足迹[J].中华纸业,2013,(17):50-53
    [5] Blanco A, Negro C, Monte C, et al. Peer Reviewed: The Challenges of SustainablePapermaking[J]. Environmental science&technology,2004,38(21):414-420
    [6]何北海,何滢滢.造纸清洁生产与系统水封闭回用——造纸生产水系统封闭与“零排放”探讨之一[J].中国造纸,2000,19(005):43-48
    [7] Shammas N K, Wang L K, Landin M, Treatment of Paper Mill Whitewater, Recyclingand Recovery of Raw Materials. In Handbook of Environmental Engineering,2010; pp221-268
    [8] Jidong L, Yanling H, Jinwei Z, et al. Accumulation of dissolved and colloidal substancesin water recycled during papermaking[J]. Chemical Engineering Journal,2011,168(2):604-609
    [9] Alexander S D, Dobbins R J. The buildup of dissolved electrolytes in a closed paper millsystem[J]. Tappi,1977,60(12):117-120
    [10] Donat V, Van De Ven T, Paris J. Distribution of dissolved and colloidal substances in theforming and press sections of a paper machine[J]. Journal of pulp and paper science,2003,29(9):294-298
    [11]陈嘉翔.白水中溶解物的来源,危害及其监控[J].纸和造纸,2004,(4):11-14
    [12] Miao Q, Huang L, Chen L. Advances in the Control of Dissolved and ColloidalSubstances Present in Papermaking Processes: A Brief Review[J]. BioResources,2012,8(1):1431-1455
    [13] Hubbe M A, Sundberg A, Mocchiutti P, et al. Dissolved and colloidal substances (DCS)and the charge demand of papermaking process waters and suspensions: A review[J].BioResources,2012,7(4):6109-6193
    [14]何北海,文飚,刘焕彬.清洁生产与纸机湿部化学系统的适应性——造纸生产水系统封闭与“零排放”探讨之二[J].中国造纸,2000,(06):49-54
    [15] Van de Ven T, Qasaimeh M A, Pigeon C, et al. The effect of calcium ions on theefficiency of polyethylene oxide–cofactor retention aid systems[J]. Colloids andSurfaces A: Physicochemical and Engineering Aspects,2007,297(1):79-83
    [16] Whipple W L, Maltesh C. Adsorption of cationic flocculants to paper slurries[J]. Journalof colloid and interface science,2002,256(1):33-40
    [17] Zakraj Ek N, Zule J, Mo E A, et al. Study of the influence of dissolved and colloidalcomponents on paper sizing by simulation of process water loop closure[J]. Acta Chim.Slov,2005,52(1):67-72
    [18] Vendries E, Pfromm P H. Influence of closure on the white water dissolved solids andthe physical properties of recycled linerboard[J]. Tappi journal,1998,81(9):206-213
    [19] Zhang X, Stebbing D W, Saddler J N, et al. Enzyme treatments of the dissolved andcolloidal substances present in mill white water and the effects on the resulting paperproperties[J]. Journal of wood chemistry and technology,2000,20(3):321-335
    [20] Webb L. Papermaking's problem substances interfere with machine runnability[P].0033-4081,
    [21] Nuortila-Jokinen J, M ntt ri M, Huuhilo T, et al. Water circuit closure with membranetechnology in the pulp and paper industry[J]. Water Science and Technology,2004,50(3):217-228
    [22]赵黎,陈安江.圆盘过滤机回收白水的效果、工艺特点及注意事项[J].纸和造纸,2010,(04):4-8
    [23] Miranda R, Negro C, Blanco A. Internal treatment of process waters in paper productionby dissolved air flotation with newly developed chemicals.1. Laboratory tests[J].Industrial&Engineering Chemistry Research,2009,48(4):2199-2205
    [24]何京.造纸工业白水回收技术的思考[J].纸和造纸,2003,(06):90-91
    [25] Bullon J, Rennola L, Salazar F, et al. Water treatment in papermaking white water loopsusing membrane separation techniques[J]. REVISTA TECNICA DE LA FACULTADDE INGENIERIA UNIVERSIDAD DEL ZULIA,2007,30(SI):90-97
    [26] WASHING P. Operational evaluation of rotary drum vacuum filters for brownstockwashing using basic filtration parameters[J]. Tappi Journal,2006:
    [27] Latour I, Miranda R, Blanco A. Silica removal from newsprint mill effluents withaluminum salts[J]. Chemical Engineering Journal,2013,230(0):522-531
    [28] Cho B, Garnier G, van de Ven T G M, et al. A deposition efficiency model for fiber–filler flocculation by microparticle retention system[J]. Journal of Industrial andEngineering Chemistry,2009,15(2):217-223
    [29] Guyard A, Chabot B, Daneault C. Use of Cationic Polyelectrolytes for the Fixation ofAnionic Trash onto Silica Particles[J]. Journal of Pulp and Paper Science,2007,33(1):9
    [30] Oulanti L, Daneault C, Chabot B. Cationisation of Silicon Wafers to Assess theDevelopment of A Solid Sorbent for the Removal of Anionic Contaminants in PaperMachine White Water[J]. Chemical Engineering Journal,2012,209(15):28-37
    [31] Chen X, Shen W, Kou S, et al. GC-MS STUDY OF THE REMOVAL OF DISSOLVEDAND COLLOIDAL SUBSTANCES IN RECYCLED PAPERMAKING BYFLOCCULATION WITH NANO-SIZE TIO2COLLOIDS.[J]. BioResources,2011,6(3):3300-3312
    [32] Bourassa C, Diamond M, Sain M, et al. Mill system closure and trash catching porousfillers in papermaking[J]. Tappi journal,2003,2(2):14-18
    [33] McLean D S, Stack K R, Richardson D E. Evaluation of cationic polymers to controlpitch deposition[J]. Appita Journal,2010,63(3):199-205
    [34] Bajpai P. Application of enzymes in the pulp and paper industry[J]. BIOTECHNOLOGYPROGRESS,1999,15(2):147-157
    [35] Kenealy W R, Jeffries T W. Enzyme processes for pulp and paper: a review of recentdevelopments[A]. ACS Publications,2003.210-241
    [36] Robinson M, Blackwell B, Dare P, et al. Upgrading TMP whitewater for internal recycle:Biological and physicochemical treatment and effects on pulp quality[A].55th AppitaAnnual Conference, Hobart, Australia30April-2May2001: Proceedings[C]. AppitaInc.,2001.156
    [37] Lindberg L E, Holmbom B R, V is nen O M, et al. Degradation of paper mill watercomponents in laboratory tests with pure cultures of bacteria[J]. Biodegradation,2001,12(3):141-148
    [38] Buchert J, Tenkanen M, Viikari L. Enzymatic modification of the dissolved and colloidalsubstances[A].1997.
    [39]王志伟.废新闻纸漂白脱墨浆中DCS的生物酶控制[D].山东轻工业学院,2010
    [40] Saarimaa V J, Pranovich A V, Sundberg A C, et al. Isolation of pectic acids frombleached TMP water and aggregation of model and TMP pectic acids by calcium[J].BioResources,2007,2(4):638-651
    [41] Zasadowski D, Hedenstr m E, Edlund H, et al. Removal of lipophilic extractives andmanganese ions from Spruce TMP waters in a customized flotation cell[J].BioResources,2012,7(2):2376-2392
    [42] Stebbing D. Fungal and enzyme treatment of mechanical pulp and paper mill white water:impact on white water, fiber, and paper properties[D].University of British Columbia,2002
    [43] Fardim P, Holmbom B. Origin and surface distribution of anionic groups in differentpapermaking fibres[J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2005,252(2):237-242
    [44] THORNTON J, Ekman R, Holmbom B, et al. Release of potential anionic trash'inperoxide bleaching of mechanical pulp[J]. Paperi ja puu,1993,75(6):426-431
    [45] Sundberg K E, Holmbom B R, Pranovich A V. Chemical changes in thermomechanicalpulp at alkaline conditions[J]. Journal of wood chemistry and technology,2003,23(1):89-112
    [46] Sundberg A, Pranovich A, Holmbom B. Distribution of anionic groups in TMPsuspensions[J]. Journal of wood chemistry and technology,2000,20(1):71-92
    [47] Sundberg K E, Sundberg A C, Thornton J W, et al. Pectic acids in the production ofwood-containing paper[J]. Tappi journal,1998,81(7):131-136
    [48] Thornton J W. Enzymatic degradation of polygalacturonic acids released frommechanical pulp during peroxide bleaching[J]. Tappi journal,1994,77(3):161-167
    [49] Liu K, Li X, Li X, et al. Lowering the cationic demand caused by PGA in papermakingby solute adsorption and immobilized pectinase on chitosan beads[J]. CarbohydratePolymers,2010,82(3):648-652
    [50] Ricard M, Orccotoma J, Ling J, et al. Pectinase reduces cationic chemical costs inperoxide-bleached mechanical grades[J]. Pulp&paper-Canada,2005,106(12):84
    [51] Reid I, Ricard M. Pectinase in papermaking: solving retention problems in mechanicalpulps bleached with hydrogen peroxide[J]. Enzyme and microbial technology,2000,26(2):115-123
    [52] Ricard M, Reid I, Orccotoma J. Pectinase reduces the cationic demand ofperoxide-bleached TMP: A paper machine trial[J]. PULP AND PAPERCANADA-ONTARIO-,2005,106(12):78
    [53] Ricard M, Orccotoma J A, Ling J, et al. Pectinase reduces cationic chemical costs inperoxide-bleached mechanical grades[J]. Pulp&paper Canada,2005,106(12):84-88
    [54] Pruszynski P, Quinn M, Kamlin B, et al. Managing anionic detrimental substances inperoxide bleached mechanical pulps-Unique benefits of enzymatic treatment[J]. AppitaJournal: Journal of the Technical Association of the Australian and New Zealand Pulpand Paper Industry,2011,64(2):169
    [55]李宗全,詹怀宇,秦梦华.果胶酶处理BCTMP中DCS及其对阳离子助剂作用效果的影响[J].中国造纸,2006,25(008):23-26
    [56]张春辉.新闻纸厂过程水中溶胶物质的表征及其稳定性和酶法控制的研究[D].华南理工大学,2008
    [57]常洽,唐艳,王雁平.果胶酶处理APMP中DCS的研究[J].造纸科学与技术,2008,(006):93-95
    [58]刘凯.改性壳聚糖微球固定化生物酶及其控制造纸白水中DCS物质的研究[D].华南理工大学,2011
    [59] Jun L, Huiren H, Sha Y, Combined Enzyme and Chemical Fixing Agent to Control DCSin Papermaking White Water. In Bioinformatics and Biomedical Engineering,(iCBBE)20115th International Conference on; IEEE:2011; pp1-4
    [60]田志强.生物酶与化学控制剂相结合控制化机浆造纸中的DCS[D].天津科技大学,2010
    [61]张革仓,王松林,邵学军,等.果胶酶对BCTMP果胶质的降解作用[J].中华纸业,2013,(06):43-47
    [62] Csanádi Z S, Sisak C S. Immobilization of Pectinex Ultra SP-L pectinase and itsapplication to production of fructooligosaccharides[J]. Acta Alimentaria,2006,35(2):205-212
    [63] Demir N, Acar J, Sar o lu K, et al. The use of commercial pectinase in fruit juiceindustry. Part3: Immobilized pectinase for mash treatment[J]. Journal of FoodEngineering,2001,47(4):275-280
    [64] Ma J, Zhang L, Liang Z, et al. Recent advances in immobilized enzymatic reactors andtheir applications in proteome analysis[J]. Analytica Chimica Acta,2009,632(1):1-8
    [65] Tan T, Lu J, Nie K, et al. Biodiesel production with immobilized lipase: A review[J].Biotechnology Advances,2010,28(5):628-634
    [66] Idris A, Bukhari A. Immobilized Candida antarctica lipase B: Hydration, stripping offand application in ring opening polyester synthesis[J]. Biotechnology Advances,2012,30(3):550-563
    [67] Mateo C, Palomo J M, Fernandez-Lorente G, et al. Improvement of enzyme activity,stability and selectivity via immobilization techniques[J]. Enzyme and MicrobialTechnology,2007,40(6):1451-1463
    [68] Sheldon R A. Enzyme immobilization: the quest for optimum performance[J]. AdvancedSynthesis&Catalysis,2007,349(8‐9):1289-1307
    [69] Chibata I. Industrial application of immobilized enzyme systems[J]. Pure and AppliedChemistry,1978,50:667-675
    [70] Mahmoud D A R, Helmy W A. Potential Application of Immobilization Technology inEnzyme and Biomass Production (Review Article)[J]. Journal of Applied SciencesResearch,2009,5(12):2466-2476
    [71] Cao L, Introduction: Immobilized enzymes: Past, present and prospects. In2005; pp1-52
    [72] Tischer W, Wedekind F. Immobilized enzymes: methods and applications[J].Biocatalysis-from Discovery to Application,1999:95-126
    [73] Tomotani E J, Vitolo M. Catalytic performance of invertase immobilized by adsorptionon anionic exchange resin[J]. Process Biochemistry,2006,41(6):1325-1331
    [74] Suh C W, Park S H, Park S G, et al. Covalent immobilization and solid-phase refoldingof enterokinase for fusion protein cleavage[J]. Process Biochemistry,2005,40(5):1755-1762
    [75] Li T, Li S, Wang N, et al. Immobilization and stabilization of pectinase by multipointattachment onto an activated agar-gel support[J]. Food Chemistry,2008,109(4):703-708
    [76] Lei Z, Bi S. The silica-coated chitosan particle from a layer-by-layer approach forpectinase immobilization[J]. Enzyme and microbial technology,2007,40(5):1442-1447
    [77] Sardar M, Gupta M N. Immobilization of tomato pectinase on Con A-Seralose4B bybioaffinity layering[J]. Enzyme and Microbial Technology,2005,37(3):355-359
    [78] Atia K S. Co-immobilization of cyclohexanone monooxygenase andglucose-6-phosphate dehydrogenase onto polyethylenimine-porous agarose polymericcomposite using [gamma] irradiation to use in biotechnological processes[J]. RadiationPhysics and Chemistry,2005,73(2):91-99
    [79] Brady D, Jordaan J. Advances in enzyme immobilisation[J]. Biotechnology letters,2009,31(11):1639-1650
    [80] Mateo C, Palomo J M, Van Langen L M, et al. A new, mild cross‐linking methodologyto prepare cross‐linked enzyme aggregates[J]. Biotechnology and bioengineering,2004,86(3):273-276
    [81] Jung D, Paradiso M, Wallacher D, et al. Formation of Cross‐Linked ChloroperoxidaseAggregates in the Pores of Mesocellular Foams: Characterization by SANS andCatalytic Properties[J]. ChemSusChem,2009,2(2):161-164
    [82] Markvicheva E A, Kuptsova S V, Mareeva T Y, et al. Immobilized enzymes and cells inpoly (N-vinyl caprolactam)-based hydrogels[J]. Applied biochemistry andbiotechnology,2000,88(1):145-157
    [83] Caruso F, Trau D, M hwald H, et al. Enzyme encapsulation in layer-by-layer engineeredpolymer multilayer capsules[J]. Langmuir,2000,16(4):1485-1488
    [84] Tischer W, Wedekind F, Immobilized enzymes: methods and applications. InBiocatalysis-from discovery to application; Springer:1999; pp95-126
    [85] Huang X J, Yu A G, Xu Z K. Covalent immobilization of lipase from Candida rugosaonto poly (acrylonitrile-co-2-hydroxyethyl methacrylate) electrospun fibrousmembranes for potential bioreactor application[J]. Bioresource technology,2008,99(13):5459-5465
    [86] Xie T, Wang A, Huang L, et al. Recent advance in the support and technology used inenzyme immobilization[J]. African Journal of Biotechnology,2010,8(19):4724-4733
    [87] Tischer W, Kasche V. Immobilized enzymes: crystals or carriers?[J]. Trends inBiotechnology,1999,17(8):326-335
    [88]袁定重,张秋禹,侯振宇,等.固定化酶载体材料的最新研究进展[J].材料导报,2006,(01):69-72
    [89] Cao L. Immobilised enzymes: science or art?[J]. Current opinion in chemical biology,2005,9(2):217-226
    [90] Nishino T, Matsuda I, Hirao K. All-cellulose composite[J]. Macromolecules,2004,37(20):7683-7687
    [91] Klemm D, Heublein B, Fink H P, et al. Cellulose: fascinating biopolymer and sustainableraw material[J]. Angewandte Chemie International Edition,2005,44(22):3358-3393
    [92] Luo X, Liu S, Zhou J, et al. In situ synthesis of Fe3O4/cellulose microspheres withmagnetic-induced protein delivery[J]. Journal of Materials Chemistry,2009,19(21):3538-3545
    [93] Weber V, Linsberger I, Ettenauer M, et al. Development of specific adsorbents forhuman tumor necrosis factor-α: Influence of antibody immobilization on performanceand biocompatibility[J]. Biomacromolecules,2005,6(4):1864-1870
    [94] Szajani B, Buzas Z, Dallmann K, et al. Continuous production of ethanol using yeastcells immobilized in preformed cellulose beads[J]. Applied microbiology andbiotechnology,1996,46(2):122-125
    [95] Esaki K, Yokota S, Egusa S, et al. Preparation of lactose-modified cellulose films by anonaqueous enzymatic reaction and their biofunctional characteristics as a scaffold forcell culture[J]. Biomacromolecules,2009,10(5):1265-1269
    [96] Volkert B, Wolf B, Fischer S, et al. Application of modified bead cellulose as a carrier ofactive ingredients[J]. Macromolecular Symposia,2009,280(1):130-135
    [97] Monier M, El-Sokkary A. Modification and characterization of cellulosic cotton fibersfor efficient immobilization of urease[J]. International Journal of BiologicalMacromolecules,2012,51:18-24
    [98] Edwards J V, Prevost N T, Condon B, et al. Covalent attachment of lysozyme tocotton/cellulose materials: protein verses solid support activation[J]. CELLULOSE,2011,18(5):1239-1249
    [99] Cooke T F. Fibers as supports for catalysts: a survey of the literature[J]. Journal ofPolymer Engineering,1990,9(1):1-22
    [100] Roy I, Gupta M N. Lactose hydrolysis by Lactozym immobilized on cellulose beads inbatch and fluidized bed modes[J]. Process Biochemistry,2003,39(3):325-332
    [101] Robinson P J, Dunnill P, Lilly M D. The properties of magnetic supports in relation toimmobilized enzyme reactors[J]. Biotechnology and Bioengineering,1973,15(3):603-606
    [102] Turner M B, Spear S K, Holbrey J D, et al. Ionic liquid-reconstituted cellulosecomposites as solid support matrices for biocatalyst immobilization[J].Biomacromolecules,2005,6(5):2497-2502
    [103] Luo X, Zhang L. Immobilization of penicillin G acylase in epoxy-activated magneticcellulose microspheres for improvement of biocatalytic stability and activities[J].Biomacromolecules,2010,11(11):2896-2903
    [104] Bryjak J, Liesiene J, Stefuca V. Man-tailored cellulose-based carriers for invertaseimmobilization[J]. Cellulose,2008,15(4):631-640
    [105] Klein M P, Scheeren C W, Lorenzoni A S G, et al. Ionic liquid-cellulose film forenzyme immobilization[J]. Process Biochemistry,2011,46:1375-1379
    [106] Isobe N, Lee D S, Kwon Y J, et al. Immobilization of protein on cellulose hydrogel[J].Cellulose,2011,18:1251-1256
    [107] Dey G, Nagpal V, Banerjee R. Immobilization of α-amylase from Bacillus circulansGRS313on coconut fiber[J]. Applied biochemistry and biotechnology,2002,102(1):303-313
    [108] Bagheri M, Rodríguez H, Swatloski R P, et al. Ionic Liquid-Based Preparation ofCellulose-Dendrimer Films as Solid Supports for Enzyme Immobilization[J].Biomacromolecules,2008,9(1):381-387
    [109] Chen H, Hsieh Y L. Enzyme immobilization on ultrafine cellulose fibers via poly(acrylic acid) electrolyte grafts[J]. Biotechnology and bioengineering,2005,90(4):405-413
    [110] Albayrak N, Yang S T. Immobilization of Aspergillus oryzae [beta]-galactosidase ontosylated cotton cloth[J]. Enzyme and microbial technology,2002,31(4):371-383
    [111] Kim U J, Kuga S, Wada M, et al. Periodate oxidation of crystalline cellulose[J].Biomacromolecules,2000,1(3):488-492
    [112] Kristiansen K A, Potthast A, Christensen B E. Periodate oxidation of polysaccharidesfor modification of chemical and physical properties[J]. Carbohydrate research,2010,345(10):1264-1271
    [113] Princi E, Vicini S, Pedemonte E, et al. Physical and chemical characterization ofcellulose based textiles modified by periodate oxidation[J].2004,218:343-352
    [114] Vicini S, Princi E, Luciano G, et al. Thermal analysis and characterisation of celluloseoxidised with sodium methaperiodate[J]. Thermochimica acta,2004,418(1):123-130
    [115] Varma A J, Kulkarni M P. Oxidation of cellulose under controlled conditions[J].Polymer Degradation and Stability,2002,77(1):25-27
    [116] Kim U J, Kuga S. Thermal decomposition of dialdehyde cellulose and itsnitrogen-containing derivatives[J]. Thermochimica acta,2001,369(1):79-85
    [117] Maekawa E, Koshijima T. Preparation and structural consideration ofnitrogen-containing derivatives obtained from dialdehyde celluloses[J]. Journal ofApplied Polymer Science,1991,42(1):169-178
    [118] Wang Q, Li C X, Fan X, et al. Immobilization of catalase on cotton fabric oxidized bysodium periodate[J]. Biocatalysis and Biotransformation,2008,26(5):437-443
    [119] Carneiro-da-Cunha M G, Rocha J, Garcia F, et al. Lipase immobilisation on topolymeric membranes[J]. Biotechnology techniques,1999,13(6):403-409
    [120] Rotková J, uláková R, Korecká L, et al. Laccase immobilized on magnetic carriers forbiotechnology applications[J]. Journal of Magnetism and Magnetic Materials,2009,321(10):1335-1340
    [121] Varavinit S, Chaokasem N, Shobsngob S. Covalent immobilization of a glucoamylaseto bagasse dialdehyde cellulose[J]. World Journal of Microbiology and Biotechnology,2001,17(7):721-725
    [122] Nikolic T, Kostic M, Praskalo J, et al. Sodium periodate oxidized cotton yarn as carrierfor immobilization of trypsin[J]. CARBOHYDRATE POLYMERS,2010,82(3):976-981
    [123] Seabra I J, Gil M H. Cotton gauze bandage: a support for protease immobilization foruse in biomedical applications[J]. Revista Brasileira de Ciências Farmacêuticas,2007,43(4):535-542
    [124] Comfort A R, Albert E C, Langer R. Immobilized enzyme cellulose hollow fibers: I.Immobilization of heparinase.[J]. Biotechnology and bioengineering,1989,34(11):1366-1373
    [125] Kawai T, Saito K, Sugita K, et al. Immobilization of ascorbic acid oxydase inmultilayers onto porous hollow-fiber membrane[J]. Journal of Membrane Science,2001,191(1-2):207-213
    [126] Ikeda Y, Kurokawa Y, Nakane K, et al. Entrap-immobilization of biocatalysts oncellulose acetate-inorganic composite gel fiber using a gel formation of celluloseacetate-metal (Ti, Zr) alkoxide[J]. CELLULOSE,2002,9(3-4):369-379
    [127] Wang Y, Hsieh Y L. Enzyme immobilization to ultra‐fine cellulose fibers viaamphiphilic polyethylene glycol spacers[J]. Journal of Polymer Science Part A:Polymer Chemistry,2004,42(17):4289-4299
    [128] Ibrahim N A, Gouda M, El-shafei A M, et al. Antimicrobial activity of cotton fabricscontaining immobilized enzymes[J]. Journal of Applied Polymer Science,2007,104(3):1754-1761
    [129] Liu Z, Wang H, Li B, et al. Biocompatible magnetic cellulose–chitosan hybrid gelmicrospheres reconstituted from ionic liquids for enzyme immobilization[J]. Journal ofMaterials Chemistry,2012,22(30):15085-15091
    [130] Opwis K, Knittel D, Bahners T, et al. Photochemical enzyme immobilization on textilecarrier materials[J]. Engineering in life sciences,2005,5(1):63-67
    [131] Saleemuddin M. Bioaffinity based immobilization of enzymes[J]. Thermal Biosensors,Bioactivity, Bioaffinitty,1999:203-226
    [132]聂华丽,朱利民.纤维载体固定化酶的制备及其应用[J].纺织学报,2006,27(7):104-107
    [133] Maekawa E, Koshijima T. Properties of2,3‐dicarboxy cellulose combined withvarious metallic ions[J]. Journal of applied polymer science,1984,29(7):2289-2297
    [134] Parkinson A E, Wagner E C. Estimation of Aldehydes by the Bisulfite Method[J].Industrial&Engineering Chemistry Analytical Edition,1934,6(6):433-436
    [135]张志贤,张瑞镐.有机官能团定量分析[M].化学工业出版社,1990.
    [136] Maute R L, Owens Jr M L. Rapid determination of carbonyl content in acrylonitrile[J].Analytical Chemistry,1956,28(8):1312-1314
    [137]杨桂法.有机化学分析[M].长沙:湖南大学出版社,1996.
    [138] Jackson E L, Hudson C S. THE OXIDATION OF ALPHA-METHYLd-MANNOPYRANOSIDE1[J]. Journal of the American Chemical Society,1936,58(2):378-379
    [139] Jackson E L, Hudson C S. Studies on the Cleavage of the Carbon Chain of Glycosidesby Oxidation. A New Method for Determining Ring Structures and Alpha and BetaConfigurations of Glycosides1[J]. Journal of the American Chemical Society,1937,59(6):994-1003
    [140] Calvini P, Conio G, Princi E, et al. Viscometric determination of dialdehyde content inperiodate oxycellulose Part II. Topochemistry of oxidation[J]. Cellulose,2006,13(5):571-579
    [141]许云辉.选择性氧化法制备环境友好型功能棉纤维研究[D].苏州:苏州大学,2006
    [142] Rinaudo M. Periodate Oxidation of Methylcellulose: Characterization and Properties ofOxidized Derivatives[J]. Polymers,2010,2(4):505-521
    [143] Liu X, Wang L, Song X, et al. A kinetic model for oxidative degradation of bagassepulp fiber by sodium periodate[J]. CARBOHYDRATE POLYMERS,2012,90(1):218-223
    [144]杨淑蕙.植物纤维化学[M].中国轻工业出版社,2001.
    [145] Guthrie R D. The" dialdehydes" from the periodate oxidation of carbohydrates.[J].Advances in carbohydrate chemistry,1961,16:105
    [146]刘苇.纤维素纤维的高碘酸盐氧化机理及氧化纤维素纤维应用的研究[D].天津科技大学,2008
    [147]孟舒献.纤维素衍生物的合成及吸附性能的研究[D].天津大学,2005
    [148]赵希荣,夏文水.高碘酸钠氧化棉布纤维反应条件的研究[J].纤维素科学与技术,2003,11(3):17-21
    [149] Nelson M L, O'Connor R T. Relation of certain infrared bands to cellulose crystallinityand crystal latticed type. Part I. Spectra of lattice types I, II, III and of amorphouscellulose[J]. Journal of applied polymer science,1964,8(3):1311-1324
    [150]王小敏,吴文龙,闾连飞,等.分光光度计法测定果胶酶活力的方法研究[J].食品工业科技,2007,28(5):227-229
    [151] Miller G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J].Analytical chemistry,1959,31(3):426-428
    [152] John M. The protein protocols handbook[M]. New Jersey: Humana Press,2002.
    [153] Jayani R S, Saxena S, Gupta R. Microbial pectinolytic enzymes: A review[J]. ProcessBiochemistry,2005,40(9):2931-2944
    [154] Nelson N. A photometric adaptation of the Somogyi method for the determination ofglucose[J]. J. biol. Chem,1944,153(2):375-379
    [155] Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination ofsugars and related substances[J]. Analytical chemistry,1956,28(3):350-356
    [156] Jiang D S, Long S Y, Huang J, et al. Immobilization of Pycnoporus sanguineus laccaseon magnetic chitosan microspheres[J]. Biochemical Engineering Journal,2005,25(1):15-23
    [157] Pedroche J, Del Mar Yust M, Mateo C, et al. Effect of the support and experimentalconditions in the intensity of the multipoint covalent attachment of proteins onglyoxyl-agarose supports: correlation between enzyme–support linkages and thermalstability[J]. Enzyme and Microbial Technology,2007,40(5):1160-1166
    [158] Rowen J W, Forziati F H, Reeves R E. Spectrophotometric Evidence for the Absence ofFree Aldehyde Groups in Periodate-oxidized Cellulose1[J]. Journal of the AmericanChemical Society,1951,73(9):4484-4487
    [159] Buchert J, Tamminen T, Viikari L. Impact of the Donnan effect on the action ofxylanases on fibre substrates[J]. Journal of biotechnology,1997,57(1):217-222
    [160] Demirel D, zdural A R, Mutlu M. Performance of immobilized Pectinex Ultra SP-Lon magnetic duolite-polystyrene composite particles Part I: A batch reactor study[J].Journal of food engineering,2004,64(4):417-421
    [161] Sarι o lu K, Demir N, Acar J, et al. The use of commercial pectinase in the fruit juiceindustry, part2: Determination of the kinetic behaviour of immobilized commercialpectinase[J]. Journal of food engineering,2001,47(4):271-274
    [162] Fuente E, Blanco A, Negro C, et al. Study of filler flocculation mechanisms and flocproperties induced by polyethylenimine[J]. Industrial&engineering chemistry research,2005,44(15):5616-5621
    [163] Santos J P, Welsh E R, Gaber B P, et al. Polyelectrolyte-assisted immobilization ofactive enzymes on glass beads[J]. Langmuir,2001,17(17):5361-5367
    [164] Torres R, Ortiz C, Pessela B C, et al. Improvement of the enantioselectivity of lipase(fraction B) from Candida antarctica via adsorpiton on polyethylenimine-agarose underdifferent experimental conditions[J]. Enzyme and microbial technology,2006,39(2):167-171
    [165] Mateo C, Abian O, Fernandez Lafuente R, et al. Reversible enzyme immobilization viaa very strong and nondistorting ionic adsorption on support–polyethyleniminecomposites[J]. Biotechnology and bioengineering,2000,68(1):98-105
    [166] Pedrolli D B, Monteiro A C, Gomes E, et al. Pectin and pectinases: production,characterization and industrial application of microbial pectinolytic enzymes[J]. OpenBiotechnol. J,2009,3:9-18
    [167] Albayrak N, Yang S T. Immobilization of β‐Galactosidase on Fibrous Matrix byPolyethyleneimine for Production of Galacto‐Oligosaccharides from Lactose[J].Biotechnology progress,2002,18(2):240-251
    [168] David A E, Wang N S, Yang V C, et al. Chemically surface modified gel (CSMG): anexcellent enzyme-immobilization matrix for industrial processes[J]. Journal ofbiotechnology,2006,125(3):395-407
    [169] Xu D, Tsai C, Nussinov R. Hydrogen bonds and salt bridges across protein-proteininterfaces.[J]. Protein engineering,1997,10(9):999-1012
    [170] López-Gallego F, Betancor L, Mateo C, et al. Enzyme stabilization by glutaraldehydecrosslinking of adsorbed proteins on aminated supports[J]. Journal of biotechnology,2005,119(1):70-75
    [171] D'Souza S F, Kubal B S. A cloth strip bioreactor with immobilized glucoamylase[J].Journal of biochemical and biophysical methods,2002,51(2):151-159
    [172] Dick C R, Ham G E. Characterization of polyethylenimine[J]. Journal ofMacromolecular Science-Chemistry,1970,4(6):1301-1314
    [173] D Annibale A, Rita Stazi S, Vinciguerra V, et al. Characterization of immobilizedlaccase from Lentinula edodes and its use in olive-mill wastewater treatment[J]. ProcessBiochemistry,1999,34(6):697-706
    [174] Talbert J N, Goddard J M. Enzymes on material surfaces[J]. Colloids and Surfaces B:Biointerfaces,2012,93:8-19
    [175] Alonso Morales N, López Gallego F, Betancor L, et al. Reversible immobilization ofglutaryl acylase on sepabeads coated with polyethyleneimine[J]. Biotechnologyprogress,2004,20(2):533-536
    [176] Hartvig R A, van de Weert M, stergaard J, et al. Protein adsorption at chargedsurfaces: the role of electrostatic interactions and interfacial charge regulation[J].Langmuir,2011,27(6):2634-2643
    [177] Ar ca M Y, Bayramo lu G. Invertase reversibly immobilized ontopolyethylenimine-grafted poly (GMA–MMA) beads for sucrose hydrolysis[J]. Journalof Molecular Catalysis B: Enzymatic,2006,38(3):131-138
    [178] Wang W, Deng L, Peng Z H, et al. Study of the epoxydized magnetic hydroxyl particlesas a carrier for immobilizing penicillin G acylase[J]. Enzyme and microbial technology,2007,40(2):255-261
    [179] Bayramo lu G, Karak la M, Alt nta B, et al. Polyaniline grafted polyacylonitrileconductive composite fibers for reversible immobilization of enzymes: Stability andcatalytic properties of invertase[J]. Process Biochemistry,2009,44(8):880-885
    [180] Iyer P V, Ananthanarayan L. Enzyme stability and stabilization—aqueous andnon-aqueous environment[J]. Process Biochemistry,2008,43(10):1019-1032
    [181] Chiou S, Wu W. Immobilization of Candida rugosa lipase on chitosan with activation ofthe hydroxyl groups[J]. Biomaterials,2004,25(2):197-204
    [182] Lamb S B, Stuckey D C. Enzyme immobilization on colloidal liquid aphrons (CLAs):the influence of system parameters on activity[J]. Enzyme and microbial technology,2000,26(8):574-581
    [183]彭云云,武书彬,程江娜,等.离子色谱法测定蔗渣半纤维素中的单糖及糖醛酸含量[J].造纸科学与技术,2009,28(5):10-12
    [184] Lei Z, Jiang Q. Synthesis and properties of immobilized pectinase onto themacroporous polyacrylamide microspheres[J]. Journal of agricultural and foodchemistry,2011,59(6):2592-2599
    [185] Sannino A, Demitri C, Madaghiele M. Biodegradable cellulose-based hydrogels:Design and applications[J]. Materials,2009,2(2):353-373
    [186] Gericke M, Trygg J, Fardim P. Functional Cellulose Beads: Preparation,Characterization, and Applications[J]. Chemical reviews,2013:
    [187] Luo X, Zhang L. Creation of regenerated cellulose microspheres with diameter rangingfrom micron to millimeter for chromatography applications[J]. Journal ofChromatography A,2010,1217(38):5922-5929
    [188] Gemeiner P, Polakovi M, Mislovi ová D, et al. Cellulose as a (bio) affinity carrier:properties, design and applications[J]. Journal of Chromatography B,1998,715(1):245-271
    [189] Zhang J, Fan Q, Bai Z, et al. Preparative optimization of cellulose microspheres appliedas supports for high-performance liquid chromatography[J]. Journal of WuhanUniversity of Technology-Mater. Sci. Ed.,2013,28(3):460-466
    [190] Gonte R R, Balasubramanian K, Mumbrekar J D. Porous and Cross-Linked CelluloseBeads for Toxic Metal Ion Removal: Hg (II) Ions[J]. Journal of Polymers,2013:
    [191] O Connell D W, Birkinshaw C, O Dwyer T F. Heavy metal adsorbents prepared fromthe modification of cellulose: A review[J]. Bioresource Technology,2008,99(15):6709-6724
    [192] Demitri C, Scalera F, Madaghiele M, et al. Potential of Cellulose-Based SuperabsorbentHydrogels as Water Reservoir in Agriculture[J]. International Journal of PolymerScience,2013:
    [193] De Luca L, Giacomelli G, Porcheddu A, et al. Cellulose beads: a new versatile solidsupport for microwave-assisted synthesis. Preparation of pyrazole and isoxazolelibraries[J]. Journal of Combinatorial Chemistry,2003,5(4):465-471
    [194] Araki J, Kataoka T, Katsuyama N, et al. A preliminary study for fiber spinning ofmixed solutions of polyrotaxane and cellulose in a dimethylacetamide/lithium chloride(DMAc/LiCl) solvent system[J]. Polymer,2006,47(25):8241-8246
    [195] Garrett Q, Milthorpe B K. Human serum albumin adsorption on hydrogel contact lensesin vitro.[J]. Investigative ophthalmology&visual science,1996,37(13):2594-2602
    [196] W gberg L, H gglund R. Kinetics of polyelectrolyte adsorption on cellulosic fibers[J].Langmuir,2001,17(4):1096-1103
    [197] Kobayashi T, Koike K, Yoshimatsu T, et al. Purification and properties of alow-molecular-weight, high-alkaline pectate lyase from an alkaliphilic strain ofBacillus[J]. Bioscience, biotechnology, and biochemistry,1999,63(1):65-72
    [198] Chen L, Tian Z, Du Y. Synthesis and pH sensitivity of carboxymethyl chitosan-basedpolyampholyte hydrogels for protein carrier matrices[J]. Biomaterials,2004,25(17):3725-3732
    [199] McCormick C L, Callais P A, Hutchinson Jr B H. Solution studies of cellulose inlithium chloride and N, N-dimethylacetamide[J]. Macromolecules,1985,18(12):2394-2401
    [200] Dawsey T R, McCormick C L. The lithium chloride/dimethylacetamide solvent forcellulose: a literature review[J]. Journal of Macromolecular Science—Reviews inMacromolecular Chemistry and Physics,1990,30(3-4):405-440
    [201]杨革生. Lyocell竹纤维素纤维的制备及结构与性能的研究[D].东华大学,2009
    [202] Chang C, Zhang L. Cellulose-based hydrogels: Present status and applicationprospects[J]. Carbohydrate Polymers,2011,84(1):40-53
    [203] Bognitzki M, Czado W, Frese T, et al. Nanostructured fibers via electrospinning[J].Advanced Materials,2001,13(1):70-72
    [204] Park S, Baker J O, Himmel M E, et al. Research Cellulose crystallinity index:measurement techniques and their impact on interpreting cellulase performance[J].Biotechnol. Biofuels,2010,3:1-10
    [205] Hult E, Iversen T, Sugiyama J. Characterization of the supermolecular structure ofcellulose in wood pulp fibres[J]. Cellulose,2003,10(2):103-110
    [206] Cai J, Kimura S, Wada M, et al. Cellulose aerogels from aqueous alkali hydroxide–urea solution[J]. ChemSusChem,2008,1(1‐2):149-154
    [207] Huber T, Müssig J, Curnow O, et al. A critical review of all-cellulose composites[J].Journal of Materials Science,2012,47(3):1171-1186
    [208] Beno t J D, Newman R H, Staiger M P. Phase transformations in microcrystallinecellulose due to partial dissolution[J]. Cellulose,2007,14(4):311-320
    [209] Li Q, He Y, Xian M, et al. Improving enzymatic hydrolysis of wheat straw using ionicliquid1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment[J]. BioresourceTechnology,2009,100(14):3570-3575
    [210] Wada M, Okano T, Sugiyama J. Allomorphs of native crystalline cellulose I evaluatedby two equatoriald-spacings[J]. Journal of wood science,2001,47(2):124-128
    [211] Motta A, Fambri L, Migliaresi C. Regenerated silk fibroin films: thermal and dynamicmechanical analysis[J]. Macromolecular Chemistry and Physics,2002,203(10‐11):1658-1665
    [212] Yang P, Kokot S. Thermal analysis of different cellulosic fabrics[J]. Journal of appliedpolymer science,1996,60(8):1137-1146
    [213] Basch A, Lewin M. Influence of fine structure on the pyrolysis of cellulose. III. Theinfluence of orientation[J]. Journal of Polymer Science: Polymer Chemistry Edition,1974,12(9):2053-2063
    [214] Li X, Li N, Xu J, et al. Cellulose fibers from cellulose/1‐ethyl‐3‐methylimidazolium acetate solution by wet spinning with increasing spinning speeds[J].Journal of Applied Polymer Science,2013:
    [215] Swatloski R P, Spear S K, Holbrey J D, et al. Dissolution of cellose with ionic liquids[J].Journal of the American Chemical Society,2002,124(18):4974-4975
    [216] Emsley A M, Stevens G C. Kinetics and mechanisms of the low-temperaturedegradation of cellulose[J]. Cellulose,1994,1(1):26-56
    [217] Langmuir I. The adsorption of gases on plane surfaces of glass, mica and platinum.[J].Journal of the American Chemical Society,1918,40(9):1361-1403
    [218] Freundlich H. Over the adsorption in solution[J]. J. Phys. Chem,1906,57(385):292
    [219] Bautista L F, Martínez M, Aracil J. Modeling of the adsorption of α-amylase in batchstirred tank[J]. Industrial&engineering chemistry research,2000,39(11):4320-4325
    [220] Fargues C, Bailly M, Grevillot G. Adsorption of BSA and hemoglobin onhydroxyapatite support: Equilibria and multicomponent dynamic adsorption[J].Adsorption,1998,4(1):5-16
    [221] Fatehi P, Hamdan F C, Ni Y. Adsorption of lignocelluloses of pre-hydrolysis liquor oncalcium carbonate to induce functional filler[J]. Carbohydrate Polymers,2013,94:531-538
    [222] Hall K R, Eagleton L C, Acrivos A, et al. Pore-and solid-diffusion kinetics in fixed-bedadsorption under constant-pattern conditions[J]. Industrial&Engineering ChemistryFundamentals,1966,5(2):212-223
    [223] Yadav S, Yadav P K, Yadav D, et al. Pectin lyase: a review[J]. Process Biochemistry,2009,44(1):1-10
    [224] Gupta V K, Mittal A, Krishnan L, et al. Adsorption kinetics and column operations forthe removal and recovery of malachite green from wastewater using bottom ash[J].Separation and Purification Technology,2004,40(1):87-96
    [225] Sarkar D, Chattoraj D K. Activation parameters for kinetics of protein adsorption atsilica-water interface[J]. Journal of colloid and interface science,1993,157(1):219-226
    [226] Rabe M, Verdes D, Seeger S. Understanding protein adsorption phenomena at solidsurfaces[J]. Advances in colloid and interface science,2011,162(1):87-106
    [227] Lagergren S. About the theory of so-called adsorption of soluble substances[J].Kungliga Svenska Vetenskapsakademiens Handlingar,1898,24(4):1-39
    [228] Reddad Z, Gerente C, Andres Y, et al. Adsorption of several metal ions onto a low-costbiosorbent: kinetic and equilibrium studies[J]. Environmental Science&Technology,2002,36(9):2067-2073
    [229] Ho Y, McKay G. Pseudo-second order model for sorption processes[J]. ProcessBiochemistry,1999,34(5):451-465
    [230] Ho Y. Review of second-order models for adsorption systems[J]. Journal of HazardousMaterials,2006,136(3):681-689
    [231] Yan H, Dai J, Yang Z, et al. Enhanced and selective adsorption of copper (II) ions onsurface carboxymethylated chitosan hydrogel beads[J]. Chemical Engineering Journal,2011,174(2):586-594
    [232] Weber W J, Morris J C. Kinetics of adsorption on carbon from solution[J]. J. Sanit. Eng.Div. Am. Soc. Civ. Eng,1963,89(17):31-60
    [233] Li N, Bai R. Copper adsorption on chitosan–cellulose hydrogel beads: behaviors andmechanisms[J]. Separation and purification technology,2005,42(3):237-247
    [234] Guthrie J P. Carbonyl addition reactions: Factors affecting the hydrate-hemiacetal andhemiacetal-acetal equilibrium constants[J]. Canadian Journal of Chemistry,1975,53(6):898-906
    [235] Kato Y, Matsuo R, Isogai A. Oxidation process of water-soluble starch inTEMPO-mediated system[J]. Carbohydrate Polymers,2003,51(1):69-75
    [236]刘晶,王雪,张佳宁,等.高碘酸钠氧化法固定化脂肪酶的研究[J].中国粮油学报,2012,27(4):68-73
    [237] Wu M, Kuga S. Cationization of cellulose fabrics by polyallylamine binding[J]. Journalof applied polymer science,2006,100(2):1668-1672

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700