用户名: 密码: 验证码:
行波感应加热问题的研究及粒子群算法的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
行波感应加热除具有传统纵向磁通感应加热和横向磁通感应加热同样的优点外,还能产生更均匀的温度分布,而且具有振动和工业噪音低的显著优点。行波感应加热多物理场耦合场问题的求解是计算电磁学的技术难点,对其研究具有重要的理论意义。并且从实用上看,行波感应加热涉及重要的工程技术,其研究成果必然会对我国金属制品加工设备水平的提高具有积极的推动作用。
     本课题在合理简化计算模型的基础上,建立行波感应加热耦合分析模型,对带材工件内磁场、涡流场进行研究。由于行波感应加热装置结构复杂,因而将整个场域依据材料特性与结构特点划分成不同的子域,依据子域采用适当的位函数,之后在公共子域和公共交接面处实现整体合成。各场量的耦合采用间接耦合方法。在这一问题上借鉴了横向磁通感应加热的研究成果,采用有限元方法进行研究。
     本文主要工作可以归纳为如下几点:
     (1)提出无槽模型可以在一定程度上克服狭槽效应并进行了二维磁场和涡流场的分析。在传统有槽模型中,槽的正下方与齿的正下方因有效气隙长度不同.轭铁金属磁导率远大于空气磁导率,则带材中轭铁齿位置下方磁感应强度比槽位置下方磁感应强度大的多。二维磁场分布仿真结果显示在传统模型中一部分磁力线未穿越带材区,这将影响能量的传输效率。
     (2)进行了交叉行波感应加热系统和传统行波感应加热系统三维磁场的计算。从行波感应加热对称模型和交叉模型三维磁场分布情况可见,交叉模型的能量传输效率要比传统模型高。并且,因为上下感应器的位置偏移,交叉结构的磁场分布范围较对称结构时要广。上下感应器线圈产生的磁场更有效地弥补了彼此的弱磁区,带材表面磁场分布更加均匀。
     (3)为克服此早熟收敛现象,本文借鉴人类社会在进化过程中愈来愈合理的联姻策略,提出了一种新的混合粒子群优化算法。新算法一方面通过部落联姻,避免了粒子基因过于接近,另一方面采用交叉遗传策略,在一定程度上克服了过度破坏个体适应度。在优化Rastrigin函数时,改进的算法显现出了它的优越性。
     (4)本文从分析粒子群算法的早熟现象的原因入手,受生物进化过程中突变和灾难现象的启发,在标准粒子群优化算法的基础上,本文提出一种群体消亡粒子群优化算法。该算法将微粒分成大小相同的几个种群,在粒子群算法运行的适当时机,依一定方式使群体的适当子群体消亡,并随机补充新个体,以维持群体的适当规模和多样性。对Schaffer's f6函数的仿真结果表明,该算法易于找到全局最优解。
     最后,论文对所做工作进行了总结,并提出了进一步研究的方向。
Besides the advantages of the traditional longitudinal induction heating and the transverse flux induction heating, the traveling wave induction heating (TWIH) has further advantages, for example, the reduction of the alternate component of the electromagnetic forces affecting the system elements and producing vibration and noise. Especially, it can bring more uniform temperature field distribution. The coupled multi-fields computation in traveling wave induction heating is a difficult and important problem of electromagnetics, so that its research has very significant theoretical value. For its application, traveling wave induction heating refers to very important engineering technology, so its research results could greatly promote the metal processing equipments' development.
     This dissertation simplified the theoretical model and then established the reasonable coupled analysis model, so as to study the magnetic field and eddy current field distribution in the metal strip. Because of the complex structure of the traveling wave induction heating equipment, the whole research area has been divided into several sub parts based on its material characteristics. Each subfield adopts its own potential function and then the integration can be taken in the common subfield and the public interface. Every field vector coupled indirectly. This computation method has borrowed ideas from the research of transverse flux induction heating, and the finite element method was adopted here.
     Main achievements of this dissertation include:
     (1) The slotless model can overcome slots effects in a certain degree. The 2D magnetic field and eddy current field have been analyzed. In the traditional traveling wave induction heating system, the efficient airgap between the coil and load is longer than the airgap between the tooth and load. The magnetic permeability of the metal yoke is much bigger than that of the air, so the induced magnetic flux density below the tooth position will be bigger than the air position in the strip. The 2D magnetic field analysis shows that some of the magnetic lines do not pass through the load, and this will put a dent in the efficiency of the power transferred between coils and load.
     (2) The 3D magnetic field computation of the traditional and the crossed traveling wave induction heating systems has been carried out. The simulation results reveal that the energy transmission efficiency of the crossed TWIH system is higher than that in the traditional TWIH system. Due to the offset of the two inductors, the induced magnetic field could distribute in a larger efficient area on the workpiece. Flux densities in the upper and lower inductors make up for the weak areas of each other more efficiently, so as to obtain a more uniform magnetic field distribution on the metal strip surface.
     (3) A new particle swarm optimization (PSO) with allied strategy formed in the evolutionary process of human society has been introduced to avoid the premature problem in traditional PSO. The modified PSO algorithm decreases the gene similarity by the allied strategy and protects the individual fitness through the intragenic crossing-over. The superiority of new PSO has been verified by applied to optimize the Rastrigin function.
     (4) Based on the analysis of reason for the premature convergence causing in PSO, and enlightened by the phenomenon of mutation and disaster in the biology evolution procession, a population disappearance particle swarm optimization was presented. The particles are divided into several swarms in the same size, the same numbers of individuals disappear after several iterations, and same numbers of new individuals are added to these swarms to maintain the suitable swarm size. Simulation results of Schaffer's f6 function show that the algorithm can easily find the global optimum solution.
     Finally, the work of this dissertation is summarized and the prospective of future research is discussed.
引文
[1]鄢波,程先华,赵萍,汤斐然,吴清.减振器连杆高频感应淬火工艺的温度场有限元模拟.上海交通大学学报.2003, 37(1): 111-114.
    [2] Dolezel L, Barglik J., Sajdak C., Skopek M. Ulrych B. Modelling of Induction Heating and Consequent Hardening of Long Prismatic Bodies. COMPEL-The International Journal for Computation and Mathematics in Electrical and Electronic Engineering. 2003, 22(1): 79-87.
    [3]许雪峰,赵敏,吴金富.45钢坯料感应淬火温度场有限元模拟分析[J].金属热处理.2005,30:152-155.
    [4] Zgraja, Jerzy. Computer Simulation of Induction Hardening of Moving Flat Charge. IEEE Transactions on Magnetics. 2003, 39(3):1523-1526.
    [5] Grum Janez. Measuring and Analysis of Residual Stresses after Induction Hardening and Grinding. Materials Science Forum. 2000, 347: 453-458.
    [6]徐东辉,匡震邦,骆竞希.抽油杆表面感应淬火引起的残余应力[J].应用力学学报,1995,(3):26-32.
    [7] Kawase Yoshihiro, Miyatake Tsutomu, Hirata Katsuhiro. Thermal Analysis of Steel Blade Quenching by Induction Heating. IEEE Transactions on Magnetics. 2000, 36(4): 1788-1791.
    [8]马仙.淬火过程数值模拟研究进展[J].兵器材料科学工程.1999,22(4).
    [9]赵显恕,李春彦.调整螺钉端部表面淬火.金属热处理.2001, 26(10): 43-45.
    [10]陈金荣.转向摇臂轴螺纹部位感应回火工艺新技术新工艺.2003, (1): 26-27.
    [11]K. Thompson, J. H. Booske,Y.B. Gianchandani, R. F. Cooper. Electromagnetic Annealing for The 100nm Technology Node. IEEE Transactions on Magnetics. 2002, 23(3): 127-129.
    [12]杨晓光.横向磁通感应加热及其优化问题的研究.[博士学位论文].天津:河北工业大学, 2004.
    [13]吴迪,赵宪明,宋玉明,闻宙,孙岭.方坯、板带坯和型钢中间坯感应焊接无头轧制研究.钢铁,Suppl. 1999, 34(5): 31-33.
    [14]Thompson Keith, Gianchandani Yogesh B., Booske John, Cooper Reid F. Direct Silicon-Silicon Bonding by Electromagnetic Induction Heating. Journal of Microelectromechanical Systems. 2002,11(4): 285-292.
    [15]Lee T. W., Lee C. H. Effect of Heating Rate on the Reactive Sintering of Ti-48%A1 Elemental PowderMixture. Journal of Materials Science Letters. 1998, 17(16): 1367-1370.
    [16]王跃林.中频感应烧结炉温度自动控制系统的研制.工业加热.2001, (6): 55-56.
    [17]Nakajima Tadahito, Morimoto Yukitoshi, Takaki Seiichi, et al. Purification of Ti-A1 alloys by Induction-Heating Floating-Zone Melting and Cold-crucible Melting in Ultra-high Vacuum. Materials Transactions, JIM. 2000, 41(1): 22-27.
    [18]Kawarada Ch., Harima N., Takaki S., Abiko K. Purification of Ti-A1 alloy by Cold-Crucible Induction Melting in Ultrahigh Vacuum. Physica Status Solidi (A) Applied Research. 2002, 189(1): 139-148.
    [19]Zhang C. Y. et al. Deoxidization of CuCr25 Alloys Prepared by Vacuum Induction Melting. Transactions of Nonferrous Metals Society of China. 2001, 11(3): 337-339.
    [20]Schiff, V. K. Mathematical Modeling of the Complex Heat Exchange of a Glass Melt in a Cylindrical Induction Furnace. Journal of Optical Technology. 2000, 67(9): 787-791.
    [21]Byun Jin-kyu, Choi Kyung, Roh Hee-Succ, Hahn Song-yop. Optimal Design Procedure For a Practical Induction Heating Cooker. IEEE Transactions on Magnetics. 2000, 36(4): 1390-1393.
    [22]Hiraoka Masahiro, et al. Development of RF and Microwave Heating Equipment and Clinical Applications to Cancer Treatment in Japan. IEEE Transactions on Microwave Theory and Techniques,2000, 48(11): 1789-1799.
    [23]Klein Olaf, Philip Peter. Transient Numerical Investigation of Induction Heating During Sublimation Growth of Silicon Carbide Single Crystals. Journal of Crystal Growth. 2003, 247(1-2): 219-235.
    [24]Acero J., Artigas J. I.Power, Burdio, J. M., Barragan, L. A., Llorente S. Measuring in T'wo-Output Resonant Inverters for Induction Cooking Appliances. PESC Record-IEEE AnnualPower Electronics Specialists Conference. 2002, 3: 1161-1 166.
    [25]Lee Houston, Khersonsky Anatoly. Induction Heating for Efficient Laser Applications. Advanced Materials and Processes. 2000, 157(4): 39-41.
    [26]张月红.感应加热温度场的数值模拟.[硕士学位论文].无锡.江南大学.2008.
    [27]王军华.行波感应加热中涡流场问题分析.[硕士学位论文].天津.河北工业大学.2008.
    [28]刘建清.教你检修电动机.电子工业出版社.北京.2008.2.第1版.55-56.
    [29]R. M. Baker. Transverse Flux Induction Heating. AIEE Transactions. 1950, 69(10): 922-925.
    [30]V. V. Vadher. Theory and Design of Travelling Wave Induction Heaters. BNCE-UIE Electroheat for Metals Conference. n. 5.1. pp. 21-23. Cambridge (England). Sept. 1982.
    [31]E. J. Davies, A. L. Bowden. Travelling Wave Induction Heaters: Design Considerations. BNCE-UIE Eletroheat for Metals Conference. n. 5.2. pp. 21-23. Cambridge (Englang). Sept. 1982.
    [32]W. B. Jackson. Analysis of Edge Effects in Travelling Wave Inductors Heating Flat Metal Products. BNCE-UIE Electroheat for Matels Conference. n. 5.3. pp. 21-23. Cambridge (England). Sept .1982.
    [33]A.Ali, V. Bukanin, F. Dughiero, et al. Simulation of Multiphase Induction Heating Systems. IEE Conference Publication. (384): 211-214, 1994.
    [34]F. Dughiero, S. Lupi, P. Siega. Calculation of Forces in Travelling Wave Induction Heating Systems. IEEE Transactions on Magnetics. 31(6): 3560-3562, 1995.
    [35]S. Lupi, M. Forzan, F. Dughiero, et al. Comparison of Edge-effects of Transverse Flux and Travelling Wave Induction Heating Inductors. IEEE Transactions on Magnetics. 35(5): 3556-3558, 1999.
    [36]Bukanin V, Dughiero P, Lupi S., Nemkov V, Siega P. 3D-FEM Simulation of Transverse-Flux Induction Heaters. IEEE Transactions on Magnetics. 1995, 31(3)-1:2174-2177.
    [37]Lingling Pang, Youhua Wang, Tanggong Chen.“Analysis of eddy current density distribution in slotless traveling wave inductor,”Proceeding of the 11th International Conference on Electrical Machines and Systems, 2008, 17-20 October 2008, Wuhan China, pp.472 -474.
    [38]F.Dughiero, S.Lupi, V.Nemkov, P. Siega.“Travelling wave inductors for the continuous induction heating of metal strips,”Proceedings of the Mediterranean Electrotechnical Conference-MELECON.1994, vol.3, no.3, pp.1154-1157.
    [39]S. L. Ho, Junhua Wang, W. N. Fu, Y. H. Wang. A novel crossed traveling wave induction heating system and finite element analysis of eddy current and temperature distribution. IEEE Transactions on Magnetics. 2009, 45(10): 4777-4780.
    [40]A. Ali, V. Bukanin, F. Dughiero, S. Lupi, V. Nemkov, et al.“Simulation of multiphase induction heating systems,”IEE Conference Publication, 1994, vol.38, no.4, pp.211-214.
    [41]H. Tomita, T. Sekine, S. Obata.“Induction heating using traveling magnetic field and three-phase high-frequency inverter,”the 11th European Conference on Power Electronics and Applications, 2005, 11-14 September 2005, Dresden Germany, pp.1-6.
    [42]Takamitsu Sekine, Hideo Tomita, Shuji Obata, Yukio Saito.“An induction heating method with traveling magnetic field for long structure metal,”Electrical Engineering in Japan, 2009, vol.168, no4, pp.32-39.
    [43]Wang Youhua, Wang Junhua, Li Jiangui.“Comparison of current density distributions between traveling wave heating and transverse flux heating,”Transactions of China Electrotechnical Society, vol. 22,no.SUPPL.2, December 2007, pp.199-202.
    [44]Junhua Wang, Youhua Wang.“Study about temperature modeling of travelling wave induction heating,”Proceedings of the 11th International Conference on Electrical Machines and Systems,2008,17-20 October 2008, Wuhan China,pp.516-518.
    [45]Wang Youhua, Wang Junhua.“The study of two novel induction heating technology,”Proceedings of the 11th International Conference on Electrical Machines and Systems, 2008, 17-20 October 2008, Wuhan China, pp.572 -574.
    [46]Wang Youhua, Wang Junhua, Li Jiangui, Li Haohua.“Analysis of induction heating eddy current distribution based on 3D FEM,”2008 IEEE Region 8 International Conference on Computational Technologies in electrical and electronics engineering, SIBIRCON 2008, 21-25 July 2008, Novosibirsk Russia, pp.238-241.
    [47]王江波.行波磁场感应加热.[硕士学位论文].天津.河北工业大学.2007.
    [48]俞妍.行波磁场感应加热问题的分析.[硕士学位论文].天津.河北工业大学.2009.
    [49]Xiaoguang Yang, Youhua Wang, Weili Yan. The Use of Neural Networks Combined With FEM to Optimize the Coil Geometry and Structure of Transverse Flux Induction Equipments. IEEE Transactions on Applied Superconductivity, pp.1854- 1857, June 2004. 14(2).
    [50]Zanming Wang, Xiaoguang Yang, Youhua Wang, et al. Eddy Current and Temperature field Computation in Transverse Flux Induction Heating Equipment. IEEE Transactions on Magnetics. 2001, 37(5): 3437-3439.
    [51]杨晓光,汪友华,颜威利.神经网络预测应用于横向磁通感应加热中涡流场与温度场的有限元分析.中国电机工程学报. 24(8): 119-123.
    [52]杨晓光,汪友华.连续运动带材感应加热系统场路耦合分析.金属热处理. 2006, 31(10): 18-20.
    [53]杨晓光,汪友华.连续运动带材横向磁通感应加热耦合场分析的新方法.金属热处理.2004, 29(4):53-57.
    [54]杨晓光,汪友华.横向磁通感应加热装置中线圈形状对涡流及温度分布的影响.金属热处理.2003, 28(7): 49-54
    [55]杨晓光,汪友华,刘福贵.三维有限元法在横向磁通涡流感应加热中的应用.华北电力大学学报, Sup.2002, (29):29-32.
    [56]Xiaoguang Yang, Youhua Wang, Huijuan Zhang, et al. Orthogonal Design of Transverse Flux Induction Heating Equipment for Galvanizing Line. JSAEM Studies in Applied Electromagnetics and Machanics, 2001, (10): 175-178.
    [57]Zanming Wang, Xiaoguang Yang, Youhua Wang, et al. Eddy Current and Temperature field Computation in Transverse Flux Induction Heating Equipment. IEEE Transactions on Magnetics. 2001, 37(5): 3437-3439.
    [58]Xiaoguang Yang, Youhua Wang, Weili Yan. Numerical Analysis of Transverse Flux Inductor with New Coil Geometry. The Fourth Asian Symposium on Applied Electromagnetics (ASAEM'2003). October 22-25, 2003. Seoul, Korea.
    [59]Xiaoguang Yang, Youhua Wang, Weili Yan. Neural Networks Prediction of Eddy Current andTemperature Distribution in TFIH Equipments. The Fourth Asian Symposium on Applied Electromagnetics (ASAEM'2003). October 22-25, 2003. Seoul, Korea.
    [60]Xiaoguang Yang, Youhua Wang, Weili Yan. Study of the Influence of Coil Geometry on Eddy Current and Temperature Distribution in TFIH Equipments. In: Fangquan Rao, Guobiao Gu. Proceedings of the Sixth International Conference on Electrical Machinces and Systems (ICEMS'2003) Volunme II Beijing, China. 757-760.
    [61]Kenedy J, Eberhart R C. Particle Swarm Optimization [A].International Conference on Neural Networks[C]. Piscataway: IEEE Press, 1995:1942-1948.
    [62]Eberhart R C,Kenedy J.A New Optimizer Using Particle Swarm Theory[A].The Sixth International Symposium on Micro Machine and Human Science[C]. Nagoya:IEEE Press, 1995:39-43.
    [63]Wang L F,Singh C.Environmental/economic power dispatch using a fuzzified multiobjec- tive particle swarm optimization algorithm [J].Electr Power Syst Res,2007,77(12):1654-1664.
    [64]Wang L F,Singh C.Multicriteria design of hybrid power generation systems based on a modified particle swarm optimization algori- thm[J].IEEE Transactions on Energy Conver- sion,2009,24(1):163-172.
    [65]Sharma K D,Chatterjee A,Rakshit A.A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization[J].IEEE Transac- tions on Fuzzy Systems,2009,17(2):329-341.
    [66]杨志鹏,朱丽莉,袁华.粒子群优化算法研究与发展.计算机工程与科学.2007, 29(6): 61-64.
    [67]李艳灵,李刚.粒子群优化算法研究进展.重庆工学院学报.2007,21(5):79-81,90.
    [68]王俊伟.粒子群优化算法的改进及应用. [博士学位论文].沈阳.东北大学.2006.
    [69]雷开友.粒子群优化算法及其应用研究. [博士学位论文].重庆.西南大学.2006.
    [70]LΦsvbjerg M,Rasmussen T K,Krink T.Hybrid Particle Swarm Optimizer with Breeding and Subpopulations[A].Proc of the 3rd Genetic and Evolutionary Computation Conf[C].2001. 469-476.
    [71]Higashi N,Iba H.Particle Swarm Optimization with Gaussian Mutation [A].Proc of the 2003Congress on Evolutionary Computation [C].2003.72-89.
    [72]高鹰,谢胜利.免疫粒子群优化算法[J].计算机工程与应用,2004,40(6):4-6.
    [73]Brskar S, Suganthan P N. A Novel Concurrent ParticleSwarm Optimization [A].Proc of the 2004 Congress on Evolutionary Computation [C].2004.792-796.
    [74]李宁.粒子群优化算法的理论分析与应用研究. [博士学位论文].武汉.华中科技大学.2006.
    [75]Eberhart R.C,Shi Y.Guest Editorial Special Issue on Particle Swarm Optimization.IEEE TRANSACTION ON EVOLUTIONARY COMPUTATION,2004,8(3):201-203.
    [76]张丽平.粒子群优化算法的理论及实践. [博士学位论文].杭州.浙江大学.2005.
    [77]C.W.Trowbridge. Computation Electromagnetic Field for Research and Industry: Major Achievements and Future Trends. IEEE Transactions on Magnetics. 1996,32(3):627-630.
    [78]吴金富.基于ANSYS的感应加热数值模拟分析.[硕士学位论文].杭州.浙江工业大学.2004.
    [79]黄国权.有限元法基础及ANSYS应用。机械工业出版社.2004.6:1
    [80]颜威利,杨庆新,汪友华.电气工程电磁场数值分析.北京:机械工业出版社.2005.16.
    [81]阎照文等.ANSYS10.0工程电磁分析技术与实例详解.北京:中国水利水电出版社.2006.429-432
    [82]熊勇.粒子群优化算法的行为分析与应用实例.[博士学位论文].杭州.浙江大学. 2005.
    [83]Wang L F,Singh C.Environmental/economic power dispatch using a fuzzified multiobjective particle swarm optimization algorithm [J].Electr Power Syst Res,2007,77(12):1654-1664.
    [84]Sharma K D,Chatterjee A,Rakshit A.A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization[J].IEEE Transac- tions on Fuzzy Systems,2009,17(2):329-341.
    [85]韩江洪,李正荣,魏振春.一种自适应粒子群优化算法及其仿真研究[J].系统仿真学报,2006,18(10):2969-2971
    [86]陈堂功.遗传算法及其应用于电磁装置优化设计的研究.[博士学位论文].天津.河北工业大学. 2006.
    [87]Holland J H. Adaptation in Nture and Arificial System. MIT Press, 1992.
    [88]刘金洋,郭茂祖,邓超.基于雁群启示的粒子群优化算法.计算机科学.2006,33(11):166-168,191
    [89]张顶学.遗传算法与粒子群算法的改进及应用.[博士学位论文].武汉.华中科技大学.2007.
    [90]Wolfgang Andree, Dietmar Schulze, Zanming Wang. 3D Eddy Current Computation in the Transverse Flux Induction Heating Equipment.IEEE Tansactions on magnetics.1994, 30(5):3072-3075.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700