用户名: 密码: 验证码:
TRPV6在蛋鸡不同组织的表达分布及其在蛋壳腺钙离子转运中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TRPV6是瞬时性受体电位通道TRP超家族中的成员。广泛分布于哺乳动物Ca2+大量转运组织:肠道、肾脏、胎盘、骨骼等。是专门的上皮样通道,具有高度的Ca2+选择性,承担Ca2+向细胞内转运的限速通道。但TRPV6在蛋鸡上皮细胞Ca2+转运的重要作用还未曾报道,本文旨在研究TRPV6在蛋鸡体内的表达分布及其在蛋壳腺Ca2+转移中的重要作用,进而阐明产蛋期TRPV6在维持体内钙离子平衡的作用机制。试验Ⅰ钙离子跨细胞转运相关蛋白基因在蛋鸡不同肠段和肾脏中的表达
     10羽220日龄高产蛋鸡,断颈处死,采集不同肠段和肾脏组织。应用RT-PCR方法分别从蛋鸡不同肠段和肾脏组织扩增得到鸡TRPV6、CaBP-D28K和PMCA1b编码基因,然后将特异性片段连接到pMD18-T载体,测序分析扩增片段准确性;同时应用Real-time PCR方法检测不同肠段和肾脏中三种蛋白编码基因的表达量。结果表明:分别扩增得到426bp的TRPV6序列,789bp的CaBP-D28K序列以及644bp的PMCAlb序列,测序结果与GeneBank报道的预测序列一致。另外,TRPV6mRNA在十二指肠表达量最高,其次是空肠(P<0.05)、回肠(P<0.01)、盲肠(P<0.01)和直肠(P<0.01),’肾脏表达量显著低于十二指肠(P<0.05);CaBP-D28K和PMCA lb mRNA在十二指肠、空肠、回肠段表达量较高,直肠和肾脏中表达量显著降低(P<0.05)。结果显示:在蛋鸡肠道和肾脏都存在钙离子跨细胞转运相关蛋白基因的表达,并提示蛋鸡肠道钙离子转移主要在小肠段完成;同时,TRPV6基因的成功扩增为深入研究蛋鸡肠道钙离子转运机制开辟了广阔的领域。
     试验ⅡTRPV6在蛋鸡不同肠段和肾脏中的表达分布
     试验动物同前。为探明TRPV6蛋白在蛋鸡肠道和肾脏中的组织学分布特点,采用石蜡切片、特异性的TRPV6抗体对高产蛋鸡不同肠段和肾脏组织进行免疫组织化学方法研究,同时采用western-blot方法研究TRPV6蛋白在这些部位的浓度变化。结果表明:在十二指肠、空肠、回肠、盲肠和直肠的刷状缘绒毛上皮均有TRPV6阳性表达分布,直肠阳性表达较少,肠隐窝或杯状细胞则偶有表达。在肾脏,TRPV6在近曲小管、远曲小管和连接小管均有阳性表达。western-blot结果指出十二指肠TRPV6含量最高,直肠含量最低,其他肠段位于二者之间。肾脏TRPV6含量也低于十二指肠。结果显示:TRPV6蛋白在蛋鸡整个肠道和肾脏上皮具有阳性表达,表明钙离子跨细胞转运在蛋鸡体内肠道钙离子吸收或肾脏重吸收都具有重要作用。
     试验ⅢTRPV6在蛋鸡不同生殖器官组织中的表达
     试验动物同前。观察TRPV6在蛋鸡卵巢、输卵管膨大部、峡部以及子宫的表达分布,本试验采用RT-PCR和免疫组化技术进行定性研究,同时采用Real-time PCR和western-blot方法观察其定量表达变化。结果表明:卵巢TRPV6蛋白主要分布在卵泡细胞、颗粒细胞以及卵泡膜细胞;在膨大部、峡部以及子宫主要分布在黏膜上皮的纤毛上皮顶端(面向管腔),在子宫黏膜上皮的基底层细胞也有少量分布;另外,与卵巢组织中TRPV6表达量相比,膨大部和峡部mRNA表达量显著降低(P<0.05),膨大部TRPV6蛋白含量显著降低(P<0.05),子宫组织中TRPV6mRNA水平低于卵巢组织,但蛋白表达量高于后者,且统计学分析没有显著差异。结果显示,TRPV6在卵巢、膨大部、峡部以及子宫位置均有表达,提示TRPV6不仅参与卵泡的发育、成熟,对蛋白以及蛋壳的形成也具有重要的意义。
     试验Ⅳ产蛋循环过程中TRPV6、CaBP-D28K(?)PMCA lb在蛋壳腺的动态表达
     研究钙离子跨细胞转运方式在蛋壳形成过程中的作用,本实验将40羽220日龄ISA蛋鸡分为5组,于产蛋后0h、2h、4.5h、8h、16h断头处死,采集蛋鸡蛋壳腺组织,运用Real-time PCR和western-blot方法检测产蛋循环过程中TRPV6、 CaBP-D28K、PMCA1b mRNA和蛋白浓度的动态变化。结果表明:卵子未进入蛋壳腺前(产蛋后0-4.5h),蛋壳腺内TRPV6、CaBP-D28K和PMCA lb mRNA表达水平较低,随后表达量逐渐升高,在蛋壳钙化过程中达到最大值(产蛋后16h),与0h相比,TRPV6和CaBP-D2gK mRNA表达差异均极显著(P<0.01);另外,产蛋循环过程中,TRPV6、CaBP-D28K和PMCA lb蛋白浓度变化与mRNA变化一致,产蛋后16h到达最大值,其中CaBP-D28k蛋白浓度与0h相比,差异显著(P<0.05)。结论:产蛋循环可调控蛋壳腺内TRPV6、CaBP-D28K和PMCA1b的表达,并提示钙离子跨细胞转运途径在蛋壳钙化过程钙离子进入过程发挥重要作用。
     试验Ⅴ血浆钙磷浓度及其相关激素水平在产蛋循环中的动态变化
     40羽220日龄ISA蛋鸡分为5组,详细记录产蛋间隔时间,分别于产蛋后0h、2h、4.5h、8h、16h断头处死,采集血液,测定血浆总钙、总磷、甲状旁腺激素、降钙素、碱性磷酸酶和骨钙素水平。结果表明:在产蛋循环过程,血浆总钙、总磷浓度未发生显著变化;血浆甲状旁腺激素水平在产蛋后16h蛋壳钙化过程中达到最高水平,与产蛋后0h相比,差异显著(P<0.05);血浆降钙素水平在产蛋后0h含量最高,后逐渐降低,在8h达到最低点(P<0.05);产蛋后8h,血浆碱性磷酸酶活性达到最高,与Oh相比,差异显著(P<0.05);另外,血浆骨钙素水平在产蛋后4.5h到达最高,但差异不显著。结论:在产蛋循环过程中,与钙磷代谢相关的钙调激素以及血液生化指标都呈现相应的动态变化。
The ion channel TRPV6is one member that belongs to the TRP super-family of cation channel, and distributed in calcium-transporting tissues such as intestine, kidney, placenta and bone of mammals, all of which are characterized by high Ca2+transport requirements. TRPV6is known as highly Ca+-selective channels, and serves as an important rate-limiting step in facilitating the entry of Ca2+into the epithelial cells. However, the presence of TRPV6in avian tissues is unclear. Therefore, the objective of the present study was to determine the distribution and expression patterns of TRP V6for different tissues in the laying hens, and investigate the role of TRPV6during the eggshell calcification. This information is important to fully understand the physiological role of this Ca2+channel in maintaining Ca2+homeostasis during eggshell mineralization in laying hens.
     Experiment I The mRNA expression of proteins involved in the Ca2+transcellular transport in the different intestinal segments and kidney in laying hens
     Ten ISA laying hens at the peak stage (220days old) were decapitated for sampling. To obtain the encoding gene of gallus TRPV6, CaBP-D28K and PMCA lb from the different intestinal segments and kidney in laying hen, the RT-PCR method was carried out. Then these special DNA fragments were cloned into pMD18-T vector and the sequence was determined. In addition, TRPV6, CaBP-D28K and PMCA1b mRNA expression in the kidney and different intestinal segments were quantified by Real-time PCR. The results were as follows: standard RT-PCR with TRPV6, CaBP-D28K and PMCA1b primers yielded three single amplified fragments of the expected size of426bp,789bp and644bp from all intestinal segments and the kidney, respectively. Sequence analysis revealed a100%homology at the nucleotide level with the predicted mRNA sequence of Gallus Gallus TRPV6、CaBP-D28K and PMCA lb. Real-time PCR analysis demonstrated that, among these tissues examined, the highest level of TRPV6expression was in the duodenum, then jejunum (P<0.05), kidney (P<0.05) and ileum (P<0.01). The lowest level of expression was found in the cecum and rectum samples (P<0.01). Furthermore, the levels of CaBP-D28K and PMCA1b were high in duodenum, jejunum and ileum, but the lower levels of expression were showed in the rectal and renal samples compared with duodenum (P<0.05), respectively. In conclusion, three calcium-transporters involved in the Ca2+transcellular transport were expressed in the intestine and kidney in laying hens, suggestting that the upper intestine (duodenum and jejunum) is the main site of Ca2+absorption in the birds, and the expression of TRPV6supplys new basis to do research in mechanism of calcium transport in laying hen.
     Experiment Ⅱ Localization and expression of TRPV6in different intestinal segments and kidney in laying hens
     The experimental animals were the same with the above one. Immunohistochemical analysis was used to investegate the TRPV6localization and expression in different intestinal segments and kidney in laying hens during peak laying. In addition, changes of concentration of TRPV6protein among these tissues were obtained by the western-blot analysis. The results are as follows:TRPV6was localized to the brush-border membranes of the duodenum, jejunum, ileum, cecum and rectum. Expression was weaker in the rectum and little or no expression was found in crypt and goblet cells. In the kidney, distinct immunopositive staining for TRPV6was detected at the apical domain of the proximal convoluted tubules (PCT), distal convoluted tubules (DCT) and medullary connecting tubules (CNT). Furthermore, western-blot analysis indicated that the duodenum expressed the greatest amount of TRPV6and the rectum the least, the other segments expressing intermediate levels. Moreover, the kidney expressed lower TRPV6protein levels compared to duodenum. In conclusion, the epithelial Ca2+channel TRPV6is strongly expressed in the apical cells of the entire intestine and the renal tubules suggesting that active Ca2+transcellular transport plays a crucial role in dietary calcium (re)absorption in laying hens.
     Experiment Ⅲ The expression of TRPV6in the different reproductive organs in laying hens
     The experimental animals were the same with the above one. Immunohistochemical analysis and RT-PCR were used to investegate the TRPV6localization and expression in the ovarium, magnum, isthmus and uterus in laying hens. In addition, quantitation of mRNA level and protein concentration of TRPV6in these tissues were carried out by Real-time PCR and western-blot analysis, respectively. The results are as follows:positive expression of the TRPV6protein and the TRPV6mRNA was observed in the ovarium, magnum, isthmus and uterus in laying hens. TRPV6was localized to the granulose cells and theca cells and the oocytes in the ovarium. Furthermore, intense staining was observed in villus epithelial cell (face to lumen) in mucous epithelium of the magnum, isthmus and uterus, and the weaker staining was also found in the basilar layer of secretory cell of endometrium in the uterus. Moreover, the levels of TRPV6mRNA in the magnum and isthmus were significantly decreased compared with that in the ovarium (P<0.05). The expression of TRPV6in the magnum was also lower than that in the ovarium (P<0.05). However, the expression of TRPV6mRNA in the uterus was lower than that in the ovarium, but the change of protein concentration was in contrast, and the difference was not significent. In conclusion, the expression of TRPV6in these tissues implyed that the TRPV6is not only involved in the development and maturation, but also plays an important role in albumen secretion and eggshell calcification.
     Experiment IV Dynamic expression of TRPV6, CaBP-D28K and PMC A lb in the ESG during the oviposition cycle in laying hens
     Forty ISA laying hens at the peak stage (220days old) were assigned to five reproductive stages for sampling. The samples of ESG were obtained by decapitated at0,2,4.5,8and16h after post-oviposition, respectively. Thus, the aim of this study is to investigate the effect of active Ca2+transcellular transport on the eggshell calcification. In addition, quantitation of mRNA level and protein concentration of TRPV6, CaBP-D28K and PMCA lb at different stages in the ESG were carried out by Real-time PCR and western-blot analysis, respectively. The results are as follows:the expression levels of TRPV6, CaBP-D28K and PMCA lb mRNA in the ESG were retained very low until the egg movement into the shell gland (0-4.5h after ovulation), then significantly increased at16h during eggshell calcification. In addition, TRPV6, and CaBP-D28K indicated significant statistical difference (P<0.01), respectively. Furthermore, western blotting showed that the expression of TRPV6and PMCA1b reached the maximum at16h after ovulation, but the statistical difference was not significant. The change of CaBP-D28K expression was very similar to that of TRPV6, but the concentration was significantly increased at16h than that at0h after ovulation (P<0.05). In conclusion, the expression of TRPV6, CaBP-D28K and PMCA lb in the ESG was regulated by the oviposition cycle, suggestting that active Ca2+transcellular transport exerted significant effects in calcium delivering in the ESG.
     Experiment V Dynamic changes of levels of plasma total Ca, P and calcium-regulated hormones during the oviposition cycle
     Forty ISA laying hens at the peak stage (220days old) were assigned to five reproductive stages for sampling. Production records were kept before the study. Blood were obstained by decapitated at0,2,4.5,8and16h after post-oviposition, respectively. Thus, the aim of this study is to investigate the concentration changes of plasma total calcium, phosphorus, alkaline phosphatase (ALP), parathyroid hormone (PTH), calcitionin (CT) and osteocalcin (BGP) during the oviposition cycle. The results are as follows:there were not significant changes of total calcium and phosphorus after oviposition. The level of plasma CT was the highest at0h and the lowest at8h (P<0.05) after oviposition, the change of plasma PTH level was antithesis to that of plasma CT, which was constant slightly increase after oviposition, and reached the maximum at16h during the eggshell calcification (P<0.05). In addition, the level of plasma ALP activity was notablely increased at8h after oviposition (P<0.05). Moreover, the concentration of plasma BGP reached the maximum at4.5h after oviposition. In conclusion, the calcium-regulated hormones and biochemical indicators involved in the metabolism of calcium and phosphorus revealed the dynamic changes during the oviposition cycle.
引文
[1]Nys Y, Mayel-Afshar S, Bouillon R, et al. Increases in calbindin D 28K mRNA in the uterus of the domestic fowl induced by sexual maturity and shell formation [J]. Gen Comp Endocrinol,1989,76(2): 322-329
    [2]Ingleton P. Parathyroid hormone-related protein in lower vertebrates [J]. Comp Biochem Physiol B Biochem Mol Biol,2002,132(1):87-95
    [3]Soares J J, Kerr J, Gray R.25-hydroxycholecalciferol in poultry nutrition [J]. Poult Sci,1995,74(12): 1919-1934.
    [4]Bouillon R, Carmeliet G, Boonen S. Ageing and calcium metabolism [J]. Bail Clin Endocrinol Metab, 1997,11(2):341-365
    [5]Silverman S. Calcitonin [J]. Endocrinol Metab Clin North Am,2003,32(1):273-284
    [6]Huang C, Sun L, Moonga B, et al. Molecular physiology and pharmacology of calcitonin [J]. Cell Mol Biol (Noisy-le-grand),2006,52(3):33-43
    [7]Hurwitz S. Calcium homeostasis in avian species [J]. Prog Clin Biol Res,1990,342:586-591
    [8]Bar A. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds [J]. Comp Biochem Physiol A Mol Integr Physiol,2008,151(4):477-490
    [9]Davis R. Evolution of processes and regulators of lipoprotein synthesis:from birds to mammals [J]. J Nutr,1997,127(5):795-800
    [10]Hurwitz S, Bar A. Rate of passage of calcium-45 and yttrium-91 along the intestine, and calcium absorption in the laying fowl [J]. J Nutr,1966,89(3):311-316.
    [11]Bar A, Vax E, Striem S. Effects of age at onset of production, light regime and dietary calcium on performance, eggshell traits, duodenal calbindin and cholecalciferol metabolism [J]. Br Poult Sci, 1998,39(2):282-290
    [12]Belkacemi L, Bedard I, Simoneau L, et al. Calcium channels, transporters and exchangers in placenta: a review [J]. Cell Calcium,2005,37(1):1-8
    [13]Hoenderop J, Nilius B, Bindels R. Calcium absorption across epithelia [J]. Physiol Rev,2005,85(1): 373-422
    [14]Niemeyer B. Structure-function analysis of TRPV channels [J]. Naunyn Schmiedebergs Arch Pharmacol,2005,371(4):285-294
    [15]Lambers T, Mahieu F, Oancea E, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport [J]. Embo J,2006,25(13):2978-2988
    [16]Venkatachalam K, Montell C. TRP channels [J]. Annu Rev Biochem,2007,76:387-417
    [17]Akhter S, Kutuzova G D, Christakos S, et al. Calbindin D9k is not required for 1,25-dihydroxyvitamin D3-mediated Ca2+ absorption in small intestine [J]. Arch Biochem Biophys,2007,460(2):227-232
    [18]Gross M, Kumar R. Physiology and biochemistry of vitamin D-dependent calcium binding proteins [J]. Am J Physiol,1990,259(2 Pt 2):F195-209.
    [19]Christakos S, Barletta F, Huening M, et al. Vitamin D target proteins:function and regulation [J]. J Cell Biochem,2003,88(2):238-244
    [20]Hemmingsen C. Regulation of renal calbindin-D28K [J]. Pharmacol Toxicol,2000,87(3):5-30
    [21]Choi K, Leung P, Jeung E. Biology and physiology of Calbindin-D9k in female reproductive tissues: involvement of steroids and endocrine disruptors [J]. Reprod Biol Endocrinol,2005,16(3):66
    [22]Corradino R, Wasserman R, Pubols M, et al. Vitamin D3 induction of a calcium-binding protein in the uterus of the laying hen [J]. Arch Biochem Biophys,1968,125(1):378-380
    [23]Lambers T, Bindels R, Hoenderop J. Coordinated control of renal Ca2+ handling [J]. Kidney Int,2006, 69(4):650-654
    [24]Lippiello L, Wasserman R. Fluorescent antibody localization of the vitamin D-dependent calcium-binding protein in the oviduct of the laying hen [J]. J Histochem Cytochem,1975,23(2): 111-116
    [25]Jande S, Tolnai S, Lawson D. Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens [J]. Histochemistry, 1981,71(1):99-116
    [26]Wasserman R H, Smith C A, Smith C M, et al. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen [J]. Histochemistry,1991,96(5):413-418
    [27]Bar A, Eisner U, Montecuccoli G, et al. Regulation of intestinal calcium absorption in the laying quail: independent of kidney vitamin D hydroxylation [J]. J Nutr,1976,106(9):1336-1342
    [28]Taylor A, Wasserman R. Correlations between the vitamin D-induced calcium binding protein and intestinal absorption of calcium [J]. Fed Proc,1969,28(6):1834-1838
    [29]Morrissey R, Wasserman R. Calcium absorption and calcium-binding protein in chicks on differing calcium and phosphorus intakes [J]. Am J Physiol,1971,220(5):1509-1515
    [30]Bar A, Hurwitz S. Intestinal and uterine calcium-binding protein in laying hens during different stages of egg formation [J]. Poult Sci,1975,54(4):1325-1327
    [31]Bar A, Hurwitz S. The interaction between dietary calcium and gonadal hormones in their effect on plasma calcium, bone,25-hydroxycholecalciferol-l-hydroxylase, and duodenal calcium-binding protein, measured by a radioimmunoassay in chicks [J]. Endocrinology,1979,104(5):1455-1460
    [32]Bar A, Rosenberg J, Hurwitz S. The lack of relationships between vitamin D3 metabolites and calcium-binding protein in the eggshell gland of laying birds [J]. Comp Biochem Physiol B,1984, 78(1):75-79
    [33]Bar A, Maoz A, Hurwitz S. Relationship of intestinal and plasma calcium-binding protein to intestinal calcium absorption [J]. Febs Lett,1979,102(1):79-81
    [34]Bar A, Vax E, Striem S. Relationships between calbindin (Mr 28,000) and calcium transport by the eggshell gland [J]. Comp Biochem Physiol Comp Physiol,1992,101(4):845-848
    [35]Wilson P, Harding M, Lawson D. Putative amino acid sequence of chick calcium-binding protein deduced from a complementary DNA sequence [J]. Nucleic Acids Res,1985,13(24):8867-8881
    [36]Hunziker W. The 28-kDa vitamin D-dependent calcium-binding protein has a six-domain structure [J]. Proc Natl Acad Sci U S A,1986,83(20):7578-7582
    [37]Fullmer C, Wasserman R. Chicken intestinal 28-kilodalton calbindin-D:complete amino acid sequence and structural considerations [J]. Proc Natl Acad Sci U S A,1987,84(14):4772-4776
    [38]Ingersoll R, Wasserman R. Vitamin D3-induced calcium-binding protein. Binding characteristics, conformational effects, and other properties [J]. J Biol Chem,1971,246(9):2808-2814
    [39]Minghetti P, Cancela L, Fujisawa Y, et al. Molecular structure of the chicken vitamin D-induced calbindin-D28K gene reveals eleven exons, six Ca2+-binding domains, and numerous promoter regulatory elements [J]. Mol Endocrinol,1988,2(4):355-367
    [40]Wilson P, Rogers J, Harding M, et al. Structure of chick chromosomal genes for calbindin and calretinin [J]. J Mol Biol,1988,200(4):615-625
    [41]Gill R, Christakos S. Regulation by estrogen through the 5'-flanking region of the mouse calbindin-D28k gene [J]. Mol Endocrinol,1995,9(3):319-326
    [42]Wasserman R, Taylor A. Vitamin D-dependent calcium-binding protein. Response to some physiological and nutritional variables [J]. J Biol Chem,1968,243(14):3987-3993
    [43]Bar A, Hurwitz S. Relationships between cholecalciferol metabolism and growth in chicks as modified by age, breed and diet [J]. J Nutr,1981,111(3):399-404
    [44]Bar A, Norman A. Studies on the mode of action of calciferol. XXXIV. Relationship of the distribution of 25-hydroxyvitamin D3 metabolites to gonadal activity and egg shell formation in the quail [J]. Endocrinology,1981,109(3):950-955
    [45]Striem S, Bar A. Modulation of quail intestinal and egg shell gland calbindin (Mr 28,000) gene expression by vitamin D3,1,25-dihydroxyvitamin D3 and egg laying [J]. Mol Cell Endocrinol,1991, 75(2):169-177
    [46]Nys Y, Baker K, Lawson D. Estrogen and a calcium flux dependent factor modulate the calbindin gene expression in the uterus of laying hens [J]. Gen Comp Endocrinol,1992,87(1):87-94
    [47]Friedlander E, Henry H, Norman A. Studies on the mode of action of calciferol. Effects of dietary calcium and phosphorus on the relationship between the 25-hydroxyvitamin D3-lalpha-hydroxylase and production of chick intestinal calcium binding protein [J]. J Biol Chem,1977,252(23):8677-8683
    [48]Bar A, Striem S, Vax E, et al. Regulation of calbindin mRNA and calbindin turnover in intestine and shell gland of the chicken [J]. Am J Physiol,1992,262(5 Pt 2):R800-805
    [49]Sugiyama T, Kikuchi H, Hiyama S, et al. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen [J]. Br Poult Sci,2007,48(2):233-238
    [50]Bar A, Shani M, Fullmer C, et al. Modulation of chick intestinal and renal calbindin gene expression by dietary vitamin D3,1,25-dihydroxyvitamin D3, calcium and phosphorus [J]. Mol Cell Endocrinol, 1990,72(1):23-31
    [51]Bar A, Hurwitz S, Edelstein S. Response of renal calcium-binding protein. Independence of kidney vitamin D hydroxylation [J].Biochim Biophys Acta,1975,411(1):106-112
    [52]Rosenberg J, Hurwitz S, Bar A. Regulation of kidney calcium-binding protein in the bird (Gallus domesticus) [J]. Comp Biochem Physiol A Comp Physiol,1986,83(2):277-281
    [53]Taylor A, Wasserman R. Vitamin D-induced calcium-binding protein:comparative aspects in kidney and intestine [J]. Am J Physiol,1972,223(1):110-114
    [54]Clemens T, Mcglade S, Garrett K, et al. Extracellular calcium modulates vitamin D-dependent calbindin-D28K gene expression in chick kidney cells [J]. Endocrinology,1989,124(3):1582-1584
    [55]Bar A, Striem S, Rosenberg J, et al. Egg shell quality and cholecalciferol metabolism in aged laying hens [J]. J Nutr,1988,118(8):1018-1023
    [56]Bar A, Striem S, Mayel-Afshar S, et al. Differential regulation of calbindin-D28K mRNA in the intestine and eggshell gland of the laying hen [J]. J Mol Endocrinol,1990,4(2):93-99
    [57]Bar A, Hurwitz S. Calcium restriction and intestinal calcium-binding protein in the laying fowl [J]. Comp Biochem Physiol A Comp Physiol,1973,45(2):571-577
    [58]Bar A, Hurwitz S. Egg shell quality, medullary bone ash, intestinal calcium and phosphorus absorption, and calcium-binding protein in phosphorus-deficient hens [J]. Poult Sci,1984,63(10):1975-1979
    [59]Bar A, Cohen A, Eisner U, et al. Differential response of calcium transport systems in laying hens to exogenous and endogenous changes in vitamin D status [J]. J Nutr,1978,108(8):1322-1328
    [60]Bar A, Hurwitz S. Relationship of duodenal calcium-binding protein to calcium absorption in the laying fowl [J]. Comp Biochem Physiol B,1972,41(4):735-744
    [61]Bar A, Hurwitz S. Uterine calcium-binding protein in the laying fowl [J]. Comp Biochem Physiol A Comp Physiol,1973,45(2):579-586
    [62]Corradino R. Calbindin D28K regulation in precociously matured chick egg shell gland in vitro [J]. Gen Comp Endocrinol,1993,91(2):158-166
    [63]Corradino R, Smith C, Krook L, et al. Tissue-specific regulation of shell gland calbindin D28K biosynthesis by estradiol in precociously matured, vitamin D-depleted chicks [J]. Endocrinology,1993, 132(1):193-198
    [64]Navickis R, Katzenellenbogen B, Nalbandov A. Effects of the sex steroid hormones and vitamin D3 on calcium-binding proteins in the chick shell gland [J]. Biol Reprod,1979,21(5):1153-1162
    [65]Nys Y, Mayel-Afshar S, Bouillon R, et al. Increases in calbindin D 28K mRNA in the uterus of the domestic fowl induced by sexual maturity and shell formation [J]. Gen Comp Endocrinol,1989,76(2): 322-329
    [66]Bar A, Vax E, Hunziker W, et al. The role of gonadal hormones in gene expression of calbindin (Mr 28,000) in the laying hen [J]. Gen Comp Endocrinol,1996,103(1):115-122
    [67]Nys Y, N'Guyen T, Williams J, et al. Blood levels of ionized calcium, inorganic phosphorus, 1,25-dihydroxycholecalciferol and gonadal hormones in hens laying hard-shelled or shell-less eggs [J]. J Endocrinol,1986,111(1):151-157
    [68]Braw-Tal R, Yossefi S, Pen S, et al. Hormonal changes associated with ageing and induced moulting of domestic hens [J]. Br Poult Sci,2004,45(6):815-822
    [69]Ieda T, Saito N, Ono T, et al. Effects of presence of an egg and calcium deposition in the shell gland on levels of messenger ribonucleic acid of CaBP-D28K and of Vitamin D3 receptor in the shell gland of the laying hen [J]. Gen Comp Endocrinol,1995,99(2):145-151
    [70]Sugiyama T, Kikuchi H, Hiyama S, et al. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen [J]. Br Poult Sci,2007,48(2):233-238
    [71]Bar A, Striem S, Vax E, et al. Regulation of calbindin mRNA and calbindin turnover in intestine and shell gland of the chicken [J]. Am J Physiol Regul Integr Comp Physiol,1992,262(5):R800-805
    [72]Bar A, Vax E, Striem S. Relationships between calbindin (Mr 28,000) and calcium transport by the eggshell gland [J]. Comp Biochem Physiol A Physiol,1992,101(4):845-848
    [73]Nys Y, Baker K, Lawson D E. Estrogen and a calcium flux dependent factor modulate the calbindin gene expression in the uterus of laying hens [J]. Gen Comp Endocrinol,1992,87(1):87-94
    [74]Nijenhuis T, Hoenderop J, Bindels R. TRPV5 and TRPV6 in Ca2+ (re)absorption:regulating Ca2+ entry at the gate [J]. Pfluger Arch-Eur J Physiol,2005,451(1):181-192
    [75]Qin X, Klandorf H. Effect of estrogen in relation to dietary Vitamin D3 and calcium on activity of intestinal alkaline phosphatase and Ca-ATPase in immature chicks [J]. Gen Comp Endocrinol,1993, 90(3):318-327
    [76]Davis W L, Jones R G, Farmer G R, et al. Electron microscopic cytochemical localization of a basolateral calcium adenosine triphosphatase in vitamin D replete chick enterocytes [J]. Anat Rec, 1987,219(4):384-393
    [77]Melancon M J, de Luca H F. Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders [J]. Biochemistry,1970,9(8):1658-1664
    [78]Borke J L, Caride A, Verma A K, et al. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules [J]. Am J Physiol Renal Physiol,1989,257(5):F842-849
    [79]Borke J L, Caride A, Verma A K, et al. Calcium pump epitopes in placental trophoblast basal plasma membranes [J]. Am J Physiol Cell Physiol,1989,257(2):C341-346
    [80]Borke J L, Caride A, Verma A K, et al. Cellular and segmental distribution of Ca2+-pump epitopes in rat intestine [J]. Pfluger Arch-Eur J Physiol,1990,417(1):120-122
    [81]Wasserman R, Smith C, Brindak M, et al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine [J]. Gastroenterology,1992,102(3):886-894
    [82]Hoenderop J G, Nilius B, Bindels R J. Calcium absorption across epithelia [J]. Physiol Rev,2005, 85(1):373-422
    [83]Cai Q, Chandler J S, Wasserman R H, et al. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression [J]. Proc Natl Acad Sci U S A,1993,90(4):1345-1349
    [84]Inpanbutr N. Association between calbindin-D28K and oogenesis in ovaries of chicken embryos in vitro [J]. Am J Vet Res,1994,55(9):1341-1346
    [85]Glendenning P, Ratajczak T, Prince R L, et al. The promoter region of the human PMCA1 gene mediates transcriptional downregulation by 1,25-Dihydroxyvitamin D3 [J]. Biochem Biophys Res Commun,2000,277(3):722-728
    [86]Van Cromphaut S, Rummens K, Stockmans I, et al. Intestinal calcium transporter genes are upregulated by estrogens and the reproductive cycle through Vitamin D receptor-independent mechanisms [J]. J Bone Miner Res,2003,18(10):1725-1736
    [87]Van Abel M, van Leeuwen H, And Bindels R. Down-regulation of calcium transporters in kidney and duodenum by the calcimimetic compound NPS R-467 (Abstract) [J]. J Am Soc Nephrol,2003,14: 459A
    [88]Coty W A, Mc Conkey C L. A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland [J]. Arch Biochem Biophys,1982,219(2):444-453
    [89]Lundholm C E. Effect of p-p'-DDE administered in vivo and in vitro on Ca2+ binding and Ca2+-Mg2+-ATPase activity in egg shell gland mucosa of ducks [J]. Acta Pharmacol Toxicol (Copenh), 1982,50(2):121-129
    [90]Grunder A, Tsang C, Narbaitz R. Effects of vitamin D3 metabolites on physiological traits of white leghorn hens [J]. Poult Sci,1990,69(7):1204-1208
    [91]Wasserman R H, Smith C A, Smith C M, et al. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen [J]. Histochemistry,1991,96(5):413-418
    [92]Qin X, Klandorf H. Effect of estrogen in relation to dietary vitamin D3 and calcium on activity of intestinal alkaline phosphatase and Ca-ATPase in immature chicks [J]. Gen Comp Endocrinol,1993, 90(3):318-327
    [93]Lytton J. Na+/Ca2+ exchangers:three mammalian gene families control Ca2+ transport [J]. Biochem J, 2007,406(3):365-382
    [94]Van de Graaf S, Bindels R, Hoenderop J. Physiology of epithelial Ca2+ and Mg2+ transport. [J]. Rev Physiol Biochem Pharmacol,2007,158:77-160
    [95]Perez A, Picotto G, Carpentieri A, et al. Minireview on regulation of intestinal calcium absorption. Emphasis on molecular mechanisms of transcellular pathway [J]. Digestion,2008,77(1):22-34
    [96]Ghijsen W, de Jong M, van Os C. Kinetic properties of Na+/Ca2+ exchange in basolateral plasma membranes of rat small intestine [J]. Biochim Biophys Acta,1983,730(1):85-94
    [97]Shepherd N, Graham V, Trevedi B, et al. Changes in regulation of sodium/calcium exchanger of avian ventricular heart cells during embryonic development [J]. Am J Physiol Cell Physiol,2007,292(5): C1942-1950
    [98]Centeno V, Diaz de Barboza G, Marchionatti A, et al. Dietary calcium deficiency increases Ca2+ uptake and Ca2+ extrusion mechanisms in chick enterocytes [J]. Comp Biochem Physiol A Mol Integr Physiol,2004,139(2):133-141
    [99]Esbaugh A, Tufts B. The structure and function of carbonic anhydrase isozymes in the respiratory system of vertebrates [J]. Respir Physiol Neurobiol,2006,154(1-2):185-198
    [100]Charoenphandhu N, Tudpor K, Pulsook N, et al. Chronic metabolic acidosis stimulated transcellular and solvent drag-induced calcium transport in the duodenum of female rats [J]. Am J Physiol Gastrointest Liver Physiol,2006,291(3):G446-455
    [101]Purkerson J, Schwartz G. The role of carbonic anhydrases in renal physiology [J]. Kidney Int,2007, 71(2):103-115
    [102]Holmes R. Purification, molecular properties and ontogeny of carbonic anhydrase isozymes. Evidence for A, B and C isozymes in avian and mammalian tissues [J]. Eur J Biochem,1977,78(2):511-520
    [103]Bernstein R, Nevalainen T, Schraer R, et al. Intracellular distribution and role of carbonic anhydrase in the avian (Gallus domesticus) shell gland mucosa [J]. Biochim Biophys Acta,1968,159(2):367-376
    [104]Gabriella M, Menghi G. The integrative segment of the quail Coturnix coturnix japonica. Occurrence and distribution of carbonic anhydrase and complex carbohydrates [J]. J Anat,1994,185 (Pt 2):405-414
    [105]Al-Batshan H, Scheideler S, Black B, et al. Duodenal calcium uptake, femur ash, and eggshell quality decline with age and increase following molt [J]. Poult Sci,1994,73(10):1590-1596
    [106]Gabrielli M, Vincenzetti S, Vita A, et al. Immunohistochemical localization of carbonic anhydrase isoenzymes Ⅱ and Ⅲ in quail kidney [J]. Histochem J,1998,30(7):489-497
    [107]Lomri A, Baron R.1 alpha,25-dihydroxyvitamin D3 regulates the transcription of carbonic anhydrase II mRNA in avian myelomonocytes [J]. Proc Natl Acad Sci U S A,1992,89(10):4688-4692
    [108]Balnave D, el-Khatib N, Zhang D. Calcium and carbonate supply in the shell gland of hens laying eggs with strong and weak shells and during and after a rest from lay [J]. Poult Sci,1992,71(12): 2035-2040
    [109]Nys Y, Parkes C, Thomasset M. Effects of suppression and resumption of shell formation and parathyroid hormone on uterine calcium-binding protein, carbonic anhydrase activity, and intestinal calcium absorption in hens [J]. Gen Comp Endocrinol,1986,64(2):293-299
    [110]Holm L, Berg C, Brunstrom B, et al. Disrupted carbonic anhydrase distribution in the avian shell gland following in ovo exposure to estrogen [J]. Arch Toxicol,2001,75(6):362-368
    [111]Pearson T, Pryor T, Goldner A. Calcium transport across avian uterus. Ⅲ. Comparison of laying and nonlaying birds [J]. Am J Physiol,1977,232(4):E437-443
    [112]Lundholm C. DDE-induced eggshell thinning in birds:effects of p,p'-DDE on the calcium and prostaglandin metabolism of the eggshell gland [J]. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol,1997,118(2):113-128
    [113]Kansal M, Gangwar P. Activity and distribution of carbonic anhydrase in the oviduct of the laying hen (Gallus domesticus) during egg formation at three different periods in spring and summer seasons [J]. Acta Physiol Pharmacol Bulg,1984,10(3):57-62
    [114]Gill S, Gangwar P. Carbonic anhydrase and its isozymes in heat stressed white Leghorn hens [J]. Arch Exp Veterinarmed,1990,44(3):383-388
    [115]Bar A, Vax E, Striem S. Relationships among age, eggshell thickness and vitamin D metabolism and its expression in the laying hen [J]. Comp Biochem Physiol A Mol Integr Physiol,1999,123(2): 147-154
    [116]Ehrenspeck G, Schraer H, Schraer R. Calcium transfer across isolated avian shell gland [J]. Am J Physiol,1971,220(4):967-972
    [117]Bitman J, Cecil H, Fries G. DDT-induced inhibition of avian shell gland carbonic anhydrase:a mechanism for thin eggshells [J]. Science,1970,168(931):594-596
    [118]Nys Y, de Laage X. Effects of suppression of eggshell calcification and of 1,25(OH)2D3 on Mg2+, Ca2+ and Mg2+ HCO3-ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels--Ⅰ. The laying hen uterus [J]. Comp Biochem Physiol A Comp Physiol,1984,78(4):833-838
    [119]Nys Y, de Laage X. Effects of suppression of eggshell calcification and of 1,25(OH)2D3 on Mg2+, Ca2+ and Mg2+HCO3- ATPase, alkaline phosphatase, carbonic anhydrase and CaBP levels--Ⅱ. The laying hen intestine. [J]. Comp Biochem Physiol A Comp Physiol,1984,78(4):839-844
    [120]Elbrond V, Jones C, Skadhauge E. Localization, morphology and function of the mitochondria-rich cells in relation to transepithelial Na(+)-transport in chicken lower intestine (coprodeum) [J]. Comp Biochem Physiol A Mol Integr Physiol,2004,137(4):683-696
    [121]Pines M, Knopov V, Bar A. Involvement of osteopontin in egg shell formation in the laying chicken [J]. Matrix Biol,1995,14(9):765-771
    [122]Rittling S, Denhardt D. Osteopontin function in pathology:lessons from osteopontin-deficient mice [J]. Exp Nephrol,1999,7(2):103-113
    [123]Butler W. The nature and significance of osteopontin [J]. Connect Tissue Res,1989,23(2-3):123-136
    [124]Nakamura I, Rodan G, Duong L T. Regulatory mechanism of osteoclast activation [J]. J Electron Microsc (Tokyo),2003,52(6):527-533
    [125]Mann K, Olsen J, Macek B, et al. Phosphoproteins of the chicken eggshell calcified layer [J]. Proteomics,2007,7(1):106-115
    [126]Lavelin I, Yarden N, Ben-Bassat S, et al. Regulation of osteopontin gene expression during egg shell formation in the laying hen by mechanical strain [J]. Matrix Biol,1998,17(8-9):615-623
    [127]Lavelin I, Meiri N, Pines M. New insight in eggshell formation [J]. Poult Sci,2000,79(7):1014-1017
    [128]Fernandez M, Escobar C, Lavelin I, et al. Localization of osteopontin in oviduct tissue and eggshell during different stages of the avian egg laying cycle [J]. J Struct Biol,2003,143(3):171-180
    [129]Chien Y, Hincke M, Vali H, et al. Ultrastructural matrix-mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro [J]. J Struct Biol,2008,163(1):84-99
    [130]Prince C, Butler W.1,25-Dihydroxyvitamin D3 regulates the biosynthesis of osteopontin, a bone-derived cell attachment protein, in clonal osteoblast-like osteosarcoma cells [J]. Coll Relat Res, 1987,7(4):305-313
    [131]Han K, Jung J, Cha J, et al.1,25-Dihydroxyvitamin D3 stimulates osteopontin expression in rat kidney [J]. Nephron Physiol,2003,93(3):p76-86
    [132]Noda M, Vogel R, Craig A, et al. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression [J]. Proc Natl Acad Sci U S A,1990,87(24): 9995-9999
    [133]Fernandez M, Passalacqua K, Arias J, et al. Partial biomimetic reconstitution of avian eggshell formation [J]. J Struct Biol,2004,148(1):1-10
    [134]Chien Y, Hincke M, Mckee M. Avian eggshell structure and osteopontin [J]. Cells Tissues Organs, 2008,189(1-4):38-43
    [135]斯托凯D P.禽类生理学[M].《禽类生理学》翻译组,译校.北京:科学出版社,1982
    [136]Pansu D, Bellaton C, Roche C, et al. Duodenal and ileal calcium absorption in the rat and effects of vitamin D [J]. Am J Physiol,1983,244(6):G695-700
    [137]Bronner F. Mechanisms of intestinal calcium absorption [J]. J Cell Biochem,2003,88(2):387-393
    [138]Wasserman R. Vitamin D and the dual processes of intestinal calcium absorption [J]. J Nutr,2004, 134(11):3137-3139
    [139]Hurwitz S, Bar A. Site of vitamin D action in chick intestine [J]. Am J Physiol,1972,222(3):761-767
    [140]Hurwitz S, Bar A, Katz M, et al. Absorption and secretion of fatty acids and bile acids in the intestine of the laying fowl [J]. J Nutr,1973,103(4):543-547
    [141]Guinotte F, Nys Y, de Monredon F. The effects of particle size and origin of calcium carbonate on performance and ossification characteristics in broiler chicks [J]. Poult Sci,1991,70(9):1908-1920
    [142]Chandramoni, Jadhao S, Sinha R. Effect of dietary calcium and phosphorus concentrations on retention of these nutrients by caged layers [J]. Br Poult Sci,1998,39(4):544-548
    [143]Lichovnikova M. The effect of dietary calcium source, concentration and particle size on calcium retention, eggshell quality and overall calcium requirement in laying hens [J]. Br Poult Sci,2007, 48(1):71-75
    [144]Armbrecht H, Zenser T, Davis B. Effect of age on the conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 by kidney of rat [J]. J Clin Invest,1980,66(5):1118-1123
    [145]Wu J, Smith M, Turvey A, et al. Differential regulation of vitamin D receptor and intestinal calcium transport occurring during sexual maturation in the fowl (Gallus domesticus) [J]. Comp Biochem Physiol A Physiol,1994,109(3):713-720
    [146]Nicolaysen R, Eeg-Larsen N, Malm O. Physiology of calcium metabolism [J]. Physiol Rev,1953, 33(3):424-444
    [147]Fox J, Heath H R. Retarded growth rate caused by glucocorticoid treatment or dietary restriction: associated changes duodenal, jejunal, and ileal calcium absorption in the chick [J]. Endocrinology, 1981,108(4):1138-1141
    [148]Scott T, Balnave D. Influence of temperature, dietary energy, nutrient concentration and self-selection feeding on the retention of dietary energy, protein and calcium by sexually-maturing egg-laying pullets [J]. Br Poult Sci,1991,32(5):1005-1016
    [149]Schoeber J, Hoenderop J, Bindels R. Concerted action of associated proteins in the regulation of TRPV5 and TRPV6 [J]. Biochem Soc Trans,2007,35(Pt 1):115-119
    [150]Nemere Ⅰ, Norman A. Transcaltachia, vesicular calcium transport, and microtubule-associated calbindin-D28K:emerging views of 1,25-dihydroxyvitamin D3-mediated intestinal calcium absorption [J]. Miner Electrolyte Metab,1990,16(2-3):109-114
    [151]Larsson B, Nemere I. Effect of growth and maturation on membrane-initiated actions of 1,25-dihydroxyvitamin D3-Ⅱ:calcium transport, receptor kinetics, and signal transduction in intestine of female chickens [J]. J Cell Biochem,2003,90(5):901-913
    [152]Benn B, Ajibade D, Porta A, et al. Active intestinal calcium transport in the absence of transient receptor potential vanilloid type 6 and calbindin-D9k [J]. Endocrinology,2008,149(6):3196-3205
    [153]Bar A, Cohen A, Edelstein S, et al. Involvement of cholecalciferol metabolism in birds in the adaptation of calcium absorption to the needs during reproduction [J]. Comp Biochem Physiol B, 1978,59(3):245-249
    [154]Schneeberger E, Lynch R. The tight junction:a multifunctional complex [J]. Am J Physiol Cell Physiol,2004,286(6):C1213-1228
    [155]Van Itallie C, Anderson J. Claudins and epithelial paracellular transport [J]. Annu Rev Physiol,2006, 68:403-429
    [156]Tang V, Goodenough D. Paracellular ion channel at the tight junction [J]. Biophys J,2003,84(3): 1660-1673
    [157]Kutuzova G, Deluca H. Gene expression profiles in rat intestine identify pathways for 1,25-dihydroxyvitamin D(3) stimulated calcium absorption and clarify its immunomodulatory properties [J]. Arch Biochem Biophys,2004,432(2):152-166
    [158]Fujita H, Sugimoto K, Inatomi S, et al. Tight junction proteins claudin-2 and-12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes [J]. Mol Biol Cell,2008,19(5):1912-1921
    [159]Kong J, Zhang Z, Musch M, et al. Novel role of the vitamin D receptor in maintaining the integrity of the intestinal mucosal barrier [J]. Am J Physiol Gastrointest Liver Physiol,2008,294(1):G208-216
    [160]Hurwitz S, Plavnik I, Shapiro A, et al. Calcium metabolism and requirements of chickens are affected by growth [J]. J Nutr,1995,125(10):2679-2686
    [161]Bar A, Shinder D, Yosefi S, et al. Metabolism and requirements for calcium and phosphorus in the fast-growing chicken as affected by age [J]. Br J Nutr,2003,89(1):51-61
    [162]Ramasamy I. Recent advances in physiological calcium homeostasis [J]. Clin Chem Lab Med,2006, 44(3):237-273
    [163]Hurwitz S, Bar A. Intestinal calcium absorption in the laying fowl and its importance in calcium homeostasis [J]. Am J Clin Nutr,1969,22(4):391-395
    [164]Bar A, Dubrov D, Eisner U, et al. Calcium-binding protein and calcium absorption in the laying quail (Coturnix coturnix japonica) [J]. Poult Sci,1976,55(2):622-628
    [165]Dacke C. Parathyroid hormone and eggshell calcification in Japanese quail [J]. J Endocrinol,1976, 71(2):239-243
    [166]Van de Velde J, Loveridge N, Vermeiden J. Parathyroid hormone responses to calcium stress during eggshell calcification [J]. Endocrinology,1984,115(5):1901-1904
    [167]Singh R, Joyner C, Peddie M, et al. Changes in the concentrations of parathyroid hormone and ionic calcium in the plasma of laying hens during the egg cycle in relation to dietary deficiencies of calcium and vitamin D [J]. Gen Comp Endocrinol,1986,61(1):20-28
    [168]Favus M, Bushinsky D, Coe F. Effects of medium pH on duodenal and ileal calcium active transport in the rat [J]. Am J Physiol,1986,251(5 Pt 1):G695-700
    [169]Mongin P. Composition of crop and gizzard contents in the laying hen [J]. Br Poult Sci,1976,17(5): 499-507
    [170]Mongin P. Ionic constituents and osmolality of the small intestinal fluids of the laying hen [J]. Br Poult Sci,1976,17(4):383-392
    [171]Mongin P, Lacassagne L. Physiology of the formation of the chicken egg shell and acid-base equilibrium of the blood [J]. C R Hebd Seances Acad Sci,1964,258:3093-3094
    [172]Cohen I, Hurwitz S. Intracellular pH and electrolyte concentration in the uterine wall of the fowl in relation to shell formation and dietary minerals [J]. Comp Biochem Physiol A Comp Physiol,1974, 49(4):689-696
    [173]Wideman R J, Buss E. Arterial blood gas, pH, and bicarbonate values in laying hens selected for thick or thin eggshell production [J]. Poult Sci,1985,64(5):1015-1019
    [174]Kenny A. Vitamin D metabolism:physiological regulation in egg-laying Japanese quail [J]. Am J Physiol,1976,230(6):1609-1615
    [175]Wasserman R, Combs G. Relation of vitamin D-dependent intestinal calcium-binding protein to calcium absorption during the ovulatory cycle in Japanese quail [J]. Proc Soc Exp Biol Med,1978, 159(2):286-287
    [176]Nemere I, Larsson D. Does PTH have a direct effect on intestine [J]. J Cell Biochem,2002,86(1): 29-34
    [177]Dacke C, Musacchia X, Volkert W, et al. Cyclical fluctuations in the levels of blood calcium, pH and pCO 2 in Japanese quail [J]. Comp Biochem Physiol A Comp Physiol,1973,44(4):1267-1275
    [178]Hurwitz S, Bar A. Calcium and phosphorus interrelationships in the intestine of the fowl [J]. J Nutr, 1971,101(5):677-685
    [179]Hurwitz S, Bar A. Calcium depletion and repletion in laying hens. I. Effect on calcium in various bone segments, in egg shells and in blood plasma, and on calcium balance [J]. Poult Sci,1966,45(2): 345-352
    [180]Comar C, Driggers J. Secretion of Radioactive Calcium in the Hen's Egg [J]. Science,1949, 109(2829):282
    [181]Ehrenspeck G, Schraer H, Schraer R. Some metabolic aspects of calcium movement across the isolated avian shell gland [J]. Proc Soc Exp Biol Med,1967,126(2):392-395
    [182]Pearson T, Goldner A. Calcium transport across avian uterus. Ⅰ. Effects of electrolyte substitution [J]. Am J Physiol,1973,225(6):1508-1512
    [183]Pearson T, Goldner A. Calcium transport across avian uterus. Ⅱ. Effects of inhibitors and nitrogen [J]. Am J Physiol,1974,227(2):465-468
    [184]Eastin W J, Spaziani E. On the control of calcium secretion in the avian shell gland (uterus) [J]. Biol Reprod,1978,19(3):493-504
    [185]Eastin W J, Spaziani E. On the mechanism of calcium secretion in the avian shell gland (uterus) [J]. Biol Reprod,1978,19(3):505-518
    [186]Arad Z, Eylath U, Ginsburg M, et al. Changes in uterine fluid composition and acid-base status during shell formation in the chicken [J]. Am J Physiol,1989,257(4 Pt 2):R732-737
    [187]Nys Y, Zawadzki J, Gautron J, et al. Whitening of brown-shelled eggs:mineral composition of uterine fluid and rate of protoporphyrin deposition [J]. Poult Sci,1991,70(5):1236-1245
    [188]Panheleux M, Kalin O, Gautron J, et al. Features of eggshell formation in guinea fowl:kinetics of shell deposition, uterine protein secretion and uterine histology [J]. Br Poult Sci,1999,40(5):632-643
    [189]El Jack M, Lake P. The content of the principal inorganic ions and carbon dioxide in uterine fluids of the domestic hen [J]. J Reprod Fertil,1967,13(1):127-132
    [190]Rieser J, Smith J, Burke W. Composition of turkey uterine fluid [J]. Poult Sci,1972,51(1):203-206
    [191]Edwards N. The secretion of glucose into the egg of Gallus domesticus and observations on the uterine secretion of cations [J]. Br Poult Sci,1977,18(6):641-649
    [192]Cohen I, Hurwitz S. The electrical potential difference and the short circuit current of the uterine mucosa of hens in relation to egg shell formation [J]. Poult Sci,1973,52(6):2340-2341
    [193]Vetter A, O'Grady S. Sodium and anion transport across the avian uterine (shell gland) epithelium [J]. J Exp Biol,2005,208(Pt 3):479-486
    [194]Oka T, Schimke R. Interaction of estrogen and progesterone in chick oviduct development. Ⅰ. Antagonistic effect of progesterone on estrogen-induced proliferation and differentiation of tubular gland cells [J]. J Cell Biol,1969,41(3):816-831
    [195]Hora J, Gosse B, Rasmussen K, et al. Estrogen regulation of the biological activity of the avian oviduct progesterone receptor and its ability to induce avidin [J]. Endocrinology,1986,119(3): 1118-1125
    [196]Monroe D, Berger R, Sanders M. Tissue-protective effects of estrogen involve regulation of caspase gene expression [J]. Mol Endocrinol,2002,16(6):1322-1331
    [197]Yoshimura Y, Ohira H, Tamura T. Immunocytochemical localization of vitamin D receptors in the shell gland of immature, laying, and molting hens [J]. Gen Comp Endocrinol,1997,108(2):282-289
    [198]Anish D, Sastry K, Sundaresan N R, et al. Reproductive tissue regression:involvement of caspases, inducible nitric oxide synthase and nitric oxide during moulting in white leghorn hens [J]. Anim Reprod Sci,2008,104(2-4):329-343
    [199]Thiede M, Harm S, Mckee R, et al. Expression of the parathyroid hormone-related protein gene in the avian oviduct:potential role as a local modulator of vascular smooth muscle tension and shell gland motility during the egg-laying cycle [J]. Endocrinology,1991,129(4):1958-1966
    [200]Lavelin I, Meiri N, Genina O, et al. Na(+)-K(+)-ATPase gene expression in the avian eggshell gland: distinct regulation in different cell types [J]. Am J Physiol Regul Integr Comp Physiol,2001,281(4): R1169-1176
    [201]Lavelin I, Meiri N, Einat M, et al. Mechanical strain regulation of the chicken glypican-4 gene expression in the avian eggshell gland [J]. Am J Physiol Regul Integr Comp Physiol,2002,283(4): R853-861
    [202]Turner R, Eliel L. Nuclear estrogen receptor in the reproductive tract of laying Japanese quail [J]. Gen Comp Endocrinol,1978,34(2):141-148
    [203]Agemori M, Ishikawa K. Binding of progesterone with the oviduct cytosol fraction of estrogen-primed quail (Coturnix coturnix japonica) [J]. Gen Comp Endocrinol,1984,53(1):17-27
    [204]Yamamoto T, Ozawa H, Nagai H. Histochemical studies of Ca-ATPase, succinate and NAD+-dependent isocitrate dehydrogenases in the shell gland of laying Japanese quails:with special reference to calcium-transporting cells [J]. Histochemistry,1985,83(3):221-226
    [205]Arjmandi B H, Hollis B W, Kalu D N. In vivo effect of 17(3-estradiol on intestinal calcium absorption in rats [J]. J Bone Miner,1994,26:181
    [206]Field J A, Zhan G L, Brunka, et al. Cloning and functional characterization of a sodium dependment phosphate transporter expressed in human lung and small intestine [J]. Biochem Biophys Res Commun,1999,258:578-582
    [207]Hilfiker H, Hattenhauer O, Traebertm, et al. Characterization of a murine type Ⅱ sodium Phosphate cotransporter expressed in mammalian small intestine [J]. Proc Natl Acad Sci USA,1998, 95:14564-14569
    [208]Hoenderop J G, van Leeuwen J P,van der Eerden B C, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5 [J]. J Clin Invest,2003,112(12):1906-1914
    [209]van der Eerden B C, Hoenderop J G, de Vries T J, et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption [J]. Proc Natl Acad Sci U S A,2005,102(48): 17507-17512
    [210]Chamoux E, Bisson M, Payet M D, et al. TRPV-5 mediates a receptor activator of NF-kappaB (RANK) ligand-induced increase in cytosolic Ca2+ in human osteoclasts and downregulates bone resorption [J]. J Biol Chem,2010,285(33):25354-25362
    [1]Clapham D E. TRP channels as cellular sensors [J]. Nature,2003,426(6966):517-524
    [2]Montell C, Birnbaumer L, Flockerzi V. The TRP channels, a remarkably functional family [J]. Cell, 2002,108(5):595-598
    [3]Hoenderop J, Voets T, Hoefs S, et al. Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. [J]. Embo J,2003,22(4):776-785
    [4]Hoenderop J G, van Leeuwen J P, van Der Eerden B C, et al. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5 [J]. J Clin Invest,2003,112(12):1906-1914
    [5]Hoenderop J G, Vennekens R, et al. Function and expression of the epithelial Ca(2+) channel family: comparison of mammalian ECaCl and 2 [J]. J Physiol,2001,537(3):747-761
    [6]Peng J B, Brown E M, Hediger M A. Structural conservation of the genes encoding CaTl, CaT2, and related cation channels [J]. Genomics,2001,76(1-3):99-109
    [7]Qiu A, Hogstrand C. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes [J]. Gene,2004,342(1):113-123
    [8]Hoenderop J G J, Nilius B, Bindels R J M. Molecular mechanism of active Ca2+reabsorption in the distal nephron [J]. Annu Rev Physiol,2002,64(1):529-549
    [9]Alexandrakis M G, Passam F H, Malliaraki N, et al. Evaluation of bone disease in multiple myeloma:a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients [J]. Clin Chim Acta,2002,325(1-2):51-57
    [10]Peng J B, Chen X Z, Berger U V, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption [J]. J Biol Chem,1999,274(32):22739-22746
    [11]Hoenderop J G, van Der Kemp A W, Hartog A, et al. The epithelial calcium channel, ECaC, is activated by hyperpolarization and regulated by cytosolic calcium [J]. Biochem Bioph Res Co,1999,261(2): 488-492
    [12]Hellwig N, Albrecht N, Harteneck C, et al. Homo-and heteromeric assembly of TRPV channel subunits [J]. J Cell Sci,2005,118(5):917-928
    [13]Edwards B, Baer P, Sutton R, et al. Micropuncture study of diuretic effects on sodium and calcium reabsorption in the dog nephron. [J]. J Clin Invest,1973,52(10):2418-2427
    [14]Friedman P A. Calcium transport in the kidney [J]. Curr Opin Nephrol Hy,1999,8(5):589-595
    [15]Sutton R, Dirks J. The renal excretion of calcium:a review of micropuncture data. [J]. Can J Physiol Pharmacol,1975,53(6):979-988
    [16]Ullrich K J, schmidt-Nielsen B, O'Dell R, et al. Micropuncture study of composition of proximal and distal tubular fluid in rat kidney [J]. Am J Physio Renal Physiol,1963,204(4):527-531
    [17]Suki W N. Calcium transport in the nephron [J]. Am J Physiol-Renal,1979,237(1):F1-6
    [18]Quamme G A, Dirks J H. Intraluminal and contraluminal magnesium on magnesium and calcium transfer in the rat nephron [J]. Am J Physiol Renal Physiol,1980,238(3):F187-198
    [19]Rocha A S, Magaldi J B, Kokko J P. Calcium and phosphate transport in isolated segments of rabbit Henle's loop [J]. J Clin Invest,1977,59(5):975-983
    [20]Bailly C, Imbert-Teboul M, Roinel N, et al. Isoproterenol increases Ca, Mg, and NaCl reabsorption in mouse thick ascending limb [J]. Am J Physiol Renal Physiol,1990,258(5):F1224-1231
    [21]Bourdeau J E, Burg M B. Effect of PTH on calcium transport across the cortical thick ascending limb of Henle's loop [J]. Am J Physiol Renal Physiol,1980,239(2):F121-126
    [22]Stefano A, Wittner M, Nitschke R, et al. Effects of glucagon on Na+, Cl-, K+, Mg2+ and Ca2+ transports in cortical and medullary thick ascending limbs of mouse kidney [J]. Pflug Arch Eur J Phy,1989, 414(6):640-646
    [23]Bourdeau J E, Burg M B. Voltage dependence of calcium transport in the thick ascending limb of Henle's loop [J]. Am J Physiol Renal Physiol,1979,236(4):F357-364
    [24]Shareghi G, Agus Z. Magnesium transport in the cortical thick ascending limb of Henle's loop of the rabbit. [J]. J Clin Invest,1982,69(4):759-769
    [25]Friedman P A. Basal and hormone-activated calcium absorption in mouse renal thick ascending limbs [J]. Am J Physiol Renal Physiol,1988,254(1):F62-70
    [26]Wittner M, Mandon B, Roinel N, et al. Hormonal stimulation of Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse:evidence for a change in the paracellular pathway permeability [J]. Pfliig Arch Eur J Phy,1993,423(5):387-396
    [27]Costanzo L S, Windhager E E. Calcium and sodium transport by the distal convoluted tubule of the rat [J]. Am J Physiol Renal Physiol,1978,235(5):F492-506
    [28]Bindels R J, Hartog A, Timmermans J, et al. Active Ca2+ transport in primary cultures of rabbit kidney CCD:stimulation by 1,25-dihydroxyvitamin D3 and PTH [J]. Am J Physiol Renal Physiol,1991,261(5): F799-807
    [29]Shimizu T, Nakamura M, Yoshitomi K, et al. Interaction of trichlormethiazide or amiloride with PTH in stimulating Ca2+ absorption in rabbit CNT [J]. Am J Physiol Renal Physiol,1991,261(1):F36-43
    [30]Shimizu T, Yoshitomi K, Nakamura m, et al. Effect of parathyroid hormone on the connecting tubule from the rabbit kidney:biphasic response of transmural voltage [J]. Pflug Arch Eur J Phy,1990,416(3): 254-261
    [31]Shimizu T, Yoshitomi K, Nakamura M, et al. Effects of PTH, calcitonin, and cAMP on calcium transport in rabbit distal nephron segments [J]. Am J Physiol Renal Physiol,1990,259(3):F408-414
    [32]Shimizu T, Yoshitomi K, Nakamura M, et al. Site and mechanism of action of trichlormethiazide in rabbit distal nephron segments perfused in vitro [J]. J Clin Invest,1988,82(2):721-730
    [33]Loffing J, Loffing-Cueni D, Valderrabano V, et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron [J]. Am J Physiol Renal Physiol,2001,281(6): F1021-1027
    [34]Hoenderop J G J, Hartog A, Stuiver M, et al. Localization of the epithelial Ca2+ channel in rabbit kidney and intestine [J]. J Am Soc Nephrol,2000,11(7):1171-1178
    [35]Nijenhuis T, Hoenderop J G J, van Der Kemp A W, et al. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney [J]. J Am Soc Nephrol,2003,14(11):2731-2740
    [36]Bronner F, Pansu D, Stein W D. An analysis of intestinal calcium transport across the rat intestine [J]. Am J Physiol-Gastr L,1986,250(5):G561-569
    [37]Bronner F. Mechanisms of intestinal calcium absorption [J]. J Cell Biochem,2003,88(2):387-393
    [38]Van Abel M, Hoenderop J G, van Der Kemp A W, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection [J]. Am J Physiol-Gastr L,2003,285(1): G78-85
    [39]Van Cromphaut S J, Dewerchin M, Hoenderop J G, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:functional and molecular aspects [J]. Proc Natl Acad Sci U S A,2001,98(23): 13324-13329
    [40]Peng J B, Chen X Z, Berger U V, et al. Human calcium transport protein CaTl [J]. Biochem Bioph Res Co,2000,278(2):326-332
    [41]Peng J B, Chen X Z, Berger U V, et al. A rat kidney-specific calcium transporter in the distal nephron [J]. J Biol Chem,2000,275(36):28186-28194
    [42]Van De Graaf S F, Hoenderop J G, Gkika D, et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A10-annexin 2 complex [J]. Embo J,2003,22(7): 1478-1487
    [43]Zhuang L, Peng J B, Tou L, et al. Calcium-selective ion channel, CaT1, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies [J]. Lab Invest,2002, 82(12):1755-1764
    [44]Schroder B, Vossing S, Breves G. In vitro studies on active calcium absorption from ovine rumen [J]. J Comp Physiol B,1999,169(7):487-494
    [45]Yue L, Peng J B, Hediger M A, et al. CaT1 manifests the pore properties of the calcium-release-activated calcium channel [J]. Nature,2001,410(6829):705-709
    [46]Hoenderop J G, van Der Kemp A W, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-Dihydroxyvitamin D3-responsive epithelia [J]. J Biol Chem,1999,274(13):8375-8378
    [47]Belkacemi L, Gariepy G, Mounier C, et al. Expression of calbindin-D28k (CaBP-28k) in trophoblasts from human term placenta [J]. Biol Reprod,2003,68(6):1943-1950
    [48]Belkacemi L, Gariepy G, Mounier C, et al. Calbindin-D9k (CaBP-9k) localization and levels of expression in trophoblast cells from human term placenta [J]. Cell and Tissue Res,2004,315(1): 107-117
    [49]Belkacemi L, Simoneau L, Lafond J. Calcium-binding proteins [J]. Endocrine,2002,19(1):57-64
    [50]Faulk W P, Mcintyre J A. Immunological studies of human trophoblast:markers, subsets and functions [J]. Immunol Rev,1983,75(1):139-175
    [51]李福春.TRPV5/TRPV6对大鼠骨髓间充质干细胞成骨分化及成骨细胞信号传递的影响[D].长春:吉林大学,2008
    [52]那键.雌激素、维生素D3对雌性大鼠成骨细胞增殖及钙通道TRPV5/TRPV6表达的影响[D].长春:吉林大学,2009
    [53]杨震TRPV5及钙结合素在骨组织中的表达及其意义[D].长春:吉林大学,2006
    [54]金成浩.TRPV5、TRPV6的表达及其与骨肿瘤发生的关系[D].长春:吉林大学,2007
    [55]Janssen S W, Hoenderop J G, Hermus A R, et al. Expression of the novel epithelial Ca2+ channel ECaCl in rat pancreatic islets [J]. J Histochem Cytochem,2002,50(6):789-798
    [56]Ishida H, Seino Y, Seino S, et al. Effect of 1,25-dihydroxyvitamin D3 on pancreatic B and D cell function. [J]. Life Sci,1983,33(18):1779-1786
    [57]Kadowaki S, Norman A W. Dietary vitamin D is essential for normal insulin secretion from the perfused rat pancreas [J]. J Clin Invest,1984,73(3):759-766
    [58]Belan P, Gerasimenko O, Petersen O H, et al. Distribution of Ca2+ extrusion sites on the mouse pancreatic acinar cell surface [J]. Cell Calcium,1997,22(1):5-10
    [59]Belan P V, Gerasimenko O V, Tepikin A V, et al. Localization of Ca extrusion sites in pancreatic acinar cells [J]. J Biol Chem,1996,271(13):7615-7619
    [60]Fixemer T, Wissenbach U, Flockerzi V, et al. Expression of the Ca2+-selective cation channel TRPV6 in human prostate cancer:a novel prognostic marker for tumor progression [J]. Oncogene,2003,22(49): 7858-7861
    [61]Hoenderop J G, Nilius B, Bindels R J. Epithelial calcium channels:from identification to function and regulation [J]. Pfliig Arch Eur J Phy,2003,446(3):304-308
    [62]Muller D, Hoenderop J G, Meij I C, et al. Molecular cloning, tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECAC1) [J]. Genomics,2000,67(1):48-53
    [63]Song Y, Peng X, Porta A, et al. Calcium transporter 1 and epithelial calcium channel messenger ribonucleic acid are differentially regulated by 1,25 Dihydroxyvitamin D3 in the intestine and kidney of mice [J]. Endocrinology,2003,144(9):3885-3894
    [64]Hoenderop J G, Muller D, van Der Kemp A W, et al. Calcitriol controls the epithelial calcium channel in kidney [J]. J Am Soc Nephrol,2001,12(7):1342-1349
    [65]Van Abel M H, van Leeuwen H J, Bindels R. Down-regulation of calcium transporters in kidney and duodenum by the calcimimetic compound NPS R-467 (Abstract). [J]. J Am Soc Nephrol,2003,14:459
    [66]Nordin B E C, Need A G, Morris H A, et al. Evidence for a renal calcium leak in postmenopausal women [J]. J Clin Endocrinol Metab,1991,72(2):401-407
    [67]Prince R L, Smith M, Dick I M, et al. Prevention of postmenopausal osteoporosis:A comparative study of exercise, calcium supplementation, and hormone-replacement therapy [J]. Obstet Gynecol Surv, 1992,47(3):208-211
    [68]Van Abel M, Hoenderop J G, Dardenne O, et al.1,25-Dihydroxyvitamin D3-independent stimulatory effect of estrogen on the expression of ECaCl in the kidney [J]. J Am Soc Nephrol,2002,13(8): 2102-2109
    [69]Weber K, Erben R G, Rump A, et al. Gene structure and regulation of the murine epithelial calcium channels ECaCl and 2 [J]. Biochem Bioph Res Co,2001,289(5):1287-1294
    [70]Leyva M. The role of dietary calcium in disease prevention. [J]. J Okla State Med Assoc,2003,96(6): 272-275
    [71]Dardenne O, Prud'Homme J, Hacking S A, et al. Correction of the abnormal mineral ion homeostasis with a high-calcium, high-phosphorus, high-lactose diet rescues the PDDR phenotype of mice deficient for the 25-hydroxyvitamin D-1[alpha]-hydroxylase (CYP27B1) [J]. Bone,2003,32(4):332-340
    [72]Hoenderop J G, Chon H, Gkika D, et al. Regulation of gene expression by dietary Ca2+in kidneys of 25-hydroxyvitamin D3-1[alpha]-hydroxylase knockout mice [J]. Kidney Int,2004,65(2):531-539
    [73]Hoenderop J G, Dardenne O, van Abel M, et al. Modulation of renal Ca2+transport protein genes by dietary Ca2+ and 1,25-dihydroxyvitamin D3 in 25-hydroxyvitamin D3-1{alpha}-hydroxylase knockout mice [J]. Faseb J,2002,16(11):1398-1406
    [74]Gallin W J, Greenberg M E. Calcium regulation of gene expression in neurons:the mode of entry matters [J]. Curr Opin Neurobiol,1995,5(3):367-374
    [75]Michael D E, George J A. Cell signalling:calmodulin at the channel gate [J]. Nature,1999,399(6732): 107-108.
    [76]Paul Brehm R E. Calcium entry leads to inactivation of calcium channel in paramecium [J]. science, 1978,202(4373):1203-1206
    [77]Numazaki M, Tominaga T, Takeuchi K, et al. Structural determinant of TRPV1 desensitization interacts with calmodulin [J]. Proc Natl Acad Sci U S A,2003,100(13):8002-8006
    [78]Niemeyer B A, Bergs C, Wissenbach U, et al. Competitive regulation of CaT-like-mediated Ca2+ entry by protein kinase C and calmodulin [J]. Proc Natl Acad Sci U S A,2001,98(6):3600-3605
    [79]Lambers T T, Weidema A F, Nilius B, et al. Regulation of the mouse epithelial Ca2+ channel TRPV6 by the Ca2+-sensor calmodulin [J]. J Biol Chem,2004,279(28):28855-28861
    [80]Gentili C, Morelli S, de Boland A R. Characterization of PTH/PTHrP receptor in rat duodenum:effects of ageing [J]. J Cell Biochem,2003,88(6):1157-1167
    [81]Menaa C, Devlin R D, Reddy S V, et al. Annexin Ⅱ increases osteoclast formation by stimulating the proliferation of osteoclast precursors in human marrow cultures [J]. J Clin Invest,1999,103(11): 1605-1613
    [82]Gkika D, Mahieu F, Nilius B, et al.80K-H as a new Ca2+ sensor regulating the activity of the epithelial Ca2+ channel transient receptor potential cation channel V5 (TRPV5) [J]. J Biol Chem,2004,279(25): 26351-26357
    [83]Hirai M, Shimizu N. Purification of two distinct proteins of approximate Mr 80,000 from human epithelial cells and identification as proper substrates for protein kinase C. [J]. Biochem J,1990,270(3): 583-589
    [84]Reid I. Glucocorticoid osteoporosis--mechanisms and management [J]. Eur J Endocrinol,1997,137(3): 209-217
    [85]Rodino M A, Shane E, Herzberg P. Osteoporosis after organ transplantation [J]. Orthop Nurs,1998, 17(5):88
    [86]Stempfle H U, Werner C, Siebert U, et al. The role of tacrolimus (FK506)-based immunosuppression on bone mineral density and bone turnover after cardiac transplantation:a prospective, longitudinal, randomized, double-blind trial with calcitrioll [J]. Transplantation,2002,73(4):547-552
    [87]Andoh T F, Burdmann E A, Fransechini N, et al. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK506 [J]. Kidney Int,1996,50(4):1110-1117
    [88]Mcdiarmid S V, Colonna J O I, Shaked A, et al. A comparison of renal function in cyclosporine A-and FK-506-treated patients after primary orthotopic liver transplantation [J]. Transplantation,1993,56(4): 847-853
    [89]Aicher L, Meier G, Norcross A J, et al. Decrease in kidney calbindin-d 28k Da as a possible mechanism mediating cyclosporine A- and FK-506-induced calciuria and tubular mineralization [J]. Biochem Pharmacol,1997,53(5):723-731
    [90]Nijenhuis T, Hoenderop J G, Bindels R J. Downregulation of Ca2+ and Mg2+ transport proteins in the kidney explains tacrolimus (FK506)-induced hypercalciuria and hypomagnesemia [J]. J Am Soc Nephrol,2004,15(3):549-557
    [91]Fruman D A, Klee C B, Bierer B E, et al. Calcineurin phosphatase activity in T lymphocytes is inhibited by FK 506 and cyclosporin A [J]. Proc Natl Acad Sci U S A,1992,89(9):3686-3690
    [92]Liu J, Farmer J D, Lane W S, et al. Calcineurin is a common target of cyclophilin-cyclosporin A and FKBP-FK506 complexes [J]. Cell,1991,66(4):807-815
    [93]O'Keefe S J, Tamura J I, Kincaid R L, et al. FK-506- and CsA-sensitive activation of the interleukin-2 promoter by calcineurin [J]. Nature,1992,357(6380):692-694
    [94]Steiner S, Aicher L, Raymackers J, et al. Cyclosporine A decreases the protein level of the calcium-binding protein calbindin-D 28kDa in rat kidney [J]. Biochem Pharmacol,1996,51(3): 253-258
    [95]Harding M W, Galat A, Uehling D E, et al. A receptor for the immuno-suppressant FK506 is a cis-trans peptidyl-prolyl isomerase [J]. Nature,1989,341(6244):758-760
    [96]Schreiber S. Chemistry and biology of the immunophilins and their immunosuppressive ligands [J]. Science,1991,251(4991):283-287
    [97]Masumiya H, Wang R, Zhang J, et al. Localization of the 12.6-kDa FK506-binding protein (FKBP12.6) binding site to the NH2-terminal domain of the cardiac Ca2+ release channel (ryanodine receptor) [J]. J Biol Chem,2003,278(6):3786-3792
    [1]Miller S C. Calbium homeostasis and mineral turnover in the laying hen [M]. Whttehead C C. Bone Biology and Skeletal Disorders in Poultry. Abingdon, Carfax.1992
    [2]Sugiyama T, Kusuhara, S. Avian calcium metabolism and bone function [J]. Asian-Aust J Anim Sci, 2001,14:82-90
    [3]杨震,秦大明,谷贵山.新型钙通道TRPV与骨代谢的关系[J].吉林大学学报(医学版),2005,31(4):645-648
    [4]Van Abel M, Hoenderop J G, Bindels R J. The epithelial calcium channels TRPV5 and TRPV6: regulation and implications for disease [J]. Naunyn-Schmiedeberg's Arch Pharmacol,2005,371(4): 295-306
    [5]Bar A. Calcium transport in strongly calcifying laying birds:Mechanisms and regulation [J]. Comp Biochem Physiol A Mol Integr Physiol,2009,152(4):447-469
    [6]Melancon M J, de Luca H F. Vitamin D stimulation of calcium-dependent adenosine triphosphatase in chick intestinal brush borders [J]. Biochemistry,1970,9(8):1658-1664
    [7]Qin X, Klandorf H. Effect of estrogen in relation to dietary vitamin D3 and calcium on activity of intestinal alkaline phosphatase and Ca-ATPase in immature chicks. [J]. Gen Comp Endocrinol,1993, 90(3):318-327
    [8]Qin X, Klandorf H, Porter D W, et al. Estrogen enhancement of Ca, Mg, and Ca-Mg stimulated adenosine triphosphatase activity in the chick shell gland [J]. Gen Comp Endocrinol,1993,89(1):4-10
    [9]Davis W L, Jones R G, Farmer G R, et al. Electron microscopic cytochemical localization of a basolateral calcium adenosine triphosphatase in vitamin D replete chick enterocytes [J]. Anat Rec,1987, 219(4):384-393
    [10]章世元,李燕舞,杨利国,等.鸡D28k钙结合蛋白cDNA的克隆与序列分析[J].扬州大学学报,2004,25(3):5-8.
    [11]Cai Q, Chandler J S, Wasserman RH, et al. Vitamin D and adaptation to dietary calcium and phosphate deficiencies increase intestinal plasma membrane calcium pump gene expression [J]. Proc Natl Acad Sci USA,1993,90(4):1345-1349
    [12]郭晓宇,闫素梅,史彬林,等.维生素A、D对肉鸡血清钙结合蛋白浓度与胫骨和十二指肠组织中钙结合蛋白mRNA表达的影响[J].动物营养学报,2010,22(3):571-578
    [13]Hu Y, Ni Y, Ren L, et al. Leptin is involved in the effects of cysteamine on egg laying of hens, characteristics of eggs, and posthatch growth of broiler offspring [J]. Poult Sci,2008,87(9):1810-1817
    [14]Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2-[Delta][Delta]CT method [J]. Methods,2001,25(4):402-408
    [15]Hurwitz S, Harrison H C, Harrison H E. Effect of Vitamin D3 on the in vitro Transport of Calcium by the Chick Intestine [J]. J Nutr,1967,91(3-Suppl):319-323
    [16]Wilkens M R, Kunert-Keil C, Brinkmeier H, et al. Expression of calcium channel TRPV6 in ovine epithelial tissue [J]. Vet J,2009,182(2):294-300
    [17]Peng J B, Chen X Z, Berger U V, et al. Human calcium transport protein CaTl [J]. Biochem Biophys Res Commun,2000,278(2):326-332
    [18]Nijenhuis T, Hoenderop J G, van der Kemp A W, et al. Localization and Regulation of the Epithelial Ca2+channel TRPV6 in the kidney [J]. J Am Soc Nephrol,2003,14(11):2731-2740
    [19]Wong R G, Norman A W. Studies on the mechanism of action of calciferol. VIII. The effects of dietary vitamin D and the polyene antibiotic, filipin, in vitro, on the intestinal cellular uptake of calcium [J]. J Biol Chem,1975,250(7):2411-2419
    [20]Sugiyama T, Kikuchi H, Hiyama S, et al. Expression and localisation of calbindin D28k in all intestinal segments of the laying hen [J]. Br Poult Sci,2007,48(2):233-238
    [21]Wasserman R, Smith C, Brindak M, et al. Vitamin D and mineral deficiencies increase the plasma membrane calcium pump of chicken intestine [J]. Gastroenterology,1992,102(3):886-894
    [22]Karbach U, Feldmeier H. The cecum is the site with the highest calcium absorption in rat intestine [J]. Dig Dis Sci,1993,38(10):1815-1824
    [23]Bar A. Calcium homeostasis and vitamin D metabolism and expression in strongly calcifying laying birds [J]. Comp Biochem Physiol A:Mol Integr Physiol,2008,151(4):477-490
    [24]Weber K, Erben R G, Rump A, et al. Gene structure and regulation of the murine epithelial calcium channels ECaC1 and 2 [J]. Biochem Biophys Res Commun,2001,289(5):1287-1294
    [25]Van Abel M, Hoenderop J G, van der Kemp A W, et al. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection [J]. Am J Physiol Gastrointest Liver Physiol, 2003,285(1):G78-85
    [26]Van Cromphaut S J, Dewerchin M, Hoenderop J G, et al. Duodenal calcium absorption in vitamin D receptor-knockout mice:Functional and molecular aspects [J]. Proc Natl Acad Sci U S A,2001,98(23): 13324-13329
    [27]Grunder A, Tsang C, Narbaitz R. Effects of vitamin D3 metabolites on physiological traits of White Leghorn hens [J]. Poult Sci,1990,69(7):1204-1208
    [28]Hoenderop J G, Nilius B, Bindels R J. Calcium absorption across epithelia [J]. Physiol Rev,2005,85(1): 373-422
    [29]Lambers T T, Bindels R J, Hoenderop J G. Coordinated control of renal Ca2+ handling [J]. Kidney Int, 2006,69(4):650-654
    [30]Christakos S, Liu Y, Dhawan P, et al. The calbindins:Calbindin-D9K and calbindin-D28K [M]. London: Elsevier Academic Press, Burlington, MA; San Diego, CA,2005.
    [1]Hoenderop J G, van der Kemp A W, Hartog A, et al. Molecular identification of the apical Ca2+ channel in 1,25-Dihydroxyvitamin D3-responsive epithelia [J]. J Biol Chem,1999,274(13): 8375-8378
    [2]Peng J B, Chen X Z, Berger U V, et al. Molecular cloning and characterization of a channel-like transporter mediating intestinal calcium absorption [J]. J Biol Chem,1999,274(32):22739-22746
    [3]Hoenderop J G, Bindels R J. Epithelial Ca2+ and Mg2+ channels in health and disease [J]. J Am Soc Nephrol,2005,16(1):15-26
    [4]Van der Eerden B, Hoenderop J G, de Vries T, et al. The epithelial Ca2+ channel TRPV5 is essential for proper osteoclastic bone resorption. [J]. Proc Natl Acad Sci U S A,2005,102(48): 17507-17512
    [5]Nijenhuis T, Hoenderop J G, Bindels R. TRPV5 and TRPV6 in Ca2+(re)absorption:regulating Ca2+ entry at the gate [J]. Pfliigers Arch Eur J Physiol,2005,451(1):181-192
    [6]Hoenderop J G, Muller D, van der Kemp A W, et al. Calcitriol Controls the Epithelial Calcium Channel in Kidney [J]. J Am Soc Nephrol,2001,12(7):1342-1349
    [7]Muller D, Hoenderop J G, Meij I C, et al. Molecular cloning tissue distribution, and chromosomal mapping of the human epithelial Ca2+ channel (ECaC 1) [J]. Genomics,2000,67(1):48-53
    [8]Ieda T, Takahashi T, Saito N, et al. Changes in parathyroid hormone-related peptide receptor binding in the shell gland of laying hens (gallus domesticus) during the oviposition cycle [J]. Gen Comp Endocrinol,2000,117(2):182-188
    [9]Hoenderop J G, Nilius B, Bindels R J. Molecular mechanism of active Ca2+reabsorption in the distal nephron [J]. Annu Rev Physiol,2002,64(1):529-549
    [10]Hoenderop J, Voets T, Hoefs S, et al. Homo-and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6 [J]. Embo J,2003,22(4):776-785
    [11]van de Graaf S F, Hoenderop J G, Gkikad D, et al. Functional expression of the epithelial Ca2+ channels (TRPV5 and TRPV6) requires association of the S100A 10-annexin 2 complex [J]. Embo J,2003,22(7):1478-1487
    [12]Zhuang L, Peng J B, Tou L, et al. Calcium-selective ion channel, CaTl, is apically localized in gastrointestinal tract epithelia and is aberrantly expressed in human malignancies [J]. Lab Invest, 2002,82(12):1755-1764
    [13]Sugiyama T, Kikuchi H, Hiyama S, et al. Expression and localisation of calbindin D28K in all intestinal segments of the laying hen [J]. Br Poult Sci,2007,48(2):233-238
    [14]Hoenderop J G, Hartog A, Stuiver M, et al. Localization of the epithelial Ca2+ channel in rabbit kidney and intestine [J].J Am Soc Nephrol,2000,11(7):1171-1178
    [15]Loffing J, loffing Cueni D, Valderrabano V, et al. Distribution of transcellular calcium and sodium transport pathways along mouse distal nephron [J]. Am J Physiol Renal Physiol,2001,281(6): F1021-1027
    [16]Christakos S, Liu Y, Dhawan P, et al. The calbindins:Calbindin-D9K and calbindin-D28K. [M]. London:Elsevier Academic Press, Burlington, MA; San Diego, CA,2005
    [1]Miller S C. Calbium homeostasis and mineral turnover in the laying hen [M].Whttehead CC. Bone Biology and Skeletal Disorders in Poultry. Abingdon, Carfax.1992
    [2]Sugiyama T, Kusuhara, S. Avian calcium metabolism and bone function [J]. Asial-Austral J Anim Sci,2001,14:82-90
    [3]Bianco S D, Peng J B, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene [J]. J Bone Miner Res,2007,22(2):274-285
    [4]Lee G S, Jeung E B. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model [J]. Am J Physiol Endocrinol Metab,2007,293(1):E132-138
    [5]Peng J B, Brown E M, Hediger M A. Structural conservation of the genes encoding CaTl, CaT2, and related cation channels [J]. Genomics,2001,76(1-3):99-109
    [6]许多.钙结合蛋白Calbindin-d28k在女性生殖系统表达与变化的研究[D].广州;暨南大学,2006.
    [7]Hirnet D, Olausson J, Fecher-Trost C, et al. The TRPV6 gene, cDNA and protein [J]. Cell Calcium, 2003,33(5-6):509-518
    [8]Kim H J, Lee G S, Ji Y K, et al. Differential expression of uterine calcium transporter 1 and plasma membrane Ca2+ ATPase lb during rat estrous cycle [J]. Am J Physiol Endocrinol Metab,2006, 291(2):E234-241
    [9]Sedmikova M, Rajmon R, Petr J, et al. Ultrastructural localisation of calcium deposits in the mouse ovary [J]. Reprod Fertil Dev,2004,15(8):415-421
    [10]Inpanbutr N. Association between calbindin-D28K and oogenesis in ovaries of chicken embryos in vitro [J]. Am J Vet Res,1994,55(9):1341-1346
    [11]Qiu A, Hogstrand C. Functional characterisation and genomic analysis of an epithelial calcium channel (ECaC) from pufferfish, Fugu rubripes [J]. Gene,2004,342(1):113-123
    [12]Hellwig N, Albrecht N, Harteneck C, et al. Homo- and heteromeric assembly of TRPV channel subunits [J]. J Cell Sci,2005,118(5):917-928
    [13]Hoenderop J G, Nilius B, Bindels R J. Calcium Absorption Across Epithelia [J]. Physiol Rev,2005, 85(1):373-422
    [14]Nijenhuis T, Hoenderop J G, van der Kemp A W, et al. Localization and regulation of the epithelial Ca2+ channel TRPV6 in the kidney [J]. J Am Soc Nephrol,2003,14(11):2731-2740
    [15]Jande S S, Tolnai S, Lawson D E. Immunohistochemical localization of vitamin D-depende nt calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens [J]. Histochemistry,1981,71(1):99-116
    [16]Taylor A N, Wasserman R H. Vitamin D3-induced calcium-binding protein:Partial purification, electrophoretic visualization, and tissue distribution [J]. Arch Biochem Biophys,1967,119: 536-540
    [17]Coty W A, me Conkey C L. A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland [J]. Arch Biochem Biophys,1982,219(2):444-453
    [18]Lundholm C E. Effect of p-p'-DDE administered in vivo and in vitro on Ca2+binding and Ca2+-Mg2+-ATPase activity in egg shell gland mucosa of ducks [J]. Acta Pharmacol Toxicol,1982, 50(2):121-129
    [19]Grunder A, Tsang C, Narbaitz R. Effects of vitamin D3 metabolites on physiological traits of White Leghorn hens [J]. Poult Sci,1990,69(7):1204-1208
    [20]Wasserman R H, Smith C A, Smith C M, et al. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen [J]. Histochem Cell Biol,1991,96(5): 413-418
    [21]Wesley Pike J, Alvarado R H. Ca2+-Mg2+-activated ATPase in the shell gland of Japanese quail (coturnix coturnix Japonica) [J]. Comp Biochem Physiol B Comp Biochem,1975,51(1):119-125
    [1]Eastin W C, Spaziani E. On the control of calcium secretion in the avian shell gland (uterus) [J]. Biol Reprod,1978,19(3):493-504
    [2]Eastin W C, Spaziani E. On the mechanism of calcium secretion in the avian shell gland (uterus) [J]. Biol Reprod,1978,19(3):505-518
    [3]Cohen I, Hurwitz S. Intracellular pH and electrolyte concentration in the uterine wall of the fowl in relation to shell formation and dietary minerals [J]. Comp Biochem Physiol Part-A Physiol, 1974,49(4):689-696
    [4]Hurwitz S, Cohen I, Bar A. The transmembrane electrical potential difference in the uterus (shell gland) of birds [J]. Comp Biochem Physiol,1970,35(4):873-878
    [5]Pearson T, Goldner A. Calcium transport across avian uterus. I. Effects of electrolyte substitution [J]. Am J Physiol,1973,225(6):1508-1512
    [6]Bar A. Calcium transport in strongly calcifying laying birds:mechanisms and regulation [J]. Comp Biochem Physiol Part-A Mol Integr Physiol,2009,152(4):447-469
    [7]Schraer H, Schraer R. Calcium transfer across the avian shell gland [M].New York,1971
    [8]Corradino R, Wasserman R, Pubols M, et al. Vitamin D3 induction of a calcium-binding protein in the uterus of the laying hen [J]. Arch Biochem Biophys,1968,125(1):378-380
    [9]Wasserman R H, Smith C A, Smith C M, et al. Immunohistochemical localization of a calcium pump and calbindin-D28k in the oviduct of the laying hen [J]. Histochemistry,1991,96(5): 413-418
    [10]Wesley Pike J, Alvarado R H. Ca2+--Mg2+-activated ATPase in the shell gland of Japanese quail (Coturnix coturnix Japonica) [J]. Comp Biochem Physiol Part B:Comp Biochem,1975,51(1): 119-125
    [11]Coty W A, Mc Conkey C L. A high-affinity calcium-stimulated ATPase activity in the hen oviduct shell gland [J]. Arch Biochem Biophys,1982,219(2):444-453
    [12]郭晓宇,闫素梅,史彬林,等.维生素A、D对肉鸡血清钙结合蛋白浓度与胫骨和十二指肠组织中钙结合蛋白mRNA表达的影响[J].动物营养学报,2010,22(3):571-578
    [13]Hu Y, Ni Y, Ren L, et al. Leptin is involved in the effects of cysteamine on egg laying of hens, characteristics of eggs, and posthatch growth of broiler offspring [J]. Poult Sci,2008,87(9): 1810-1817
    [14]Livak K J, Schmittgen T D. Analysis of relative gene expression data using Real-time quantitative PCR and the 2-[Delta] [Delta]CT method [J]. Methods,2001,25(4):402-408
    [15]Bianco S D, Peng J B, Takanaga H, et al. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene [J]. J Bone Miner Res,2007,22(2): 274-285
    [16]Choi Y, Seo H, Kim M, et al. Dynamic expression of calcium-regulatory molecules, TRPV6 and S100G, in the uterine endometrium during pregnancy in pigs [J]. Biol Reprod,2009,81(6): 1122-1130
    [17]Lee G S, Jeung E B. Uterine TRPV6 expression during the estrous cycle and pregnancy in a mouse model [J]. Am J Physiol Endocrinol Metab,2007,293(1):E132-138
    [18]Taylor A N, Wasserman R H. Vitamin D3-induced calcium-binding protein:Partial purification, electrophoretic visualization, and tissue distribution [J]. Arch Biochem Biophys,1967, 119:536-540
    [19]Christakos S, Liu Y, Dhawan P, et al. The calbindins:Calbindin-D9K and calbindin-D28K·[M]. London:Elsevier Academic Press, Burlington, MA; San Diego, CA,2005
    [20]Lambers T T, Mahieu F, Oancea E, et al. Calbindin-D28K dynamically controls TRPV5-mediated Ca2+ transport [J]. Embo J,2006,25(13):2978-2988
    [21]Christakos S, Barletta F, Huening M, et al. Vitamin D target proteins:function and regulation [J]. J Cell Biochem,2003,88(2):238-244
    [22]Christakos S, Dhawan P, Benn B, et al. Vitamin D:molecular mechanism of action [J]. Ann NY Acad Sci,2007,1116:340-348
    [23]Lippiello L, Wasserman R. Fluorescent antibody localization of the vitamin D-dependent calcium-binding protein in the oviduct of the laying hen [J]. J Histochem Cytochem,1975,23(2): 111-116
    [24]Jande S S, Tolnai S, Lawson D E. Immunohistochemical localization of vitamin D-dependent calcium-binding protein in duodenum, kidney, uterus and cerebellum of chickens [J]. Histochemistry,1981,71(1):99-116
    [25]Nys Y, Mayel-Afshar S, Bouillon R, et al. Increases in calbindin D 28K mRNA in the uterus of the domestic fowl induced by sexual maturity and shell formation [J]. Gen Comp Endocrinol,1989, 76(2):322-329
    [26]Bar A, Striem S, Vax E, et al. Regulation of calbindin mRNA and calbindin turnover in intestine and shell gland of the chicken [J]. Am J Physiol Regul Integr Comp Physiol,1992,262(5): R800-805
    [27]Bar A, Vax E, Striem S. Relationships between calbindin (Mr 28,000) and calcium transport by the eggshell gland [J]. Comp Biochem and Physiol Part A:Physiol,1992,101(4):845-848
    [28]Nys Y, Baker K, Lawson D E. Estrogen and a calcium flux dependent factor modulate the calbindin gene expression in the uterus of laying hens [J]. Gen Comp Endocrinol,1992,87(1): 87-94
    [29]Ieda T, Saito N, Ono T, et al. Effects of presence of an egg and calcium deposition in the shell gland on levels of messenger ribonucleic acid of CaBP-D28K and of Vitamin D3 receptor in the shell gland of the laying hen [J]. Gen Comp Endocrinol,1995,99(2):145-151
    [30]Borke J L, Caride A, Verma A K, et al. Calcium pump epitopes in placental trophoblast basal plasma membranes [J]. Am J Physiol Cell Physiol,1989,257(2):C341-346
    [31]Borke J L, Caride A, Verma A K, et al. Plasma membrane calcium pump and 28-kDa calcium binding protein in cells of rat kidney distal tubules [J]. Am J Physiol Renal Physiol,1989,257(5): F842-849
    [32]Borke J L, Caride A, Verma A K, et al. Cellular and segmental distribution of Ca2+-pump epitopes in rat intestine [J]. Pflugers Arch Eur J Physiol,1990,417(1):120-122
    [1]Gosling P. Analytical is clinical biochemistry:calcium measurement [J]. Ann Clin Biochem,1986, 23(Pt2):146-156
    [2]叶应妩,王毓三.全国临床检验操作规程第二版[M].南京:东南大学出版社,1997
    [3]Tietz N W, Shaw L M. IFCC methods for the measurement of catalytic concentration of enzymes Part 5. IFCC method for alkaline phosphatase (orthophosphoric-monoester phosphohydrolase, alkaline optimum, EC 3.1.3.1) [J]. J Clin Chem Clin Biochem,1983,11(21):731-748
    [4]伍汉文.中华医学杂志[J],1989,69(10):596-598
    [5]尹伯元,邓尚平,周甲贤.放射免疫分析在医学中的应用[M].北京:原子能出版社,1991
    [6]蔡锡麟.临床放射免疫学[M].北京:原子能出版社,1994
    [7]Nys Y, Nguyen T M, Williams J, et al. Blood levels of ionized calcium, inorganic phosphorus, 1,25-dihydroxycholecalciferol and gonadal hormones in hens laying hard-shelled or shell-less eggs [J]. J Endocrinol,1986,111(1):151-157
    [8]van de Velde J P, van Ginkel F C, Vermeiden J P. Patterns and relationships of plasma calcium, protein and phosphorus during the egg laying cycle of the fowl and the effect of dietary calcium [J]. Br Poul Sci,1986,27(3):421-433
    [9]Velde J P, Loveridge N, Vermeiden J P. Parathyroid hormone responses to calcium stress during eggshell calcification [J]. Endocrinology,1984,115(5):1901-1904
    [10]Biliezikian LGRLG, Rodan G A. Principles of bone biology [M]. London:Academic Press,2002.
    [11]Alexandrakis M G, Passam F H, Malliaraki N, et al. Evaluation of bone disease in multiple myeloma:a correlation between biochemical markers of bone metabolism and other clinical parameters in untreated multiple myeloma patients [J]. Clinica Chimica Acta,2002,325(1-2): 51-57
    [12]周振雷.骨疏康防治笼养蛋鸡骨质疏松症的效果及其机理研究[D].南京;南京农业大学,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700