用户名: 密码: 验证码:
云母型含钒石煤活化焙烧提钒工艺及钒转移行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钒以其优良的理化和机械性能,在冶金、宇航、化工和新能源等领域应用广泛。含钒石煤作为一种重要的钒矿资源,在我国储量丰富,从石煤中提取钒是获得V2O5的重要途径。云母型含钒石煤是主要的石煤类型,其具有分布广和储量大的特点,其中的钒多数以类质同象形式存在于云母晶格中,结构难以破坏,是一种典型的难处理含钒矿石。目前关于云母型含钒石煤的提钒过程多集中于工艺方面研究,而欠缺相应的机理分析;同时提钒工艺也存在水浸率低、环境污染严重或酸浸过程酸耗量高等问题。
     因此,本文以湖北某地云母型含钒石煤为研究对象,通过寻求新型焙烧活化剂,显著降低NaCl用量并提高钒的水浸率;提出云母型含钒石煤活化焙烧-联合浸出工艺路线,降低了酸耗量并提高了钒浸出率;采用离子交换法处理混合浸出溶液,具有操作简单和提高钒回收率的特点。同时,对云母型含钒石煤活化焙烧过程中矿相变化和热力学进行了深入分析,确定钒的转移行为;探讨并研究了联合浸出过程主要元素和矿物的溶解规律,确定联合浸出的作用机理;分析并完善了联合浸出动力学及钒溶液的热力学理论,有效地指导浸出、富集及沉钒作业。
     石煤提钒工艺研究表明:该云母型含钒石煤的最佳提钒工艺参数为:在焙烧温度为950℃,时间为60min,添加4%NaCl和8%K2SO4的条件下活化焙烧,焙烧熟样在温度为90℃、液固比为2.5mL/g条件下水浸45min,水浸渣经1%H2SO4在温度为30℃、液固比为2.0mL/g条件下酸浸60min,钒的水浸率为56%,酸浸率为16%,总浸率达72%;水浸液与酸浸液直接合并后,混合浸出溶液经D201树脂离子交换-酸性铵盐沉钒-煅烧脱氨作业,可获得纯度大于99%的V2O5产品,钒的回收率为70.1%。
     石煤活化焙烧理论研究表明:云母型含钒石煤添加NaCl和K2SO4活化焙烧,NaCl的主要作用是加速含钒云母的品格结构破坏;K2SO4的主要作用是焙烧过程中其分解产物SO2易与含钒石煤中方解石的分解产物CaO反应生成CaSO4,从而抑制钙长石和酸溶性Ca(VO3)2的生成;另外NaCl与K2SO4的分解产物Na2O和K2O可与V2O5, A12O3、SiO2反应生成钾钠长石及水溶性的KVO3和NaVO3,从而提高钒的水浸率。焙烧热力学分析说明K2SO4分解产物SO2可与CaO反应生成CaSO4,且CaSO4的△GTθ低于钙长石,故此其会抑制钙长石矿物的生成,同时会促进钾钠长石的形成;3CaO·V2O5和Na2O·V2O5的△GTθ相近,说明若云母型含钒石煤中钙含量较高,则在焙烧过程中该两种钒酸盐可同时生成。
     联合浸出过程机理分析结果表明:水浸过程是水溶性钒酸盐和其他盐类的溶解过程;水浸渣的酸浸过程包括两个部分,当硫酸浓度在1%~10%时,酸浸过程是酸溶性的钒酸钙等盐类的溶解过程;当硫酸浓度提高至20%时,酸浸过程为V(Ⅳ)氧化物和长石类矿物的化学反应过程。石煤活化焙烧熟样的颗粒形貌较为规则,多以类球体形貌存在;经水浸作业后,水浸渣呈疏松多孔形貌;水浸渣经硫酸浸出后,酸浸渣颗粒粒径明显降低,且颗粒形貌更不规则。
     联合浸出动力学研究表明:水浸过程包括两个控制步骤,开始受未反应收缩核模型中的内扩散步骤控制,然后由液膜非稳态扩散模型控制;酸浸过程开始由未反应收缩核的内扩散和化学反应联合控制,建立经验动力学模型为2ln(1-η)/7+[(1-η)-2/7-1]=Kt,然后由液膜非稳态扩散模型控制,各种化学反应趋于稳定。
     含钒溶液热力学研究表明:V(Ⅳ)和V(Ⅴ)是浸出溶液中钒的主要存在价态,VO2+和VO2+是其酸性条件下的主要存在形式;碱性条件下V(Ⅳ)会以HV2O5-或V4O92-形成存在,当V(Ⅴ)溶解浓度较低时,其以简单的H2VO4-\HVO42-和VO43-等阴离子形式存在,当V(Ⅴ)溶解浓度较高时,其以复杂的V4O124-、H3V2O7-、 HV6O173-、H2V6O172-和H2V10O284-等形式存在。在硫酸介质中,会有新型含钒物种如VSO4+、VOSO4和VO2SO4-的形成,同时会改变原来各物种的稳定存在区间,提高钒浸出的可能性;其为选取离子交换和酸性铵盐沉钒作为浸出液后续处理工序提供了理论基础和科学依据。
The vanadium has been widely applied in metallurgical industry, astronavigation, chemical industry and new energy due to its special physical, chemical and mechanical properties. As a kind of important vanadium mineral resources, the stone coal is distributed widely in China, so it is an important method of extracting V2O5from stone coal. The stone coal of which the vanadium exists in the muscovite is a typical kind because of its wide distribution and large reserves, where the vanadium mostly presents in the form of Ⅴ(Ⅲ) and V(IV) embedded in the crystal lattice of aluminosilicate minerals. This lattice structure is very hard to be broken down, leading to high difficulty for the extraction of vanadium from the stone coals. At present, the relevant technology researches mainly focus on the process of vanadium extraction from stone coal, but not the corresponding mechanism analysis. Furthermore, the low water leaching rate of vanadium, environment pollution and high acid consumption of leaching process are existed in the process.
     Therefore, this kind of stone coal collected from Hubei was used as the research object in this article. The adding amount of sodium chloride could significantly reduce and the water leaching rate of vanadium could increase by using new roasting activators. The process of activating roasting-cooperating leaching-concentration and precipitation of vanadium was investigated in order to decrease the acid consumption and increase the leaching rate of vanadium. The operation was simple and the vanadium recovery might improve with the method of ion exchange for processing the mixed leaching solution. Furthermore, the mechanism between stone coal and additives and the transfer rule of vanadium during the roasting process were confirmed with detailed analysis of phase change and thermodynamics. The mechanism of cooperating leaching was determined by exploring and studying the dissolved law of main elements and minerals. The related leaching kinetics and thermodynamics of vanadium were investigated and improved to effectively guide the process of leaching, enrichment and precipitation.
     The results of vanadium extraction technology show that the water and acid leaching rate of vanadium were56%and16%, furthermore, the total leaching rate of vanadium was more than72%under the conditions of roasting with adding4% sodium chloride and8%potassium sulfate for60min at950℃, and then leaching with water for45min at90℃with the solid-liquid ratio of2.5mL/g. The water residue was leached by using1%H2SO4for60min at30℃with the solid-liquid ratio of2.0mL/g. The vanadium recovery rate could reach70.1%and the purity of V2O5production was more than99%with the ion exchange using D201resin and vanadium precipitation using acid ammonium salt for the mixed leaching solution.
     The results of mechanism analysis on roasting activation show that the main effect of NaCl was to accelerate damaging lattice structure of muscovite. The microcline and anhydrite appeared due to the reaction of SO2and CaO, and then the reaction of Na2O, K2O and V2O5, Al2O3, SiO2during roasting process with using K2SO4, which restrained and decreased the generation of anorthite and increased the water-soluble vanadate compound to enhance the water leaching rate of vanadium. The analysis of roasting thermodynamic shows that the SO2decomposed from K2SO4could react with CaO to generate CaSO4, the△GTθ of which was lower than calcium feldspar; therefore it would inhibit the generation of calcium feldspar and promote the formation of sodium potassium feldspar. The similar AGTθ of3CaO-V2O5and Na2O·V2O5suggests that the two kinds of vanadate could be generated together in the roasting process with high content of calcium in stone coal.
     The results of mechanism analysis on the leaching process show that the water leaching process of vanadium included the dissolved process of water-soluble vanadate and others. The dissolved process of acid-soluble vanadate and others could take place by aicd leaching with1%-10%H2SO4. The Ⅴ(Ⅳ) could dissolve and several kinds of feldspar might be destroyed with20%H2SO4. The particle morphology of roasted sample was regular and existed in sphere shape. The water leaching slag was porous morphology. The particle morphology of acid leaching slag was more irregular and the particle size was obviously decreased.
     The results of kinetics on cooperating leaching show that the control step about water leaching kinetics of roasted stone coal was divided into two stages, internal diffusion control and liquid film unsteady control. The acid leaching process was mainly affected by joint control of the chemical reaction and internal diffusion. Furthermore, the leaching kinetics for21n(1-x)/7+[(1-x)-7-1]=Kt was established. And then it was controlled by liquid membrane unsteady diffusion model, meanwhile, the chemical reactions were basically completed and stable.
     The thermodynamics of vanadium solution indicate that Ⅴ(Ⅳ) and V(V) were the main existence valence vanadium in leaching solution. VO2+and VO2+were the main forms under acidic condition, but Ⅴ(Ⅳ) would form HV2O5-and V4O92-under alkaline conditions. When the concentration of dissolved V(V) was low, the simple forms such as H2VO4-, HVO42-and VO43-could appear. While the concentration of dissolved V(V) was high, the complex forms such as V4O124-, H3V2O7-, H2V6O172-and H2V10O284-would generate. In sulfuric acid medium, the new vanadium species such as VSO4+, VOSO4and VO2SO4-could form, which would change the original stability range of the species, so the possibility of vanadium leaching was improved. The thermodynamics provided the theoretical foundation and scientific basis for ion exchange and vanadium precipitation with ammonium saltammonium under acid medium as the subsequent process of leaching solution.
引文
[1]《有色金属提取冶金手册》编辑委员会.有色金属提取冶金手册:稀有高熔点金属[M].北京:冶金工业出版社,2002:17-23.
    [2]刘世森.石煤提钒工艺评述[J].工程设计与研究,1995,90:12-13.
    [3]包申旭,张一敏,刘涛等.全球钒的生产、消费及市场分析[J].中国矿业,2009,18(7):12-15.
    [4]荣华.日本开发大容量钒二次电池[J].有色与稀有金属国外动态,1995,(11):14-16.
    [5]漆明鉴.从石煤中提钒现状及前景[J].湿法冶金,1999,4(12):1-10.
    [6]段炼,田庆华,郭学益.我国钒资源的生产及应用研究进展[J].湖南有色金属,2006,22(6):17-22.
    [7]Zhang, Y.M., Bao, S.X., Liu, T., et al. The technology of extracting vanadium from stone coal in China:History, current status and future prospects[J]. Hydrometallurgy,2011,109:116-124.
    [8]Moskalyk, R.R., Alfantazi, A.M. Review processing of vanadium[J]. Minerals Engineering, 2003,16:793-805.
    [9]刘景槐,牛磊.湖南怀化会同地区含钒石煤提钒与资源综合利用[J].有色金属工程,2012,(4):31-35.
    [10]齐小鸣.钒消费前景看好-国内外钒资源、生产和市场预测[J].世界有色金属,2008,(5):38-41.
    [11]李学字,林浩宇.石煤钒矿加工生产V2O5技术现状与展望[J].化工矿物与加工,2011,(4):38-40。
    [12]王忠,王军.国内外五氧化二钒市场状况与分析[J].矿冶工程,2007,16(2):47-51.
    [13]许国镇,司徒安力,陈农等.湖北杨家堡石煤中钒的价态研究[J].地球化学,1984,4:379-388.
    [14]许国镇,夏华,戈逦锷.江西皈大石煤中钒的价态初步研究[J].矿产综合利用,1983,4:39-44.
    [15]许国镇,戈迺锷,谢朗等.浙江某地石煤中钒的价态研究[J].过程工程学报,1984,3:37-44.
    [16]许国镇.我国南方石煤中钒价态研究的概况及其意义[J].矿产综合利用,1984,3:21-28.
    [17]许国镇,夏华,戈迺锷等.湖南岳阳石煤中钒的价态研究[J].稀有金属,1988,1:1-5.
    [18]许国镇,夏华,李权.湖北崇阳石煤中钒的价态分配[J].北京钢铁学院学报,1988,10(2):256-262:
    [19]Hu Y.J., Zhang Y.M., Bao S.X., et al. Effects of the mineral phase and valence of vanadium on vanadium extraction from stone coal[J]. International Journal of Minerals, Metallurgy and Materials,2012,19(10):893-898.
    [20]许国镇,陈波珍,韩晓梅等.黄山石煤中钒价态及提钒技术研究[J].有色金属(冶炼部分),1994,1:32-35.
    [21]Liu Y.H., Yang C., Li P.Y., et al. A new process of extracting vanadium from stone coal[J]. International Journal of Minerals, Metallurgy and Materials,2010,17(4):381-388.
    [22]惠学德,王永新,吴振祥.石煤提钒工艺的研究应用现状[J].中国有色冶金,2011,(2):10-16.
    [23]王学文,王明玉.石煤提钒工艺现状及发展趋势[J].钢铁钒钛,2012,33(1):8-13.
    [24]林海玲,范必威.方山口石煤提钒焙烧相变机理的研究[J].稀有金属,2001,25(4):273-277.
    [25]朱晓波,张一敏,刘涛等.石煤提钒配煤焙烧试验研究[J].矿冶工程,2010,30(1):51-54.
    [26]许国镇.NaCl在石煤提钒中的作用[J].矿冶工程,1988,8(4):44-47.
    [27]胡杨甲,张一敏,刘涛等.回转窑动态氧化焙烧石煤提钒研究[J].矿冶工程,2011,31(1):70-72.
    [28]Chen T.J., Zhang Y.M., Song S.X. Improved extraction of vanadium from a Chinese vanadium-bearing stone coal using a modified roast-leach process[J]. Asia-Pacific Journal of Chemical Engineering,2010,5(5):778-784.
    [29]彭声谦,许国镇.石煤提钒中钠盐的作用[J].西南工学院学报,1990,4(4):97-110.
    [30]Wang M.Y., Wang X.W., Zhang L.F., et al. Effect of vanadium occurrence state on the choice of extracting vanadium technology from stone coal[J]. Rare Metals,2008,27(2):112-115.
    [31]许国镇,尹光衡,张秀荣.安徽黄山石煤烧结包裹与钒转化的研究[J].矿产综合利用,1992,(4):4-7.
    [32]许国镇,王锐兵.八都、浙川石煤烧结包裹与钒转化的研究[J].稀有金属,1994,18(6):422-427.
    [33]许国镇,张秀荣,尹光衡.江西玉山石煤烧结包裹与钒转化的研究[J].现代地质,1993,7(1):109-115.
    [34]包申旭,张一敏,胡杨甲等.石煤焙烧过程中矿相与钒价态的变化及对钒浸出的影响[J].矿冶工程,2012,32:90-92.
    [35]刘涛,张一敏,黄晶等.湖北某地云母型石煤回转窑焙烧提钒研究[J].矿冶工程,2012,32:97-99。
    [36]韩诗华,张一敏,包申旭等.湖北某高钙低品位含钒石煤钠化焙烧试验研究[J].金属矿山,2012,(9):83-86.
    [37]李中军,庞锡涛,刘长让.淅川钒矿钠化焙砂浸出工艺条件研究[J].河南化工,1992,10:10-12.
    [38]刘建朋,张一敏,陈铁军等.石煤提钒水浸过程的动力学研究[J].有色冶金,2008,4:15-17.
    [39]汪平,冯雅丽,李浩然等.采用氧化焙烧-酸浸法从高碳石煤中提钒试验研究[J].中南大学学报(自然科学版),2011,42(10):2917-2921.
    [40]汪平,冯雅丽,李浩然等.高碳石煤流态化氧化焙烧提高钒的浸出率[J].中国有色金属学报,2012,22(2):566-571.
    [41]何东升,秦芳,徐雄依.石煤酸浸过程酸浓度与电位变化[J].现代矿业,2011,(12):12-14.
    [42]何东升.石煤型钒矿焙烧浸出过程的理论研究[D].长沙:中南大学,2009.
    [43]米玺学.无盐焙烧法提取石煤钒矿中V2O5新工艺研究[J].科技创新导报,2012,(5):19-20.
    [44]岑可法.燃烧理论及污染控制[M].北京:机械工业出版社,2004:371-372.
    [45]何东升,徐雄依,秦芳等.石煤钒矿焙烧试验研究[J].现代矿业,2011,(10):15-17.
    [46]麦毅,魏昶,孙毅等.石煤氧化矿酸浸提钒研究[J].中国有色冶金,2010,6:63-67.
    [47]李洪柱.湿法冶金学[M].长沙:中南大学出版社,2002:15-20,394400.
    [48]杨伯和.铀矿加工工艺学[M].北京:核工业北京化工冶金研究院,2002:139-151,120-121,162-164.
    [49]廖世明,柏谈论.国外钒冶金[M].北京:冶金工业出版社,1985:121-143.
    [50]陈家墉.湿法冶金手册[M].北京:冶金工业出版社,2005:1840,319-329.
    [51]蔡晋强,巴陵.石煤提钒的几种新工艺[J].矿产保护与利用,1993,5:30-33.
    [52]危青,戴子林,李桂英等.湖北某石煤湿法浸钒试验[J].金属矿山,2012,(9):87-89.
    [53]邓庆云,刘松英.石煤氧化焙烧-酸浸-离子交换提钒新工艺的试验研究[J].稀有金属与硬质合金,1993,115:27-32.
    [54]Li X.S., Xie B. Extraction of vanadium from high calcium vanadium slag using direct roasting and soda leaching[J]. International Journal of Minerals, Metallurgy and Materials,2012, 19(7):595-601.
    [55]潘勇,于吉顺,吴红丹.石煤提钒的工艺评价[J].矿业快报,2007,4:10-12.
    [56]常娜,顾兆林,李云.石煤提钒浸出工艺研究[J].无机盐工业,2006,38(7):57-59.
    [57]李志伟,宋翔宇,张建乐.河南某钒矿湿法提取五氧化二钒试验研究[J].矿冶工程,2009,29(3):33-36.
    [58]林海玲,范必威,庾化龙等.石煤中影响钒转浸率的主要因素研究[J].成都理工学院学报,1999,26(3):317-320.
    [59]魏昶,吴惠玲,樊刚等.不同含钒品位石煤常压酸浸[J].有色冶金,2009,(6):2-5.
    [60]曹耀华,杨绍文,高照国等.某钒矿酸法提钒新工艺试验研究[J].矿产综合利用,2008,(5):3-6.
    [61]魏昶,麦毅,樊刚等.低品位含钒石煤酸浸提钒工艺研究[J].矿产综合利用,2010,(2):12-18.
    [62]何东升,瞿燕华,冯其明等.石煤氢氟酸浸钒试验研究[J].金属矿山,2011,(7):90-92.
    [63]孙德四,孙剑奇,张贤珍.硅质石煤钒矿无污染氧化剂氧化-酸浸法提钒工艺研究[J].有色金属,2011,63(2):175-178.
    [64]He D.S., Feng Q.M., Zhang, G., et al. Study on leaching vanadium from roasted residue of stone coal[J]. Minerals and Metallurgical Processing,2008,25(4):181-184.
    [65]谢桦.广西中部地区石煤提钒工艺研究[J].广东化工,2011,38(3):226-228.
    [66]Amer, A.M. Hydrometallurgical processing of Egyptian black shale of the Quseir-Safaga region[J]. Hydrometallurgy,1994,36(1):95-107.
    [67]Chen, X.Y., Lan, X.Z., Zhang, Q.L., et al. Leaching vanadium by high concentration sulfuric acid from stone coal[J]. Transaction of Nonferrous Metals Society of China,2010,20:123-126.
    [68]Gao, Y.M. Determining vanadium content in vanadium-bearing slag with ferrous iron volumetric method[J]. Ferro-alloys,2003,3:44-46.
    [69]Holloway, P. C., Etsell, T. H. Process for the complete utilization of oil sands fly ash[J]. Canadian Metallurgical Quarterly,2006,45(1):25-32.
    [70]Li, M.T., Wei, C., Qiu, S., et al. Kinetics of vanadium dissolution from black shale in press acid leaching[J]. Hydrometallurgy,2010,104:193-200.
    [71]Li, M.T., Wei, C., Fan, G, et al. Pressure acid leaching of black shale for extraction of vanadium[J]. Transaction of Nonferrous Metals Society of China,2010,20:112-117.
    [72]Liang, J.L., Liu, H.J., Shi, W.G A study of a new technology leaching of vanadium ores with hydrometallurgy[J]. Mining Magazine,2006,15(7):64-66.
    [73]Lu, Z.L. Investigation and industrial practice on extraction of V2O5 from stone coal containing vanadium by acid process[J]. Hydrometallurgy,2002,21(4):175-183.
    [74]Aarabi-Karasgani. M., Rashchi. F., Mostoufi. N., et al. Leaching of vanadium from LD converter slag using sulfuric acid[J]. Hydrometallurgy,2010,102:14-21.
    [75]Vitolo, S., Seggiani, M. Recovery of vanadium from heavy oil and orimulsion fly ash[J]. Hydrometallurgy,2000,57(1/2):141-149.
    [76]Wang, M.Y., Xiao, L.S., Li, Q.Q., et al. Leaching of vanadium from stone coal with sulfuric acid[J]. Rare Metals,2009,28(1):1-4.
    [77]Wang, M.Y., Wang, X.W. Research status and prospect of vanadium leaching process from stone coal[J]. Rare Metals,2010,34(1):90-97.
    [78]Wei, C., Li, M.T., Fan, G. The study on main factors effect of extracting vanadium from stone-coal containing vanadium by acid leaching with oxygen pressurefJ]. Rare Metals,2007,31: 28-31.
    [79]Xiao, Q.G, Chen, Y, Gao, Y.Y., et al. Leaching of silica from vanadium-bearing steel slag in sodium hydroxide solution[J]. Hydrometallurgy,2010,104:216-221.
    [80]Xiong, R.Y., Zhang, X.L. The process of extracting vanadium pentoxide from bone coal and the pollution treatment measures[J]. Environmental Protection Science and Technology,2010, 16(3):26-29.
    [81]Zhou, X.Y., Li, C.L., Li, J., et al. Leaching of vanadium from carbonaceous shale[J]. Hydrometallurgy,2009,99:97-99.
    [82]Babu M.N., Sahu K.K., Pandey B.D. Zinc recovery from sphalerite concentrate by direct oxidative leaching with ammonium sodium and potassium persulphates[J]. Hydrometallurgy, 2002,64(2):119-129.
    [83]Zhang, X., Fei, R., Goorsky, M.S., et al. Study of the initial stage of electroless Ni deposition on Si substrates in aqueous alkaline solution[J]. Surface and Coatings Technology,2006, (6): 2724-2732.
    [84]Li, W., Zhang, Y.M., Huang, J., et al. Separation and recovery of sulfuric acid from acidic vanadium leaching solution by diffusion dialysis[J]. Separation and Purification Technology,2012, 96:44-49.
    [85]Wang, Y.F., Lin, F., Pang, W.Q. Ammonium exchange in aqueous solution using Chinese natural clinoptilolite and modified zeolite[J]. Journal of Hazardous Materials,2006, (12):1-5. [86] Blair Burwell. Extractive Metallurgy of Vanadium[J]. Journal of Metals,1991,8:12-14.
    [87]Liu A.H., Li L.S., Yu L. Technology of Vanadium Extraction from V-bearing Solid Wastes and Its Prospect[J]. Metal Mine,2003,32:61-64.
    [88]张国范,闰继武,刘琨等.石煤脱硅渣中钒的浸出动力学[J].有色金属(冶炼部分),2012,(6):1-3.
    [89]Zhou, X.J., Wei, C., Xia,W.T., et al. Dissolution kinetics and thermodynamic analysis of vanadium trioxide during pressure oxidation[J]. Rare Metals,2012,31(3):296-301.
    [90]Xiao, X.Y., Yang, M., Guo, Z.H., et al. Permissible value for vanadium in alliticudic ferrisols based on physiological responses of green chinese cabbage and soil microbes[J]. Biological Trace Element Research,2012,145:225-232.
    [91]Zhu, X.B., Zhang, Y.M., Huang, J., et al. A kinetics study of multi-stage counter-current circulation acid leaching of vanadium[J]. International Journal of Mineral Processing,2012, 114-117:1-6.
    [92]高照国,曹耀华,刘红召等.从某低品位石煤钒矿中浸出钒的工艺研究[J].湿法冶金,2012,31(1):37-44.
    [93]Martahan, S., Alan, P.P. The Chemistry of vanadium losseein the alkali-roast process[J]. Australian Institute of Mining and Metallurgy,1996,24:76-79.
    [94]Zou, X.Y., Ouyang, Y.Z., Peng, Q.J. Study on the process of producing vanadium pentoxide from stone coal vanadium mine by no-salt-roasting and acid leaching[J]. Chemistry World,2001, (3):117-119.
    [95]Liu, A.H., Li, L.S.,Yu, L. Technology of Vanadium Extraction from V-bearing Solid Wastes and Its Prospect[J]. Metal Mine,2003:61-64.
    [96]Li, G.C. Environmentally friendly chemical route to vanadium oxidsingle crystal-line nanobelts as a cathode material for lithium-ion batteries[J]. Journal of Physical Chemistry,2006, 110:9383-9386.
    [97]Maxym, V., Ronny, N. Preparation, characterization and catalytic aerobic oxidation by a vanadium phosphonate mesoporous material constructed from a dendritic tetraphosphonate[J]. Chemistry of Materials,2006, (18):2781-2783.
    [98]Moises, C. Phase transformations in meso structured vanadium pentoxides[J]. Catalysis Today,2003,78:303-310.
    [99]Zarate-Gutierrez, R., Lapidusb, GT., Morales, R.D. Pressure leaching of a lead-zinc-silver concentrate with nitric acid at moderate temperatures between 130 and 170℃[J]. Hydrometallurgy,2010,104:8-13.
    [100]高峰,石美莲,周再兴等.湘西含钒石煤提钒工艺研究[J].矿冶工程,2011,31(3):93-96.
    [101]田宗平,邓圣为,曹健等.石煤钒矿直接硫酸浸出试验研究[J].湖南有色金属,2012,28(3):17-21.
    [102]何东升,徐雄依,池汝安等.石煤直接酸浸试验研究[J].无机盐工业,2012,44(8):22-25.
    [103]Ju Z.J., Wang C.Y., Yi F., et al. Process of vanadium extraction from stone coal vanadium ore by activated sulfuric acid leaching at atmospheric pressure[J]. Transaction of Nonferrous Metals Society of China,,2012,22(7):2061-2065.
    [104]杨天足,任晋,刘伟锋等.Zn(II)-Glu2--CO32--H2O体系热力学平衡分析[J].中国有色金属学报,2009,19(6):1155-1161.
    [105]Carmen, N., Ignacio, G Thermodynamics of Cu-H2SO4-Cl-H2O and CU-NH4CI-H2O based on predominance-existence diagrams and Pourbaix-type diagrams[J]. Hydrometallurgy,1992,42: 63-82.
    [106]童雄,钱鑫.从热力学上探讨氧化剂对氰化浸金效率的影响[J].云南冶金,1993,1: 20-23.
    [107]涂松柏,曹才放,赵中伟.EDTA浸出白钨矿的热力学分析[J].中国钨业,2011,26(3):27-30.
    [108]王识博,赵中伟,李洪桂.磷酸盐浸出白钨矿的热力学分析[J].稀有金属与硬质合金,2005,33(1):1-4.
    [109]陆跃华,水承静.Ag2S-NH3-H2O系热力学[J].贵金属,1995,16(2):24-32.
    [110]Cao, H.B., Pan, Y., Ding, L., et al. Synthesis of copper-rich amorphous alloys by computational thermodynamics[J]. Acta Materialia,2008,56:2032-2036.
    [111]Lu, J.M., Dreisinger, D.B., Cooper, W.C. Thermodynamics of the aqueous copper-cyanide system[J]. Hydrometallurgy,2002,66:23-36.
    [112]吴爱祥,王洪江,习泳等.铜矿浸出热力学分析[J].湿法冶金,2005,(4):192-198.
    [113]Mu, W.Z., Zhang, T.G, Liu, Y, et al. E-pH diagram of ZnS-H2O system during high pressure leaching of zinc sulfide[J]. Transactions of Nonferrous Metals Society of China,2010,20: 2012-2019.
    [114]周大利,金作美,段朝玉.二氯化铜浸出硫化锌的热力学研究[J].四川有色金属,1989,1:7-13.
    [115]周贤爵,李自强,何良惠.闪锌矿与软锰矿在盐酸介质中同时浸出的热力学研究[J].湿法冶金,1992,2:14-21.
    [116]李桂春,吕进云.碘化浸金过程的基本理论[J].黑龙江科技学院学报,2009,19(5):345-364.
    [1]7]凌敏,胡治流.矿石中金的溴氧化浸出的热力学分析[J].黄金科学技术,2003,11(1):38-41.
    [118]丁治英,赵中伟.氟盐溶液浸出白钨矿的热力学分析[J].稀有金属与硬质合金,2004,32(1):8-10.
    [119]李洪桂,孙培梅,刘茂盛等.辉钼精矿湿法浸出过程热力学探讨[J].铜业经济技术,1991,1:27-33.
    [120]李自强,立春.硫脲浸出硫化银的研究[J].稀有金属,1994,18(1):18-27.
    [121]Ju, S.H., Tang, M.T., Yang, S.G, et al. Thermodynamics and technology of extracting gold from low-grade gold ore in system of NH4C1-NH3-H2O[J]. Transactions of Nonferrous Metals Society of China,2006,16:203-208.
    [122]Senanayake, G, Zhang. X.M. Gold leaching by copper(II) in ammoniacal thiosulphate solutions in the presence of additives Ⅱ. Effect of residual Cu(II), pH and redox potentials on reactivity of colloidal gold[J]. Hydrometallurgy,2011,24:1-28.
    [123]Zhou, X.J., Wei, C., Li, M.T., et al. Thermodynamics of vanadium-sulfur-water systems at 298 K[J]. Hydrometallurgy,2011,106:104-112.
    [124]Sokic, M.D., Markovic, B.R., Matkovic. V.I., et al. Mechanism of chalcopyrite leaching in oxidative sulphuric acid solution[J]. Hydrometallurgy,2011,5:37-41.
    [125]徐志峰,邱定蕃,王海北.铁闪锌矿人工合成及浸出过程的热力学[J].过程工程学报,2006,6:1-7.
    [126]李昌林,周向阳,王辉等.强化氧化对石煤钙化焙烧提钒的影响[J].中南大学学报(自然科学版),2011,42(1):7-10.
    [127]谭爱华.某石煤钒矿空白焙烧-碱浸提钒工艺研究[J].湖南有色金属,2008,24(1):24-26。
    [128]李许玲,肖连生,肖超.石煤提钒原矿焙烧-加压碱浸工艺研究[J].矿冶工程,2009,29(5):70-73.
    [129]蒋馥华,张萍,申照全.石煤中提钒的无污染新工艺[J].化学世界,1992,12:538-540.
    [130]肖超,肖连生,丁文涛.石煤钒矿焙砂加压碱浸试验[J].钢铁钒钛,2010,31(3):6-9。
    [131]何东升,冯其明,张国范.碱法从石煤中浸出钒试验研究[J].有色金属,2007,4:15-17.
    [132]雷辉,陈建梅,胡盛强等.添加剂对石煤提钒焙烧与浸出工艺研究[J].无机盐工业,2012,44(1):33-36.
    [133]郑琍玉,于少明,刘彬等.石煤提钒碱浸过程动力学研究[J].稀有金属,2011,35(1):101-104.
    [134]雷辉,陈建梅,胡盛强等.复合添加剂对石煤提钒焙烧与浸出工艺研究[J].无机盐工业,2012,44(1):33-36.
    [135]温雁,施正伦,方梦祥.新型复合添加剂石煤灰渣二次焙烧提钒研究[J].能源工程,2012,(3):11-15.
    [136]朱军,郭继科.石煤提钒工艺及回收率的研究[J].现代矿业,2011,3:24-27.
    [137]黄晶,张一敏,刘涛等.石煤提钒碳酸盐复合添加剂的研制及焙烧工艺研究[J].矿冶工程,2012,32:93-96.
    [138]柯兆华,李青刚,曾成威.空白焙烧-加压高温碱浸法从石煤中提钒的实验研究[J].稀有金属与硬质合金,2011,39(2):10-13.
    [139]肖超,肖连生,成宝海等.石煤钒矿碱性浸出液提取钒新工艺[J].稀有金属与硬质合金,2011,39(1):4-7.
    [140]杨东,张一敏,刘涛等.石煤焙砂浸出提钒水溶液循环利用研究[J].金属矿山,2009,6:77-79.
    [141]康兴东,张一敏,黄晶.石煤提钒离子交换工艺的研究[J].矿产保护与利用,2008,4:34-38.
    [142]张华丽,张一敏,黄晶.石煤提钒离子交换树脂解吸试验研究[J].矿冶工程,2009,8(4): 26-29.
    [143]马蕾,张一敏,刘涛.提高酸性铵盐沉钒效果的研究[J].稀有金属,2009,10(5):36-40.
    [144]于鲸,朱振忠,杨洁.微波焙烧-酸浸对石煤钒矿提钒的影响[J].湿法冶金,2011,30(2):111-113.
    [145]王辉,兰新哲,马红周等.微波焙烧对石煤钒矿浸出的影响[J].湿法冶金,2011,30(4):290-292.
    [146]张小云,覃文庆,田学达等.石煤微波空白焙烧-酸浸提钒工艺[J].中国有色金属学报,2011,21(4):908-912.
    [147]Li, W., Zhang, Y.M., Liu, T., et al. Comparison of ion exchange and solvent extraction in recovering vanadium from sulfuric acid leach solutions of stone coal[J]. Hydrometallurgy,2013, 131-132:1-7.
    [148]Cuvelier, J.M. Ion exchange resins used in the food industry and in the drinking water preparation in Europe[J]. Reactive Polymers,1995,24(2):109-116.
    [149]Zeng, L., Li, Q.G, Xiao, L.S. Extraction of vanadium from vanadiferous leaching liquor of rock-coal by ion-exchange[J]. Rare Metals,2007,31(3):362-366.
    [150]王金超,陈厚生.多聚钒酸铵沉淀条件的研究[J].钢铁钒钛,1993,14(2):28-32.
    [151]王金超,陈厚生.杂质对沉淀多钒酸铵的影响[J].钒钛,1995,(5):1-7.
    [152]曾志勇.多聚钒酸铵静态分解制备粉状五氧化二钒[J].无机盐工业,2005,37(8):20-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700