用户名: 密码: 验证码:
甲烷气氛下煤快速液化反应特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在研究甲烷气氛下煤热解特性及甲烷在溶剂中溶解特性的基础上,采用长径比较大的管式反应器,对煤的高温快速液化性能进行研究,考察相关参数对液化反应的影响,并对煤快速液化机理进行初步探讨。
     以龙口褐煤为原料,在甲烷气氛下分别进行25、40、55及70℃.min~(-1)四个加热速率下的热重分析,发现在热解反应过程中甲烷和煤之间具有协同效应。根据热重数据,关联了系列不同挥发度下煤的活化能与指前因子等动力学参数。活化能和指前因子随挥发度的变化而变化,指前因子的对数与活化能之间有很好的直线关系,显示出良好的补偿效应,说明龙口褐煤热解反应由许多具有不同的动力学参数的平行反应组成。用活化能分布模型计算了活化能和指前因子的分布函数,该模型能较好的表达褐煤在甲烷气氛下的热解特性。
     自建了气体高压溶解度的实验装置,测定了甲烷在溶剂中的溶解度,并选择Peng-Robinson状态方程和两种不同混合规则及基团贡献法对气液平衡数据进行了拟合计算,计算结果表明Peng-Robinson状态方程和基团贡献法都能对实验物系较好拟合。
     在甲烷气氛下对煤的快速液化性能进行了研究,反应温度为400℃~800℃,停留时间为4s~12s,反应压力为10~15MPa。反应产物分别用正己烷、苯和四氢呋喃萃取,通过转化率及产物收率的分析,未加催化剂的情况下,反应温度为750℃,停留时间为9s时,煤液化达到最佳效果,煤总转化率为25.44%,油气收率达到21.97%,说明甲烷气氛下煤的高温快速液化是可行的。
     应用扫描电镜、红外光谱、热重分析仪、X射线衍射仪和元素分析等分析手段对原煤、液化残渣及液体产物的结构变化进行了表征,分别从宏观和微观探讨了煤在本工艺中液化反应的历程,考察了煤中有机元素和官能团在反应前后的变化以及液化反应对煤结构变化的影响,同时为工艺的改进和反应机理的探讨提供了一定的理论数据。
On the basis of kinetic analysis of coal pyrosis in methane atmosphere and gas-liquid equilibrium analysis of methane-solvent, rapid liquefaction of Longkou lignite coal was studied in a novel laboratory scale tubular reactor. The effect of several parameters on the liquefaction reaction has been investigated, moreover, the mechanism of rapid liquefaction has also been preliminarily studied.
     Thermogravimetric analysis (TGA) was carried out for Longkou lignitic coal with four different heating rates of 25, 40, 55 and 70 oC.min-1. The experimental results indicated a synergistic effect during methane and coal. The kinetic parameters, activation energies (E) and pre-exponential factors (k0), of thermal pyrolysis for coal at different conversion levels were correlated from the thermogavimetric data. The conversion dependent E and k0 values were obtained. The compensation effect was clearly observed from the straight line of the plot of ln(k0) versus E. It indicated that many parallel reactions with different rate parameters occur simultaneously during the pyrolysis of coal. The distribution functions, f(E) and k0(E), were then established satisfactorily by the distributed activation energy model (DAEM).
     A set of experiment apparatus for determining gas solubility in liquids at high pressures was designed and established. Its reliability was confirmed with literature data. The solubility of methane in the solvent at high pressures was measured exactly and then the Peng-Robison EOS coupled with two kinds of mixing rules was adopted to calculate the GLE data under high pressure by correlation. The calculated results showed that the data of the system were well described by the Peng-Robison EOS.
     Liquefaction experiments were performed at a temperature ranging from 400 to 800 0C, a residence time ranging from 4.5 to 11.2 seconds and 10-15 MPa (without catalyst). Reactions were also carried out under nitrogen gas atmosphere at the same reaction conditions. The results indicated that there were synergism effects between coal and methane at the temperature over 6000C, and the temperature and residence time were the main factors influencing the coal conversion and products distribution. The oil yield reached a maximum of 21.97 (wt.% daf) at 750 0C during 9.0 seconds. The results indicated that the liquefaction process was reasonable and rapid liquefaction was feasible.
     Raw coal and liquefaction residue were characterized by scanning electron microscope (SEM), Fourier transformation infrared microspectroscopy (FTIR), Temperature-Programmed Thermogravimetry instrument, X-Ray Diffractometer (XRD) and Elemental Analyzer. These results have provided a scientific basis for improvement of the novel technology.
引文
[1]崔民选,中国能源发展报告,北京:社会科学文献出版社,2006. 10-36
    [2] Weller S, Catalysis and catalyst dispersion in coal liquefaction, Energy & Fuels, 1994, 8: 408-414
    [3]高晋生,张德祥,煤液化技术,北京:化学工业出版社,2005. 123-129
    [4]朱晓苏,中国煤炭直接液化优选煤种的研究,煤化工,1997,3:32-39
    [5] Curran G P, Struck R T, Gorin E, Mechanism of hydrogen-transfer process to coal and coal extract, Industrial and Engineering Chemistry Research, 1967, 6(2): 166-173
    [6] Gavalas G. R, Analysis of char combustion including the effect of pore enlargement, Combustion Science and Technology, 1981,24: 197-210
    [7] Gavalas G R, Cheong P H K, Jain R, Model of coal pyrolysis 1 Qualitative development, Industrial and Engineering Chemistry Research Fundamentals, 1981,20(1): 113-121
    [8] Gavalas G R, Jain R, Cheong P H K, Model of coal pyrolysis 1 Qualitative formation and results, Industrial and engineering chemistry research fundamentals, 1981,20(1): 122-131
    [9] Given P H, Marzec A, Barton W A, et al, The concept of a mobile or molecular phase within the macromolecular network of coals: A debate, Fuel, 1986, 65(2): 155-163
    [10]陈文敏,张自勋,煤化学基础,北京:煤炭工业出版社,1993,211-212
    [11] Shinn J H, From coal to single-stage and two-stage products: A reactive model of coal structure, Fuel, 1984, 63(9): 1187-1196
    [12]谢克昌,煤的结构与反应性,北京:科学出版社,2002, 73
    [13] Gerstein B C, Ryan L M, Murphy D D, An estimation of average polynuclear aromatic ring size in an Iowa vitrain and a Virginia vitrain, Gorbaty M L, Cuchi K, Coal structure, W. D. C., American chemistry society, 1981, 5-8
    [14]张建雨,王波,颜涌捷等,煤裂解特性研究,华东理工大学学报,2000,26(6):642-645
    [15]朱学栋,朱子彬,张成芳,煤热失重动力学研究,高校化学工程学报,1999,13(3):223-228
    [16]李术元,化学动力学在盆地模拟生烃评价中的应用,东营:石油大学出版社,2000,10-15
    [17] Donskoi E, Mcelwain D L S, Approximate modelling of coal pyrolysis, Fuel, 1999, 78(7): 825-835
    [18] Donskoi E, Mcelwain D L S, Optimization of coal pyrolysis modeling, Combustion and Flame, 2000, 122(3): 359-367
    [19] Solomon P R, Hamblen D G, Carangelo R M, et al, General model for coal devolatilizatin, Energy & Fuels, 1988,2:405-422
    [20] Niksa S, Kerstein A R. Flashchain theory for rapid coal devolatilization kinetics. 1. Formulation, Energy & Fuels, 1991,5:647-668
    [21] Grant D M, Pugmire R J, Fletcher T H, et al, Chemical model for coal devolatilization using percolation lattice statistics, Energy & Fuels, 1989, 3: 175-186
    [22] Suuberg E M, Peters W A, Howard J B, Product composition and kinetics of lignite pyrolysis, Industrial and Engineering Chemistry Process Design and Development, 1978, 17(1): 37-46
    [23] Reynolds J G, Burnham A K, Pyrolysis kinetics and maturation of coals from the san juan basin, Energy & Fuels, 1993, 7: 610-619
    [24] Hashimoto K, Miura K, Watanabe T, Kinetics of thermal regeneration reaction of activated carbons used in waste water treatment, AIChE Journal, 1982, 28(5):737-746
    [25] Vand V, A theory of the irreversible electrical resistance changes of metallic films evaporated in vacuum, London: Proceedings of the Physical Society, 1942, 222
    [26] Pitt G J, The kinetics of the evolution of volatile products from coal, Fuel, 1962, 41(3): 267-274
    [27] Anthony D B, Howard J B, Hottel H C, et al, Rapid devolatilization of pulverized coal, 15th symposium on combustion, Pittsburgh: The combustion institute, 1975, 1303-1317
    [28] Miura K, A new and dimple method to estimate f(E) and k0(E) in the distributed activation energy model from three sets of experimental data, Energy & Fuels, 1995,9:302-307
    [29] Maki T, Takatsuno A, Miura K, Analysis of pyrolysis reactions of various coals including argonne premium coals using a new distributed activation energy model, Energy & Fuels, 1997,11:972-977.
    [30] Egiebor N O, Gray M R. Evidence for methane reactivity during coal pyrolysis and liquefaction, Fuel,1990,69(10):1276-1282
    [31] Liu Q R, Hu H Q, Zhou Q, et al, Effect of inorganic matter on reactivity and kinetics of coal pyrolysis, Fuel, 2004, 83(6), 713-718
    [32]董喜贵,雷群芳,俞庆森,石油沥青质的热解动力学研究,浙江大学学报(理学版),2004,31(6):652-656
    [33]许志华,煤炭综合利用概论,徐州:中国矿业大学出版社,1988,3-15
    [34] Battino R , Clever H L, The solubility of gases in liquids, Chemical Reviews, 1966,66: 395~463
    [35] Dohrn R, Brunner G, High-pressure fluid phase equilibrium:experimental methods and system investigated, Fluid Phase Equilibria, 1995,106: 213-282
    [36]朱自强,姚善泾,金彰礼,流体相平衡原理及其应用,杭州:浙江大学出版社,1990,145-159
    [37] Morrison T J, Billett F, The measurement of gas solubilities, Journal of Chemical Society, 1948, 3:2033-2035
    [38]刘凡,张成芳,动力学法测定气体的溶解度,华东化工学院学报,1983, (1): 22-31
    [39] Prausnitz J M, Lichtenthaler R N, Azevedo E G de, Molecular thermodynamics of fluid Phase equilibria, New Jersey: Prentice-Hall Inc.,1986, 55-67
    [40] Whiting W B, Prausnitz I M, Equations of state for strongly non-ideal fluid mixtures: Application of local compositions toward density-dependent mixing rules, Fluid Phase Equilibria, 1982, 9:119-147
    [41] Huron M J, Vidal J, New mixing rules in simple equations of state for representing vapour-liquid equilibria of strongly non-ideal mixtures, Fluid Phase Equilibria, 1979, 3:255-27l
    [42] Michelsen M L, A method for incorporating excess Gibbs energy models in equations of state, Fluid Phase Equilibria, 1990, 60:47-58
    [43] Michelsen M L, A modified Huron-Vidal mixing rule for cubic equation of state, Fluid Phase Equilibria, 1990, 60:213-219
    [44] Wong D S H, Sandler S I, A theoretically correct mixing rule for cubic equations of state, AIChE Journal, 1992,38(5):67l-680
    [45] Holderbaum T, Gmehling J, A group contribution equation of state based on UNIFAC, Fluid Phase Equilibria, 1991, 70:251-265
    [46] Anderson T F, Abrams D S, Grens E A, evaluation of parameters for nonlinear thermodynamic models, AIChE Journal, 1978,24:20-29
    [47] Fredenslund A, Rasumussen P, Separations from dilute solutions: group contribution methods, Fluid Phase Equilibria, 1986, 27:347-372
    [48] O’Connell J P, Some aspects of Henry’s constants and unsymmetric convention activity coefficient, ACS Symposium Series 60, ACS,Washington 1977,490-494
    [49]普劳斯尼茨,用计算机计算多元汽-液和液-液平衡,北京:化学工业出版社,1987, 48-50
    [50] Preston G T, Prausnitz J M, A generalized correlation for Henry’s constants in nonpolar systems, Industrial and Engineering Chemistry Research Fundamentals, 1971,10(3):389-397
    [51] Pierotti R A, The solubility of gases in liquids, Journal of Physical Chemistry, 1963, 67(9):1840-1845
    [52]胡英,徐英年,普劳斯尼茨,气体溶解度的分子热力学(I)气体在非极性溶剂中的Henry常数,化工学报,1987,(1):22-31.
    [53]徐英年,胡英,刘国杰,气体溶解度的分子热力学(Ⅱ)气体在极性溶剂中的Henry常数,化工学报,1987,(2):137-145
    [54]普劳斯尼茨,流体相平衡的分子热力学(第2版),北京:化学工业出版社,1990,433-437
    [55] Zheng Z, Tang P M, Proceedings of joint meeting of CIESC and AIChE, Chemistry and Industry Press, Bejing, 1982, 1,101-108.
    [56] Sander B, Skjold-Jorgensen S, Rasmussen P, Gas solubility calculations I UNIFAC, Fluid Phase Equilibria, 1983, 11:105-126
    [57] Kikic I, Alessi P, Rasmussen P, et al, On the combinatorial part of the UNIFAC and UNIQUAC models, Canadian Journal of Chemical Engineering, 1980,58: 253-258.
    [58]夏淑倩,甲烷在常压和高压下溶解度的测定与计算-有溶剂的天然气汽车燃料的基础研究[博士学位论文],天津大学,2003
    [59]潘竞军,柯杰,韩不兴等,风城超粘稠油的特性参数及气体在稠油中溶解度的预测,化学通报,1996,9:46-48
    [60]郑大庆,高军,孙大平等,高温高压下气体在水/地层水中的溶解度实验装置的建立与校核,高校化学工程学报,1996,10:59-63
    [61]吕秀阳,吴兆立,常温高压下气体在液体中溶解度测定装置的研制,高校化学工程学报,1992,6(2):132-138
    [62]付晓泰,薛海涛,王振平,甲烷在三元复合液中的溶解度及表观溶解常数研究,油田化学,2000,17(2):177-180
    [63] Shim J, Kohn J P, Multiphase and volumetric equilibria of methane–n-hexane binary system at temperatures between -110°C and 150°C, Journal of Chemical and Engineering Data , 1962, 7:3-8.
    [64]林世雄,石油炼制工程(第二版),北京:石油工业出版社,1988:139-147
    [65] Fu F T, Puttagunta V R, Vilscak G, Vapor-liquid equilibrium properties for pseudo-binary mixtures of CO2-athabasca bitumen and N2-athabasca bitumen, Aostra Journal of Research , 1985,2(2):73-78.
    [66]柯杰,韩不兴,阎海科等,气体在克拉玛依九区稠油中的溶解度关联与计算,石油学报,1994,15(3):91-95
    [67]陈泽辉,富嘉文,用基团贡献法预测石油馏分汽液平衡的进展,石油大学学报(自然科学版),1993,17(6):131-138
    [68]吕翠英,徐亦芳,沈复,UNIFAC官能团法中重抽出油官能团数的一种表示方法,石油学报(石油加工),1988,4(4):61-66
    [69] Ruzlcka, Fredenslund A, Rasmussen P, Representation of petroleum fraction by group contribution, Industrial Engineering Chemical Process Design and Development, 1983,22 (1): 49-53
    [70] Wang Z X,Pults J D,Greenkorn R A, et al, Equilibrium vaporization of oils by the Chain-of-Rotation group contribution equation of state, Chemical Engineering Journal, 1991, 46:29-34
    [71]马沛生,化工数据,北京:中国石化出版社,2003,7
    [72] Van Nes K, Van Westen A, Aspects of the contribution of Mineral Oils, New York: Elsevier publishing Co. Inc, 1951, 80-97
    [73]萨迪克贝吉,流化催化裂化手册(第二版),北京:中国石化出版社,2002,63-65
    [74]黄华江,实用化工计算机模拟-Matlab在化学工程中的应用,北京:化工工业出版社,2004,193-195
    [75] Constantinou L, Gani R, New group contribution method for estimating properties of pure compounds, AIChE Journal, 1994, 40:1697-1710
    [76] Constantinou L, Gani R , O′Connell J P, Estimation of the acentric factor and the liquid molar volume at 298K using a new group contribution method, Fluid Phase Equilibria, 1995,103:11-22
    [77]马沛生,化工数据,北京:中国石化出版社,2003,53
    [78] Peng D Y, Robinson D B, A new two-constant equation of state, Industrial and Engineering Chemistry Research Fundamentals, 1976, 15:59-64.
    [79] Sengers J V, Kayser R F, Peters C J, et al, Equations of state for fluids and fluid mixtures, Netherland: Elsevier Science B. V., 2000, 805
    [80]郭崇涛,煤化学,北京:化学工业出版社,1992,125-134
    [81]许志华,煤炭综合利用概论,徐州:中国矿业大学出版社,1988,4-12
    [82]崔之栋,李嘉珞,煤炭液化,大连:大连理工大学出版社,1993,13-25
    [83] Narain N K, Effects of solvent pretreatment and solvent incorporation on coal liquefaction, Fuel Processing Technology, 1985, 11(1):13-23
    [84]曾蒲君,王承宪,煤基合成燃料工艺学,北京:中国矿业大学出版社,1993,64-68
    [85] Vernon L W, Free radical chemistry of coal liquefaction: Role of molecular hydrogen, Fule, 1980, 59(2): 80-86
    [86] Ceylan K, Stock M L, Reaction pathways during coprocessing: The reactivity patterns of coals and resids in hydrogen atom transfer, carbon-carbon scission, and hydrodemethylation, Fuel, 1990, 69(11):1386-1393
    [87] Makabe M, Itoh H, Ouxhik, Dealkylation of coal liquefaction, Fuel, 1990, 69(5), 575-579
    [88]申峻,低变质程度烟煤与重质油共处理的反应机理研究[硕士学位论文],太原工业大学,1996
    [89] Priyanto U, Sakanishi K, Mochida I, Optimized solvent amount in the liquefaction of Adaro coal with binary sulfide catalyst supported on carbon nanoparticles, Energy & Fuels, 2000, 14(4): 801-805
    [90] Guin J, Tarrer A, Taylor L, et al, Mechanisms of coal particle dissolution, Industrial Engineering Chemical Process Design and Development, 1976, 15(4): 490-494
    [91] Brannan C J, Curtis C W, Cronauer D C, The effect of coal beneficiation and swelling on liquefaction behavior of Black Thunder coal, Fuel Processing Technology, 1995, 45(1): 53-67
    [92] Artok L, Erbatur O, Schobert H H, Reaction of dinaphthyl and diphenyl ethers at liquefaction conditions, Fuel Processing Technology, 1996, 47(2): 153-176
    [93] Wei X Y, Ogata E, Zong Z M, et al, Advances in the study of hydrogen transfer to model compounds for coal liquefaction, Fuel Processing Technology, 2000(62): 103-107
    [94] McMillen D F, Malhotra R, Hum G, et al, Hydrogen-transfer-promoted bond scission initiated by coal fragments, Energy& Fuel, 1987,1(2): 193-198
    [95] McMiIlen D F, Malhotra R, Chang S J, et al, Mechanisms of hydrogen transfer and bond scissor of strongly bonded coal structure in donor-solvent systems, Fuel, 1987, 66(12):1611-1620
    [96] Ikenaga, Naoki, Coal hydro-liquefaction using highly dispersed Catalyst Precursors, Catalysis Today, 1997, 39(12): 99-109
    [97]申峻,凌开成,邹纲明,杨村煤与石油渣油共处理高温缩聚反应特性研究,燃料化学学报,1998,26 (6):501-505
    [98] Ling Kaicheng, Shen Jun, Zou Gangming, et al. Study on reaction property of China Yangcun coal with heavy oils. In: Proceeding of 14th Annual International Pittsbuurgh Coal Conference and Workshop, Taiyuan, 1997,48~55.
    [99] He Huang, Keyu Wang, Shaojie Wang, et al, Kinetics of coal liquefaction at very short reaction times. Energy & Fuels , 1996, 10(3):641~648.
    [100] Hulston C K J, Redlich P J, Jackson W R, et al. The effect of tubular reactor orientation on conversion of coal to liquid products, Fuel , 1996, 75(1):43~45
    [101] Gibbins J, Kandiyoti R. A flowing solvent reactor for coal liquefaction with direct electrical resistance heating, Rev. Scl. Instrum , 1991, 62(9):2234~2242
    [102] He Huang, Calkins W H, Klein M T. A novel laboratory scale short contact time batch reactor system for studying fuel processes 1 apparatus and preliminary experiments, Energy & Fuels, 1994, 8(6):1304~1309
    [103] Padlo D M, Subramarian R B, Kugler E L, Hydrocarbon class analysis of coal-derived liquids using high performance liquid chromatography, Fuel Processing Technology, 1996, 49(1-3): 247-258
    [104]李文华,白向飞,舒歌平,依兰煤及其显微组分加氢液化特征,燃料化学学报,2001,29(2):104-107
    [105] Comolli A G, Lee T L K, Popper G A, et al, The shenhua direct liquefaction plant, Fuel Processing Technology, 1999, 59(2): 207-215
    [106] Koichi Matsuoka, Hiroyuki Akiho, et al, The physical character of coal charformed during rapid pyrolysis at high pressure, Fuel, 2005, 84(1): 63-69
    [107]高建辉,杨寿金译,煤利用化学,北京:化学工业出版社,1991,451
    [108] Cornils B, Hibbel J, Ruprecht P, Gasification of hydrogenation residues using the Texaco coal gasification process, Fuel Processing Technology, 1984, 9(3): 251-264
    [109] Merrick D, Coal combustion and conversion technology, London: Macmillan Publish. LTD, 1984, 211-218
    [110]陈海红,马卫兴,气相色谱法测定人工煤气组分,淮海工学院学报,2002,11(2):43-46
    [111]马立新,气相色谱法分析煤气组分,天津冶金,2005,5:46-48
    [112]宁艳,王纯园,吴威,气相色谱法测定焦炉煤气中的硫化氢,化工技术与开发,2004,33(6):33-38
    [113]高赋,陈明秀,氢气—甲烷混合气氛下东胜煤的催化裂解及产品研究,内蒙古石油化工,1998,24(2):27-30
    [114] Kezhan Y, Barry D B, Michael A W, et al. Reaction of methane with coal, Fuel 1997, 76(12): 1105-1115
    [115] Gerard V S, Tomasz W, John B P, Conversion of coals and chars to gases and liquids by treatment with mixtures of methane and oxygen or nitric oxide, Energy & Fuel, 1989, 3(4): 536-537
    [116] Sundaram M S, Steinberg M, Direct use of methane in coal liquefaction, US patent No. 4,687,570, 1987
    [117] Graham H, Andrew B R, Use of tyre pyrolysis oil for solvent augmentation in two-stage coal liquefaction, Fuel, 1996, 75(8):1009-1013
    [118] Orr E C, Shi Y, Ji, Q, et al, An effective coal liquefaction solvent obtained from the vacuum pyrolysis of waste rubber tires, Energy & Fuel, 1996, 10:573-578.
    [119] Sadao W, Shouichi I, Takao H, et al, Study on coal liquefaction characteristics of Chinese coals, Fuel, 2002, 81(11-12):1551-1557
    [120] Marcela S, Jaroslav K, Lukas A, Pyrolysis of browm coal under different process conditions, Fuel, 2005, 84(17): 2280-2285
    [121]陈鹏,郝琦,烟煤粘结过程的扫描电镜观察,煤炭学报,1993,18(1):87-94
    [122] Fatma Karaca, Esen Bolat, Coprocessing of a rurkish lignite with a cellulosic waste material 2. The effect of coprocessing on liquefaction yields at different reaction pressures and sawdust/lignite ratios, Fuel Processing Technology, 2002, 75(2):109-116
    [123]谢克昌.煤的结构与反应性,北京:科学出版社,2002,137-140
    [124]崔洪,煤液化残渣的物化性质及其反应性研究[博士学位论文],中科院山西煤炭化学研究所,2001
    [125] Kneller W A, Physicochemical characterization of coal and coal reactivity: A review, Thermochimica Acta, 1986,108(1): 357-388
    [126] Ottaway M, Use of thermogravimetry for proximate analysis of coals and cokes, Fuel, 1982, 61(8): 713-716

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700