用户名: 密码: 验证码:
自然霉变玉米对肉鸭生产性能和消化生理的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
饲料污染霉菌毒素会降低动物生产性能,抑制免疫机能,甚至在动物组织和产品中残留,给养殖业造成了巨大危害。近年的研究表明,霉菌毒素可改变肠道的消化功能。肉鸭对霉菌毒素中的黄曲霉毒素B1 (AFB1)比其他动物更敏感。本研究通过考察自然霉变玉米对肉鸭生产性能、消化器官发育、肠道形态结构、消化酶活性、各肠道DNA和RNA含量、营养物质消化率、食糜通过速度、Na+,K+-ATPase基因表达量和内分泌激素的影响来探讨霉菌毒素对肉鸭消化生理和消化功能的影响及其可能机制。研究共包括四个试验。
     试验一自然霉变玉米对肉鸭生产性能和肠道形态结构的影响
     本试验旨在研究以自然霉变玉米配制饲粮对肉鸭生产性能和肠道形态结构的影响。试验设2个处理,处理1为正常玉米对照组,处理2以霉变玉米(AFB1超标)100%替代正常玉米。每个处理6个重复,每个重复16只1日龄健康樱桃谷肉鸭(公母各半)。试验期4w。在试验的第0d、14d和28d按重复称肉鸭体重,并计算耗料;试验第28d每重复选2只肉鸭屠宰,采集空肠组织观测肠道形态结构。试验结果显示,自然霉变玉米组死亡率极显著升高(p<0.01),生产性能显著下降:与对照组相比,0-28d日增重和日采食量分别降低了19.96%(p<0.01)和18.50%(p<0.05),0-28d料重比略低(p>0.05)而0-14d料重比极显著降低(p<0.01);自然霉变玉米组肉鸭肠绒毛高度较正常玉米组提高了22.11%(p<0.05),隐窝深度降低了32.69%(p<0.05),绒毛高度/隐窝深度极显著提高(p<0.01),肠壁厚略有提高(p>0.05);自然霉变玉米组肉鸭发生心包积水、肝脏褐色素沉积及肝组织灶性坏死、结缔组织增生,淋巴细胞和脂肪细胞增多等病变。结果表明:摄食含AFB1超标自然霉变玉米的饲粮将导致肉鸭死亡率升高和生产性能降低,导致肝脏等内脏发生病变,并明显影响肠道形态结构。
     试验二自然霉变玉米对肉鸭生产性能、肠道发育及消化酶活性的影响
     本试验旨在研究肉鸭摄食以污染多种霉菌毒素且AFB1超标的自然霉变玉米配制的饲粮后,生产性能、肠道发育和消化酶活性的变化。试验采用单因子设计,共3个处理组,即用自然霉变玉米分别按0%(对照组)、50%和100%比例替代饲粮中正常玉米,每个处理8个重复,每个重复16只肉鸭,公母各半。试验期5w。试验考察了肉鸭各阶段的生产性能,观测了第14 d和35 d的消化器官指数和肠道形态,测定了第14 d的肠黏膜RNA和蛋白质含量,以及第14 d的空肠刷状缘酶与胰腺酶活性。结果显示:在整个试验期内,随着霉变玉米在饲粮中用量增加,肉鸭的ADFI、ADG、F/G均呈线性降低(p<0.001),死亡率线性升高(p<0.001),100%霉变玉米组鸭的死亡率达31.25%;第14d和35d的十二指肠指数、空肠指数、回肠指数及第35d的肝脏指数均较其余两组极显著增加(p<0.001);随霉变玉米的用量增加,第14d空肠粘膜的绒毛宽度(VW)(p<0.05)、绒毛高度(VH)(p<0.001)和绒毛表面积(VASA)(p<0.01)增加,第35d十二指肠粘膜的隐窝深度(CD)(p<0.01).VW(p=0.10).VH(p<0.05)和VASA(p<0.05)增加,第14d十二指肠和空肠粘膜的DNA含量增加而RNA含量降低,第14d空肠刷状缘碱性磷酸酶活性(p<0.05)和亮氨酸氨肽酶活性(p<0.05)以及胰腺胰蛋白酶活性(p<0.05)和糜蛋白酶活性(p<0.001)升高。结果表明:自然霉变玉米饲粮(AFB1超标)使肉鸭采食受到抑制,增重减慢,死亡率增加,改变肉鸭肠道发育和消化酶活性。
     试验三自然霉变玉米对肉鸭食糜通过速率和养分消化率的影响
     本试验旨在研究以自然霉变玉米配制的饲粮对肉鸭食糜通过速率和养分消化率的影响。试验设3个处理,处理1为正常玉米组,处理2为霉变玉米组,处理3为采食配对组,即肉鸭采食的饲粮同处理1而采食的量同处理2,每个处理8个重复,每个重复16只肉鸭。试验期14d。试验考察了肉鸭的生产性能、养分消化率和食糜流通速率。结果显示:在0-7d、8-14d和0-14d,与正常玉米组相比,自然霉变玉米组肉鸭ADFI分别降低了23.55%(p<0.01)、47.56%(p<0.01)和43.23%(p<0.01),ADG分别降低了31.47%(p<0.01)、41.57%(p<0.01)和38.84%(p<0.01),与采食配对组相比,自然霉变玉米组ADG分别增加4.63%、18.25%和13.83%(p<0.01);与正常玉米组和采食配对组相比,霉变玉米组全期F/G分别降低4.90%(p<0.01)和5.56%(p<0.01),DM消化率分别提高3.78%(p<0.01)和3.75%(p<0.01),CP消化率分别提高2.65%和4.63%(p<0.01),总氨基酸消化率分别提高3.9%(p<0.01)和3.98%(p<0.01)。同时,自然霉变玉米组食糜在消化道各段的停留时间延长了,与正常玉米组相比,食管膨大部和空肠停留时间分别延长37.78%(p<0.05)和55.94%(p<0.05)。结果表明:以自然霉变玉米配制饲粮(AFB1超标)饲喂肉鸭,会抑制肉鸭采食,降低肉鸭增重,同时延长食糜在消化道的停留时间,提高养分消化率、降低料重比。
     试验四自然霉变玉米对肉鸭血清激素水平和肠组织Na+,K+-ATPase基因表达的影响
     为了进一步探明自然霉变玉米影响肉鸭摄食及消化生理的机制,本试验研究了以自然霉变玉米配制的饲粮对肉鸭血清采食调控相关激素水平和肠组织Na+,K+-ATPase基因表达的影响。试验设2个处理,处理1为正常玉米饲粮组,处理2饲粮则以自然霉变玉米(AFB1超标)100%替代正常玉米配制,每个处理8个重复,每个重复16只1日龄健康肉鸭。试验期28天。第14 d和第28 d,分别从每个重复中选取2只肉鸭(公母各一只),颈静脉采血4ml,测定血清中神经肽Y (NPY)、Ghrelin、瘦素(Leptin)、八肽胆囊收缩素(CCK-8)、胰岛素、胰岛素样生长因子-1(IGF-1)的含量。第14 d采血后处死肉鸭,采集空肠前段(前1/4处)组织,检测Na+,K+-ATPase基因相对表达量。结果显示:自然霉变玉米组肉鸭14d和28d的血清中IGF-1和Leptin的含量皆极显著提高(p<0.01),而第28d血清NPY含量降低(p<0.05);肉鸭空肠组织Na+,K+-ATPase基因相对表达量较对照组增加了23%(p>0.05)。结果表明:肉鸭采食自然霉变玉米饲粮(AFB1超标)后,可能通过提高血清Leptin并降低血清NPY含量,进而抑制肉鸭采食;可能通过提高血清IGF-1含量和肠组织Na+, K+-ATPase基因表达量来影响养分吸收和饲料效率,缓解霉菌毒素的危害。
     综上所述,以自然霉变玉米配制的饲粮饲喂肉鸭会导致死淘亡率升高,采食量、增重和料重比降低,饲料养分表观消化率提高。进一步分析发现,自然霉变玉米导致的增重下降主要是通过降低肉鸭的采食量所致,其机制与血清Leptin含量提高而NPY含量降低有关;而料重比较低的原因是饲料养分消化利用率提高,其机制与十二指肠和空肠粘膜的DNA含量增加、RNA含量降低,绒毛高度、宽度和表面积增加,空肠组织Na+, K+-ATPase基因表达量上升,空肠刷状缘的碱性磷酸酶和亮氨酸氨肽酶活性提高,胰腺胰蛋白酶和糜蛋白酶活性增强,以及食糜在消化道的通过速率减慢等因素的综合作用有关。结果提示,摄食含AFB1超标自然霉变玉米的饲粮对肉鸭消化系统和内分泌系统产生较复杂的影响,进而影响生产性能。
Feed contaminated with mycotoxins is harmful to animals. It reduces growth and depresses the immunity of animals. These effects have serious economic implications for animal producers. Further more, mycotoxins will residue in the products and tissues of animals fed with diet contaminated with them. Recent researches indicated that digestive function of intestinal tract could be changed by mycotoxins, and that ducks were more sensitive to mycotoxins than other animals. In this study, the effect of corn naturally contaminated with mycotoxins on the the growth performance, physiological function of digestive tract and its possible mechanisms were evaluated. This study consisted of 4 experiments as followed.
     Experiment 1 Effect of corn naturally contaminated with mycotoxins on growth performance and intestinal morphology of ducks
     This experiment was conducted to study the effect of corn naturally contaminated with mycotoxins on the growth performance and intestinal morphology for ducks.192 1-d-old Charry Vally ducks were randomly allotted by body weight to 2 groups with 6 replicates of 16 ducks each (8 males and 8 females).Group 1 (control) was fed the conventional diet with the corn free of mycotoxins, and group 2 was fed the diet with the corn naturally contaminated with mycotoxins with excessive content of AFB1. The trial lasted for 28 d. At d 0,14 and 28 of experiment, the ducks were weighed and consumption of feed by replicate was calculated. At d 28, jejunum was collected from 2 ducks in each replicate to determine the intestinal morphology. The results showed that diet with the corn naturally contaminated with mycotoxins resulted in the increase of mortality and decrease of growth performance of ducks. Compared with the control group, during d 0-28, the average daily gain (ADG) and average daily feed intake (ADFI) of mycotoxins contaminated corn group significantly reduced by 19.96%(p<0.01) and 18.50%(p< 0.05) respectively, and the d 0-14 F/G (feed to gain ratio)decreased significantly (p<0.01). Jejunum villus height the ducks fed mycotoxins contaminated corn diet increased by 22.11%(p<0.O5), crypt depth decreased by 32.69%(p<0.05), the villus height to crypt depth ratio (V/C) enhanced significantly(p<0.01) and the thickness of intestine wall tended to increase. The pathological changes were also found in these ducks fed diet with moldy corn, including hydrocardia, phaeo-pigment deposition in liver, and focal necrosis, desmoplasia, lympholeukocyte and adipocyte increasing in hepatic tissue. The results indicated that corn naturally contaminated with mycotoxins could decrease growth performance and increase the mortality, induce pathological changes in liver, and change intestinal morphology in ducks.
     Experiment 2 Effect of different levels of corn contaminated with mycotoxins on growth performance and digestive physiology in ducks
     In order to study the effect of corn naturally contaminated with mycotoxins (predominantly with AFB-1) on growth performance, intestinal development and digestive enzyme activities in ducks,384 ducks were allotted by body weight into 3 treatments with 8 replicates per treatment and 16 ducks(8 males and 8 females) per replicate. Treatment 1 (control) was fed diet with normal corn, and treatment 2 and 3 were fed the diets with contaminated corn substituted for normal com by 50% and 100% respectively. The trial lasted for 5 weeks. Growth performance, the digestive organ index and intestinal morphology at d 14 and 35, contents of DNA, RNA, protein of intestinal mucosa at d 14 and activities of digestive enzymes in brush border of jejunum and pancreas were determined. The results showed that ADFI, ADG and F/G linearly reduced (p< 0.001), and mortality linearly increased (p< 0.001) with increment of moldy com. The mortality in 100% contaminated corn group was 31.25%. At d 14 and 35, duodenum index, jejunum index and ileum index were increased (p< 0.0001) significantly, and so did the liver index at d 35. With the increasing levels of moldy corn, the V W (p<0.05), VH (p< 0.001) and VASA(p< 0.01) of jejunum mucosa increased at d 14, the CD (p< 0.01), VW (p=0.10), VH (p<0.05) and VASA (p<0.05) of duodenum mucosa also increased at d 35, content of DNA in duodenum and jejunum mucosa increased at d 14, which was opposite to that of RNA. In addition, the increment of addition levels of moldy com enhanced the activities of alkaline phosphatase (p<0.05), leucine aminopeptidase (p<0.05), trypsinase (p< 0.05) and chymotrypsin (p<0.001) at 14 d. The results indicated that the corn naturally contaminated predominantly with AFB1 could depress the feed intake, decrease body weight gain, increase mortality and reduce F/G through the changes in intestinal development and digestive enzymes activities.
     Experiment 3 Effect of corn contaminated with mycotoxins on the rate of chyme to pass through the digestive tract and the digestibility of nutrients
     This experiment was conducted to study the effect of corn naturally contaminated with mycotoxins on the rate of chyme to pass through the digestive tract and digestibility of nutrients. 384 ducks were randomly assigned to 3 dietary treatments with 8 replicates per treatment and 16 ducks (8 males and 8 females) per replicate. Group 1 was fed diet with normal corn (control), group 2 was fed diet with contaminated corn (contaminated), group 3 was pair-fed group to receive the same diet as control and the same amount of feed as the contaminated ducks (pair-fed). The trial lasted for 14 d. The growth performance, digestibility of nutrients and the rate of chyme to pass through the digestive tract were determined. Compared with control, on d 0-7,8-14 and 0-14, ADFI of contaminated corn group ducks was reduced by 23.55%(p< 0.01),47.56%(p< 0.01) and 43.23%(p<0.01) respectively, ADG was decreased by 31.47%(p<0.01),41.57%(p<0.01) and 38.84%(p< 0.01) respectively, however, compared with pair-fed group, ADG of contaminated group was improved by 4.63%、18.25% and 13.83%(p< 0.01) respectively. Compared with control and pair-fed group, d 0-14 F/G was reduced 4.90%(p< 0.01) and 5.56%(p< 0.01).digestibilities of DM were increased by 3.78%(p< 0.01) and 3.75%(p< 0.01), CP was increased by 2.65% and 4.63%(p< 0.01), total amino acid was increased by 3.9%(p< 0.01) and 3.98%(p< 0.01), Furthermore, the retention time of chyme in segment of digestive tract was obviously prolonged in contaminated group. The retention time in lower segment of esophagus and jejunum were prolonged by 37.78%(p< 0.05) and 55.94%(p< 0.05) respectively. The results indicated that corn naturally contaminated with mycotoxins could depress feed intake, decrease body weight gain and. increase digestibility of nutrients, dercrease F/G by reducing the rate of chyme to pass through the digestive tract.
     Experiment 4. Effects of corn contaminated with mycotoxins on serum hormon levels and gene expression of Na+, K+-ATPase in ducks
     256 ducks were randomly allotted by body weight into 2 treatment groups with 8 replicates per treatment and 16 ducks (8 males and 8 females) per replicate to explore the mechanism for the effect of corn contaminated with mycotoxins on the digestive physiology. The trial lasted for 4 weeks. At d 14,28,2 ducks (1 male and 1 female) of average weight in each replication were selected to collect 4 mL blood from jugular vein for determining contents of neuropeptide Y(NPY), ghrelin, leptin, CCK-8, insulin and IGF-I in serum,and then to be killed by cervical dislocation to collect 2-cm jejunum sample(first quarter) for determining relative expression of Na+, K+-ATPase gene. The content of leptin (p< 0.01)and IGF-I (p< 0.01) in serum at d 14 and 28 increased significantly when ducks fed diet with moldy corn, while the content of NPY at d 28 decreased significantly (p< 0.05) Furthermore, compared with control, the relative expression of Na+, K+-ATPase gene tended to increase. The results indicated that the decrease of NPY and increase of leptin and CCK-8 content in serum of ducks fed diet with corn naturally polluted with mycotoxins could lead to the depression of feed intake and growth performance. At the same time, the increase of IGF-I content could alleviate the lesion brought from mycotoxins to keep the health of ducks.
     Implication
     The results indicated that diet with corn naturally contaminated with mycotoxins (predominantly with AFB1) would increase the ducks mortality, decrease the feed intake and growth performance, and improve the feed efficiency. Futhermore, it was explored that the decrease of NPY and increase of Leptin content in serum were the main reason for depression of feed intake, and the decrease of feed intake was the main reason for depression of growth performance. At the same time, it was discovered that diet with corn naturally contaminated with mycotoxins (predominantly with AFB1) would increase the content of DNA in duodenum and jejunum mucosa and reduce that of RNA, improve VW, VH and VASA of jejunum, enhance the activities of alkaline phosphatase, leucine aminopeptidase, trypsinase and chymotrypsin, and prolong the retention time of chyme in digestive tract. It was concluded that diet naturally contaminated with mycotoxins had complicated effects on digestive end endocrine system of Ducks.
引文
[1]. Devegowda G, Raju M, Afzali N, et al. Mycotoxin picture worldwide:Novel solutions for their counteracton[A] Lyons TP and Jacques KABiotechnology in the Feed Industry, in Proceedings of Alltech's 14th Annual Symposium[C].Nottingham University Press.1998:241-256.
    [2]. 袁耀明,徐元年,刘仕军.奶牛专用霉菌毒素吸附剂对泌乳奶牛生产性能的影响[J].乳业科学与技术,2010(1):33-36.
    [3]. 王成章,王恬.饲料学[M].2003,中国农业出版社.
    [4]. 郭万柱.动物微生物学[M].2001,四川科学技术出版社.
    [5]. 杨丽梅,申光荣,饲料中霉菌毒素的危害及其防治[J].饲料工业,2003,24(12):53-55.
    [6]. Kishan S, Mor S, Manorama. Aflatoxins produced from aspergillusflavus isolated from animal feed concentrate mixture[J]. Indian Journal Animal Sciences,1999,60(4):266-267.
    [7]. Mhitlow LW and Hagler WMJ. Mycotoxins in feeds [J]. Feed stuffs,2002,74(28):17-18.
    [8]. 胡兰.谷物中的霉菌及霉菌毒素[J].辽宁农业科学,2001,(2):35-37.
    [9]. 龚国利,许重要,廖玉.玉米贮存过程中霉菌总数及霉菌毒素含量变化的研究[J].饲料博览,2009,(9):35-37.
    [10]. 姜翠翠,王昌禄,王文杰.玉米中霉菌总数及霉菌毒素含量变化的研究[C].中国农业生物技术学会,2008年生物技术与粮食储藏安全学术研讨会.2008:117-122.
    [11]. 徐运杰,方热军.霉菌毒素及其作用机理[J].饲料工业,2008,4(29):53-57.
    [12]. Swamy HVLN,家禽饲料中霉菌毒素-亚太地区家禽霉菌毒素的研究概况的研究及其控制策略[J].中国家禽,2006,11(28):40-42.
    [12]. 王若军,苗朝华,Sawatwiroj N等.中国饲料及饲料原料受霉菌毒素污染的调查报告[J].饲料工业,2003,24(7):58-59.
    [13]. Serno AM. Prediction of Water activity of osmotic solutions[J]. Journal of Food Engineering, 2001,(49):103-114.
    [14]. Fontana AJ. Understanding the Importance of Water Activity in Food[J]. Ceresl Foods World Janury,2000,45(1):7-10.
    [15]. Lillehoje B, Zuber MS, Darrahl L. Aflatoxin occurence and levels in preharvest corn kernels with varied endosperm characteristics grown at diverse locations [J]. Crop science,1983,23(6): 1181-1184.
    [16]. 尚新彬,蔡静平.物理性状对配合饲料储藏特性的影响[J].现代农业科技,2008(8):171-176.
    [17]. Pardo E, Matin S, Sanchis V. Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity[J]. Int J Food Microbiol,2004,95(1):79-88.
    [18]. Mariona A, David A, Naresh M. Environmental factors and weak organic acid interactions have diferential effects on control of growth and ochratoxin A production by Penicillium verrucosum isolates in bread[J].Int J Food Microbiol,2005,98(3):223-231.
    [19]. 陈丽,邓跃林,冯建文等.霉菌毒素对猪生产的危害及其防治措施[J].广东饲料,2008,17(10):41-43.
    [20]. 何叶如,申光荣.玉米赤霉烯酮对种猪繁殖性能的影响[J].养猪,2004,(1):13-14.
    [21]. Jimenez M, Manez M, Hernandez E. Influence of water activity and temperature on the production of zearalenone in corn by three Fusarium species [J]. International Journal of Food Microbiology, 1996,29(2-3):417-421.
    [22]. Kosiak B,Torp N, Skjerve E, et al. The Prevalence and distribution of Fusarium species in Norwegian cereals:a survey[J]. Acta Agric Scand Sec B,2003,(53):168-176.
    [23]. RukhyadaV. Environmental effects on T-2 toxin biosythesis by Fusarium sporotrichiella bilai[J]. Mikol Fitopatol,1989,23(2):153-167.
    [24]. 苏良科.烟曲霉毒素-一个影响猪健康和生产性能的重要因素[J].国外畜牧学-猪与禽,2009,29(6):46-48.
    [25]. Mogensen JM, Kristian FN, Robert AS, et al. Effect of temperature and water activity on the production of fumonisins by Aspergillus niger and different Fusarium species[J].BMC Microbiol, 2009,(9):281.
    [26]. Marin S, Sanchis V, Vinas I, et al. Effect of water activity and temperature on growth and fumonisin B1 and B2 production by Fusarium proliferatum and F. moniliforme on corn grain[J]. Letters in Applied Microbiology,1995.,21(5):298-301.
    [27]. 张丞,刘颖莉.2008年上半年中国饲料霉菌毒素污染情况[J].中国家禽业导刊,2008,(19):40-41.
    [28]. 敖志刚.霉菌毒素对亚太地区饲料业的挑战和应对策略[J].饲料广角,2009,(9):22-30.
    [29]. 张丞,刘颖莉,吴欲本等.2009年中国饲料和原料中霉菌毒素污染情况调查[J].中国家禽,2010,32(6):67-70.
    [30]. Yarru L P,.Settivari R S,Antoniou E.Toxicological and gene expression analysis of the impact of aflatoxin B1 on hepatic function of male broiler chicks[J] Poultry Science,2009,(88):360-371.
    [31]. Ghosh R C,Chauhan H V S,Roy S.Immunosuppression in broilers under experimental aflatoxicosis[J].British Veterinary Journal,1990,5(146):457-462.
    [32]. Bozzo G,Ceci E,Bonerba E.Ochratoxin A in Laying Hens:High-Performance Liquid Chromatography Detection and Cytological and Histological Analysis of Target Tissues [J].Applied Poultry Resrarch,2008,17(1):p.151-156.
    [33]. Swamy H V L N,Smith T K., MacDonald E J,et al. Efffects of feeding a blend of grains naturally contaminated with Flusarium mycotoxins on swine performance,brain regional ncrochemistry, and serum chemistry and the efficacy of a polymeric glucomannan mycotoxin absorbent[J]. Animal Science,2002,(80):3257-3267.
    [34]. Williams K C,Blaney B J, Magee M H.Respnses of pigs fed wheat naturally infected with Fusarium graminearum and containing the mycotoxins 4-deoxynivalenol and zearalenone[J]Australian Journal of Agricultural Resrarch,1988,39(6):1095-1105.
    [35]. Rizzo A F, Atroshi F, Hirvi T,et al.The hemolytic activity of deoxynivalenol and T-2 toxin[J].Nat Toxins,1992,1(2):106-110.
    [36]. Cheeke P R.Mycotoxins in cereal grains and supplements.1998:Interstate Publishers Inc.
    [37]. Hussein H S,Brasel J.M.Toxicity, metabolism, and impact of mycotoxins on humans and animals [J].Toxicology,2001,(167):101-134.
    [38]. 孙殿军,杨建伯,张永红.T-2毒素对雏鸡软骨肝脏蛋白质、DNA合成的抑制[J].中国地方病学杂志,1995,14(4):363-366.
    [39]. Ross P F,Rice L G,Osweller G D,et al.A review and update of animal toxicoses dated with fumonisin-contaminated feed and production of fumonisins by Fusarium moniliforme Fusarium isolates[J]. Mycopathologia,1992,(117):109-114.
    [40]. Voss K A, Platter R D., Bacon C W, et al.Comparative studies of hepatotoxicity and fumonisin B1 and B2 content of water and chloroform methanol extracts of Fusarium moniliforme strain MR.C 826 culture material [J].Mycopathologia,1990,(112):81-92.
    [41]. Colvin B M, Cooley A J, Beaver R W.Fumonisin toxicosis in swine:Clinical and pathologic findings[J]. Journal of Veterinary Diagnostic Investigation,1993,(5):232-241.
    [42]. Rotter B A, Thompson B K,Prelusky D B,et al.Response of growing swine to dietary exposure to pure fumonisin B1 during an eight-week period: Growth and clinical parameters[J].Natural Toxins,1996,(4): 42-50.
    [43]. Klaassen CD and Eaton DL. Principles of Toxicology [A]. In Amdur MO, Doull J, and Klaassen CD (Eds.) Casarett and Doull's Toxicology, in The Basic Science of Poisons.4th ed[C]. Pergamon Press,1991:12-49
    [44]. Kubena LF, Huff WE, Harvey RB, et al.Influence of ochratoxin A and deoxynivalenol on growing broiler chicks[J]. Poultry Sci,1988,(67):253-260.
    [45]. Richard JL, Payne GA, Desjardins AE, et al. Mycotoxins:Risks in Plant, Animal, and Human Systems[A]Task Force.Council for Agricultural Science and Technology[C] Ames, Iowa,2003.
    [46]. 张自强,柏凡,张克英等.我国饲料中黄曲霉毒素B1污染的分布规律研究[J].中国畜牧杂志,2009,45(12):27-30.
    [47]. Helferich WG., Baldwin RL, Hsieh DPH. [14C]-Aflatoxin B1 metabolism in Lactating Goats and Rats[J]. J Anim Sci,1986,(62):697-705.
    [48]. Busby WF,Wogan GN, Searle. Chemical Carcinogens [J]. American Chemical Society,1985,(2): 945-1136.
    [49]. Busby WF, Wogan GN, Searle, et al. In Food Borne Infections and Intoxicants [M]. Academic, 1979,(2):519-610.
    [50]. Stoloff L, Rodircks JV. Mycotoxins and Other Pungal Related Food Problems [J]. American Chemical Society,1976(149):23-50.
    [51]. 殷芬,俞顺章,张社等.黄曲霉毒素在大鼠体内的毒物代谢动力学研究[J].卫生毒理学杂志,1996,10(1):19-22.
    [52]. 王清兰,陶艳艳,刘成海.黄曲霉毒素体内吸收与代谢的干预措施研究进展[J].肿瘤,2007,27(5):415-418.
    [53]. 陈立兵,葛卫红,林洁等.细胞色素P450 mRNA表达研究进展[J].医学研究杂志,2007,36(7):7-9.
    [54]. 周园,胡艳丽,李丽燕等.细胞色素P450酶的研究进展[J].农垦医学,2002,24(3):224-226.
    [55]. 林怡,黎乐群,彭涛.黄曲霉毒素B代谢及致肝癌机制的研究进展[J].中国现代医药杂志,2007,(12):131-133.
    [56]. Guengerich FP, Johnson WW, Shimada T, et al. Activation and detoxication of aflatoxin B1[J]. Mutation Research,1998,(402):121-128.
    [57]. Guengerich FP, Johnson WW, Ueng YF, et al. Involvement of Cytochrome P450, Glutathione S-Transferase, and Epoxide Hydrolase in the Metabolism of Aflatoxin B1 and Relevance to Risk of Human Liver Cancer[J]. Environmental Health Perspective,1996,104(3):557-562.
    [58]. Kenslcr FW, Groopman JD, Wogan GN. Use of carcinogen-DNA and carcinogen-protein adduct biomarkers for cohort selection and as modifiable end points in chemoprevention trials[J]. IARC Sci Publ,1996,(139):237-248.
    [59]. Poirier MC, Santella RM, Weston A. Carcinogen macromolecular adducts and their measurement [J]. Carcinogenesis,2000,21(3):353-359.
    [60]. Betina V. Mycotoxins-Production,Isolation,Separation and Purification[J].Elsever,1984,18(8): 25-36.
    [61]. 张自强.我国饲料中黄曲霉毒素B1、T-2毒素和赭曲霉毒素A污染及分布规律的研究[D].2008,四川农业大学.
    [62]. 易中华,吴兴利.饲料中常见霉菌毒素中毒症及危害[J].湖南饲料,2008(4):14-17.
    [63]. Ostrowski MHT, Effect of contamination of diets with aflatoxins on growing ducks and chickens[J]. Trop Anim Health Prod,1983,15(3):p.161-8.
    [64]. 石达友,李鹏飞,郭铭生等.不同剂量黄曲霉毒素B1对雏鸭生长性能的影响[J].中国兽医杂志,2010,46(4):22-23.
    [65]. 史莹华,方丽云,孙宇.黄曲霉毒素对猪生长性能及肝脏功能的影响[J].西北农林科技大学学报,2007,35(6):55-59.
    [66]. Sotomayor RE, Washington M, Nguyen L, et al. Effects of Intermittent Exposure to Aflatoxin B1 on DNA and RNA Adduct Formation in R.at Liver: Dose-Response and Temporal Patterns[J]. Toxicological Sciences,2003,(73):329-338.
    [67]. Han XY, Huang QC, Li WF, et al. Changes in growth performance, digestive enzyme activities and nutrient digestibility of cherry valley ducks in response to aflatoxin B1 levels[J]. Livestock Science, 2008,119(1):216-222.
    [68]. Rizvi SAUR. Effects of aflatoxin in poultry[J]. Pakistan Research Repository,1988:290.
    [69]. Butler WH. Review of the toxicology of aflatxoxin.http://www.iupac.org/publications /pac/pdf/1973/pdf/3503x0217.pdf:217-222
    [70]. 王颂萍,张乐颖.关于饲料中黄曲霉素的探讨[J].今日畜牧兽医,2006(8):48-49.
    [71]. Cullen JM, Newberne PM. Acute hepatotoxicity of aflatoxins[A] Eaton DL, Groopman JD, eds, in The toxicology of aflatoxins: human health, veterinary, and agricultural significance[C].London: Academic Press,1993:1106-1122.
    [72]. Foster PL, Eisenstadtl E, Miller JH. Base substitution mutations induced by metabolically activated aflatoxin B1[J]. Proc. NatL Acad. Sci,1983,(80):2695-2698.
    [73]. Katherine AM, Elizabeth AR,Edward DL, et al. Susceptibility to hepatocellular carcinoma is associated with genetic variation in the enzymatic detoxification of aflatoxin B1[J]. Proc. Natl. Acad. Sci,1995,(92):2384-2387.
    [74]. Chan KT, Hsieh DP, Lung MI. In vitro aflatoxin B1-induced p53 mutations [J]. Cancer Lett, 2003,199(1):1-7.
    [75]. Trenholm HL, Prelusky DB, Young JC, et al.A practical guide to the prevention of Fusarium mycotoxins in grain and animal feedstuffs[J].Arch Envir Contamin Toxicol,1989,(18):443-451.
    [76]. Miller JD and Trenholm HL.Mycotoxins In Grain: Compounds Other Than Aflatoxin[M],1st Ed. 1994, St. Paul, MN:Eagan Press
    [77]. Harvey RBK, Kubena LF, Huff WE, et al. Effects of treatment of growing swine with aflatoxin and T-2 toxin [J]. American journal of veterinary research,1990,51(10):1688-1693.
    [78]. Edrington TS, Kubena LF, Harvey RB, et al. Influence of a superactivated charcoal on the toxic effects of aflatoxin or T-2 toxin in growing broilers [J].Poultry Science,1997,76(9):1205-1211.
    [79]. Huff WE, Kubena LF, Harvey RB, et al. Progression of aflatoxicosis in broiler chickens[J]. Poultry science 1986,65(7):1291-1298.
    [80]. Abdolamir A, Aliraza S, Seyed AM, et al. Evaluation of biochemical and production parameters of broiler chicks fed ammonia treated aflatoxin contaminated corn grains[J]. Animal Feed Science and Technology,2005,122(3):289-301.
    [81]. Howarth B, Wyatt JRD. Effect of dietary aflatoxin on fertility, hatchability and progeny performance of broiler breeder hens[J]. Applied and Enviromental Microbiology,1976,(31): 680-684.
    [82]. Stanley VG, Winsman M, Dunkley C, et al. The Impact of Yeast Culture Residue on the Suppression of Dietary Aflatoxin on the Performance of Broiler Breeder Hens[J]. The Journal of Applied Poultry Research,2004,(13):533-539.
    [83]. 吕武兴,汪前红,贺建华等.黄曲霉毒素B1与吸附剂对肉鸭生长及禽流感疫苗免疫的影响[J].动物营养学报,2010,22(2):431-436.
    [84]. Schell TC, Lindemann M, Kornegay ET, et al. Effects of feeding aflatoxin-contaminated diets with and without clay to weanling and growing pigs on performance, liver function, and mineral metabolism [J]. Journal of Animal Science,1993,71(5):1209-1218.
    [85]. 刘春凌,杨永红,吴伟刚等.母猪黄曲霉毒素中毒对产仔情况的影响[J].河北北方学院学报:自然科学版,2009,25(3):60-63.
    [86]. 于炎湖.饲料毒物学附毒物分析[M].1992,北京:农业出版社.
    [87]. 丁伯良,鄢明华.真菌毒素对动物繁殖性能的影响[J].天津畜牧兽医,1996,13(3):4-6.
    [88]. Diekman MA, Green ML. Mycotoxins and reproduction in domestic livestock[J]. Journal of Animal Science,1992,70(5):1615-1627.
    [89]. Cheng YH, Shen TF, Pang VF, et al. Effects of aflatoxin and carotenoids on growth performance and immune response in mule ducklings[J]. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology,2001,128(1):19-26
    [90]. 呙于明.家禽营养[M].2004,中国农业出版社.
    [91]. 樊红平,候水生,黄苇.鸡、鸭消化系统解剖组织学的比较研[C].中国畜牧兽医学会家禽学分 会,中国畜牧兽医学会家禽学分会第七次代表大会暨第十二次全国家禽学术讨论会.2005:596-600.
    [92]. Marchain U.The nonparallel increase of amylase chymotrysinogen and pmcarboxy peptidase in the developing chicks pancrease[J]. Biochemistry,2001(7):1306-1310.
    [93]. Ikeno T and IKeno K.Amylase activity increase in the yolk offertilized eggs during incubation in chichens[J]. Poultry Science,1991.70(1):2176-2179.
    [94]. James G.G.D Textbook of veterinary physiology [M].1997:Second editon.
    [95]. Uni Z, Ganot S, Sklan D. Posthatch development of small intestine function in the poultry[J]. Poultry Science,1999(78):215-222.
    [96]. Freund JN, Bernard J, Duluc I, et al.Ultrastructural study of intestinal lactase gene expression [J]. Biology of the Cell,1995,83(2-3):211-217.
    [97]. Noren O, Sjostrom H, Cowell GM, et al. Pig intestinal microvillar maltase-glucoamylase Structure and membrane insertion [J]. The Journal of Biological Chemistry,1986, (261):12306-12309.
    [98]. Smithson KW, Millar D, Jacobs LR, et al. Intestinal diffusion barrier: unstirred water layer or membrane surface mucous coat[J]. Science,1981,214(4526):1241-1244.
    [99]. 张玉生.动物生理学[M].2007,吉林:吉林市人民出版社.
    [100]. Edwin T and Moran J. Digestion and Absorption of Carbohydrates in Fowl and Events through Perinatal Development[J].Journal of Nutrition,1985,115(5):655-674.
    [101].凯勒姆斯RO,切奇DC.畜禽营养与饲料学[M].2006,中国农业大学出版社.
    [102].王慧容,刘玉兰,范伟等.三种霉菌毒素吸附剂对肉仔鸡生长性能和免疫功能的影响[J].中国饲料,2008(7):27-33.
    [103].胡源胜.混合霉菌毒素对鸡肠道损伤作用的研究[D].2007,湖南农业大学:湖南.
    [104]. Verma J, Swain B, Johri TS. Effect of various levels of aflatoxin and ochratoxin A and combinations thereof on protein and energy utilisation in broilers [J].Journal of the Science of Food and Agriculture,2002(82):1412-1417.
    [105].王荣梅,苏荣胜,潘家强等.黄曲霉毒素对动物免疫及抗氧化能力的影响[J].饲料研究,2010(2):54-55.
    [106].苏军,陈代文.镰刀菌毒素对断奶仔猪的抗营养效应及葡配甘露聚糖吸附剂的保护作用[J].中 国畜牧杂志,2006,42(19):26-29.
    [107]. Maresca N, Mahfoud R, Garmy N. The mycotoxin deoxynivalenol affects nutrient absorption in human intestinal epithelial cells[J]. Journal of Nutrition,2002,132(9):2723-2731.
    [108]. Sklan D, Klipper E, Friedman A.The effect of chronic feeding of diacetoxyscirpenol, T-2 toxin, and aflatoxin on performance, health, and antibody production in chicks[J].Poultry Science Association, 2001(10):79-85.
    [109]. Ostrowski-Meissner, H. T.Effect of Contamination of Foods by Aspergillusflavus on the Nutritive Value of Protein[J]. Journal of the Science of Food and Agriculture,1984(35):47-58.
    [110]. Smith JW, Hill CH, Hamilton PB. Variation with age in response of broilers to aflatoxin[J].Poultry science,1971(50):768-776.
    [111]. Hamilton P B.Interrelationships of mycotoxins with nutrition[J].Federation Proceedings,1977(36): 1899-1902.
    [112].敖志刚,陈代文.2006-2007年中国饲料及饲料原料霉菌毒素污染调查报告[J].中国畜牧兽医,2008,35(1):152-156.
    [113]. Newberne P and Willam MHB. Acute and Chronic Effects of Aflatoxin on the Liver of Domestic and Laboratory Animals:A Review [J].Cancer Research,1969,(29):236-250.
    [114]. Girdhar SR, Barta JR, Santoyo FA, et al. Dietary putrescine (1,4-diaminobutane) influences recovery of turkey poults challenged with a mixed coccidial infection [J]. J. Nutr,2006,(136): 2319-2324.
    [115].李垚,李焕江,镡龙等.表皮生长因子和胰岛素样生长因子-Ⅰ对21日龄断奶仔猪胃和小肠发育的作用.动物营养学报[J].2005,17(3):44-49.
    [116]. Applegate TJ, Schatzmayr G, Pricket K, et al. Effect of aflatoxin culture on intestinal function and nutrient loss in laying hens. Poultry Science,2009,(88):1235-1241.
    [117]. Khajarern J and Khajarern S. Effect of Fermkito (Natural Product of Chitin, Chitosan and Chitosan Oligosaccharide Fermented with Probiotics) to Reduce the Toxicity of Aflatoxin and Zearalenone in Duck Diets [M].2001, Khon Kaen University: Khon Kaen
    [118]. Geyra A, Uni Z, Sklan D. Enterocyte dynamics and mucosal development in the posthatch chick.Poultry Science,2001,(80):776-782.
    [119]. Lemmens JWTJ. Nucleic acid levels, cellular activity and growth during the puerulus stage of the Western Rock Lobster (Panulirus cygnus (George); Decapoda:Palinuridae). Journal of Experimental Marine Biology and Ecology.1995,(194):143-156.
    [120]. Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. [J] Anal. Biochem,1976,(72):248-254.
    [121]. Shirazi-Beechey SP, Simth MW, YWang,et al. Postnatal development of lamb intestinal digestive enzymes is not regulated by diet[J] Journal of Physiology,1991,(437):691-698.
    [122]. Dahlqvist D. Method for assay of intestinal disaccharidases.Anal. Biochem,1964,(7):18-25.
    [123]. Miura S,Morita A,. Erickson RH, et al.Content and turnover of rat intestinal microvillus membrane aminopeptidase:effect of methylprednisolone.Gastroenterology,1983,(85) 1340-1349.
    [124]. Sommer AJ. The determination of acid and alkaline phosphatase using p-nitrophenyl phosphate as substrate. [J]Amer. J. Med. Tech,1954,(20):244.
    [125].冯光德,何健,刘永福等.自然霉变玉米对肉鸭生长曲线的影响[J].饲料工业,2010,31(14):42-44.
    [126]. Bintvihok A. Controlling aflatoxin danger to ducks and duck meat [J].World Poultry,2002,17(11): 18-19.
    [127]. Shen HM, CY Shi, Y Shen, et al. Detection of elevated reactive oxygen species level in cultured rat hepatocytes treated with aflatoxin B1 [J]. Free Radic. Biol. Med,1996,(21):139-146.
    [128]. Towner RA, R.P.M, Reinke LA. In vivo detection of aflatoxin-induced lipid free radicals in rat bile [J]. Biochimica et Biophysica Acta (BBA)-General Subjects,2002,1573(1):55-62.
    [129]. Towner RA, Qian SY, Kadiiska MB, et al. In vivo identification of aflatoxin-induced free radicals in rat bile [J]. Free Radic. Biol. Med,2003,35(10):1330-1340.
    [130]. Warren MF, Hamilton PB. Intestinal Fragility During Ochratoxicosis and Aflatoxicosis in Broiler Chickens [J]. Applied and Environmental Microbiology,1980,40(3):641-645.
    [131]. Iji PA, Saki A, Tivey DR. Intestinal structure and function of broiler chickens on diets supplemented with a mannan oligosaccharide[J]. Journal of the Science of Food & Agriculture, 2001b,(81):1186-1192.
    [132]. Fasina YO, Moran ET, Ashwell CM, et al. Effect of Dietary Gelatin Supplementation on the Expression of Selected Enterocyte Genes, Intestinal Development and Early Chick Performance [J]. International Journal of Poultry Science,2007,6(12):944-951.
    [133]. Tengjaroenkul B, Smith BJ, Caceci T. Distribution of intestinal enzyme activities along the intestinal tract Nile tilapia, Oreochromis nilotieus L [J]. Aquaculture,2000,(182):317-327.
    [134]. Wood SR, Zhao Q. Smith LH, et al. Altered morphology in cultured rat intestinal epithelial IEC-6 cells is associated with alkaline phosphatase expression[J]. Tissue Cell,2003,(35):47-58.
    [135]. 陆东海,张永青,陈安国等.外源核苷酸对断奶仔猪内脏器官重、血清指标及空肠黏膜二糖酶活性的影响[J].饲料工业,2008,29(11):37-39.
    [136]. Largmani C. Evaluation of anionic trypsin for acute pancreatitis [J]. Methods Enzymol,1990,74(2): 272-290.
    [137]. Danicke S, Matthes S, Halle I. Effects of graded levels of Fusarium toxin-contaminated wheat and of a detoxifying agent in broiler diets on performance, nutrient digestibility and blood chemical parameters [J]. British Poultry Science,2003,44(1):1466-1799.
    [138].杨胜.饲料分析及饲料质量检测技术[M].1993,北京:北京农业大学出版社.
    [139].张驰宇,张高红,杨敏等.四步法消除SYBR Green I实时定量RT2PCR中引物二聚体的影响[J].中国生物化学与分子生物学报,2004,20(3):387-392.
    [140]. Sklan D and Noy Y. Hydrolysis and absorption in the small intestines of posthatch chicks[J]. Poult Sci,2000,(79):1306-1310.
    [141]. Croom WJ, Brake J, Coles BA, et al. Is intestinal absorption capacity rate-limiting for performance in poultry[J]. Appl. Poult. Res,1999,(8):242-252.
    [142].李剑.瘦素与葡萄糖代谢的关系[J].国外医学内分泌学分册,2000,20(6):314-317.
    [143]. Bartek J, Bartos J, Galuska J. Expression of ob gene coding the production of the hormone leptin in hepatocytes of liver with steatosis[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2001,145(1):15-20.
    [144].侯然然,谢鹏,张敏红等.葡甘露聚糖对饲喂黄曲霉毒素B1饲粮的肉仔鸡肝生化指标和组织的影响[J].中国畜牧兽医杂志.2008,2(2):152-157.
    [145]. 程安春,刘艳丽,朱德康等.用黄曲霉毒素B1单抗介导免疫组化法检测雏鸭感染黄曲霉毒素的分布规律研究[J].中国农业科学,2008,41(8):2460-2466.
    [146]. 马志科,咎林森.黄曲霉毒素危害、检测方法及生物降解研究进展[J].动物医学进展,2009,30(9):91-94.
    [147]. Harvey RB, Kubena Fhillips PT. Evaluation of aluminosilicate compounds to reduce aflatoxin residues and toxicity to poultry and livestock[J]. Science of the total environment, 1993,134:1453-1457.
    [148]. Emond M, Schwartz GJ, Ladenheim EE, et al. Central leptin modulates behavioral and neural responsivity to CCK[J]. Am. J. Physiol,1999,(276):1545-1549.
    [149]. Claire AM, Dana FR,Todd AC, et al. Cholecystokinin and leptin act synergistically to reduce body weigh[J]. Am J Physiol,2000,(278):882-890.
    [150]. Claire AM, Michael F, Wiater A, et al. Synergy Between Leptin and Cholecystokinin (CCK) to Control Daily Caloric Intake[J]. Peptides,1997,18(8):1275-1278.
    [151]. Barrachina MD,Martinez V, Wang L, et al. Synergistic interaction between leptin and cholecystokinin to reduce short term food intake in lean mice[J]. Proc. Natl. Acad. Sci USA,1997,(94):10455-10460.
    [152]. Alder G, Nelson DK, Katshinski M. Neurohormonal control of human pancreatic exocrine secretion[J]. Pancreas,1995,(10):1-13.
    [153]. Niebergall-Roth E, Krammer HJ, Radke R, et al, Extrinsic and intrinsic innervation of the pancreas —mediators of pancreatic exocrine secretion[J]. Z Gastroenterol,1997a, (35):47-57.
    [154]. 雷金龙.围产期奶牛血清中GHs IGF-I及部分生化指标变化规律的研究[D].2008,内蒙古农业大学:呼和浩特.
    [155]. Barrin DG, Wester T, Davis TA, et al. Orally administered IGF-I increases intestinal mucosal growth in frmulafed neonatal pigs[J]. Am Physiol,1996,(270):1085-1091.
    [156]. Tessari ENC, Oliveira CAF, Cardoso ALSP, et al. Effects of aflatoxin B1 and fumonisin B1 on body weight, antibody titres and histology of broiler chicks[J]. British Poultry Science 2006,47(3): 357-364.
    [157]. Kang Z and Buchenauer H. Immunocytochemical localization of fusarium toxins in infected wheat spikes by Fusarium culmorum [J]. Physiological and Molecular Plant Pathology,1999,55(5): 275-288.
    [158]. Schwarz PB, Schwarz JG, A Zhou, et al. Effect of Fusarium graminearum and F. poae infection on barley and malt quality[J]. Monatsschrift fur Brauwissenschaft,2001,3(4):55-63
    [159]. Sahu A. Leptin signaling in the hypothalamus:emphasis on energy homeostasis and leptin resistance [J]. Frontiers in Neuroendocrinology,2003,24(4):225-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700