用户名: 密码: 验证码:
高地应力峡谷高拱坝坝基开挖扰动效应与反弧开挖形式优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕高地应力地区峡谷高坝坝基开挖扰动效应与河床坝基反弧形开挖形式优化问题,以拉西瓦高拱坝坝基开挖设计为应用背景,就高地应力峡谷区复杂地应力场的非线性反演方法、坝基开挖扰动与锚固支护效应、坝基反弧形开挖形式设计优化以及坝基岩体工程力学性状等方面开展了系统研究,并将研究成果应用于工程设计方案。主要内容包括:(1)在对目前几种典型地应力反演方法进行综合分析的基础上,根据“反演正算”原理,基于地应力实测数据的统计分析和确定性数值计算方法,考虑地应力随埋深的非线性分布特征和岩体非线性力学特性,通过综合集成神经网络的自学习功能和遗传算法的全局寻优能力,首先研究并提出了一种高地应力峡谷区复杂地应力场的非线性反演方法;进而以实测资料为依托,开展了拉西瓦工程地应力场的非线性反演,分析了高地应力峡谷区地应力场的分布特征与形成机理。(2)在上述地应力非线性反演结果基础上,通过详细仿真,模拟坝基开挖步序与锚固支护等施工过程,对拉西瓦高地应力峡谷坝基开挖扰动问题开展了深入研究,根据拉西瓦工程坝基岩石真三轴试验结果提出了拉西瓦工程坝基开挖破坏区的确定方法;通过多方案对比分析获得了高地应力峡谷坝基开挖后的应力、变形与屈服破坏等开挖扰动特征;揭示了锚固措施对坝基开挖扰动应力、变形及屈服破坏的加固支护效应;讨论并提出了关于高地应力峡谷坝基开挖扰动与锚固效应的若干重要结论。(3)根据拉西瓦拱坝坝基的地质条件和高地应力环境,确定了拉西瓦高拱坝建基面高程;针对高地应力区狭窄河谷而提出的。首次提出了对高地应力峡谷坝基采用反弧形开挖形式的设计优化理念;进而采用平面和三维非线性有限元方法,针对新提出的反弧形开挖形式和常规的平底开挖形式的卸荷变形、应力分布特征、岩体强度安全度屈服破坏范围以及坝体应力状况等开展了全面的比较研究,论证了拉西瓦坝基采用反弧形开挖形式的合理性和先进性。(4)采用物探手段以及钻孔摄像等多种手段,对施工过程中拉西瓦河床坝基岩体工程性状开展了现场综合测试,实测确定了拉西瓦坝基岩体在开挖锚固下的卸荷松弛带厚度,验证了反弧形开挖与分步开挖锚固能较好解决高地应力峡谷坝基开挖卸荷问题,可更好地适应和满足高地应力峡谷坝基施工与建设的安全要求,从而表明了本文对拉西瓦坝基开挖扰动效应研究以及反弧形开挖形式优化设计的技术思路是成功的。本文的研究成果对类似高地应力峡谷坝基工程具有良好的应用推广价值。
Focusing on the Excavation Disturbed Zone (EDZ) and the optimizing ogee excavation scheme of High-geostress Dam Foundation at deep valley region, a new nonlinear back analysis method of geostress field of high-stress valley region, the excavation disturbing and anchoring effects of high-stress dam foundation, the optimization design of ogee excavation scheme, as well as the mechanical properties of the dam foundation rock masses are systematically studied. The results are comprehensively applied to the safety assessment and design optimization of Laxiwa dam foundation on Yellow River. The following contents are included in this thesis: (1) According to the back analysis idea using forward calculation, a new nonlinear back analysis of geostress field is developed based on the integration of numerical computation, artificial neural network (ANN) and genetic algorithm (GA), in which both the nonlinear distribution characteristics of geostress with burial depth and the nonlinear mechanical behavior of rock mass are taken into account. Moreover, the new nonlinear back analysis method is applied to the engineering background of Laxiwa hydropower project located on the upper reach of Yellow River. (2) Based on the results of geostress field and a detailed numerical simulation of excavation and anchoring processes, the excavation disturbing and anchoring effects of high-stress dam foundation of Laxiwa hydropower engineering are systematically studied. The excavation disturbing characteristics of stress, deformation, yielding and failure zones of the dam foundation are derived. The method of determining the failure zone is provided according to the results of true triaxial tests on granite in the dam foundation. The reinforcing effects on the aspects of stress, deformation, yielding and failure zones of the dam foundation are revealed. Furthermore, the excavation disturbing and anchoring problems of the high-stress dam foundation are profoundly discussed and a series of important conclusions are drawn. (3) The elevation of foundation boundary of Laxiwa dam is determined based on the analysis of geological conditions and high geostress. Through the comparison of ogee excavation scheme andflat-bottom excavation scheme, at the first time, the optimization design of ogee excavation scheme is provided for the high-stress arch dam foundation. Then, the unloading deformations, stress distributions, and safety factors of dam foundation and the stress distribution characteristics of the dam body under the different excavation schemes are computed and analysed, using 2D and 3D FEM, respectively. And thereby, the rationality of ogee excavation scheme is verified for the high-stress dam foundation. (4) A large-scale comprehensive tests on the engineering and mechanical properties of dam foundation rock masses are conducted, using seismic reflection method, sonic method and borehole photography, etc. the depths of relaxation zone of dam foundation due to excavation are determined. The results demonstrate that the problems induced by excavation of high-stress dam foundation can be solved by the combination of ogee excavation scheme, step-by-step excavation and reinforcement. The achievements presented in this thesis can be expanded into the other similar dam foundation engineering at high-stress valley region.
引文
[1]潘家铮,何璟.中国大坝50年[M],北京:中国水利水电出版社, 2000
    [2]彭程等. 21世纪中国水电工程[M],北京:中国水利水电出版社, 2006
    [3]伍法权.中国21世纪若干重大工程地质与环境问题,工程地质学报, 2001, 9(2):115-120
    [4]汝乃华,姜忠胜.大坝事故与安全·拱坝[M],北京:中国水利水电出版社, 1995
    [5]张楚汉.水利水电工程科学前沿[M],北京:清华大学出版社, 2002
    [6]黄润秋.岩石高边坡发育的动力过程及其稳定性控制,岩石力学与工程学报, 2008,27(8): 1525-1544
    [7]刘允芳等.岩体地应力与工程建设[M],武汉:湖北科学技术出版社,2000
    [8]李建林,孙志宏.卸荷岩体损伤断裂力学分析及其参数研究.武汉水利电力大学(宜昌)学报, 1999, 21(4):277-282.
    [9] Sheng Q, Yue Z Q, Lee C F. Estimating the excavation disturbed zone in the permanent shiplock slopes of the Three Gorges Project, China. International Journal of Rock Mechanics & Mining Sciences, 2002, 39(2): 165-184.
    [10] Griffiths D V, Lane P A. Slope stability analysis by finite elements. International Journal of Rock Mechanics & Mining Sciences, Geotechnique, 1999, 49(3): 387-403.
    [11]黄润秋.中国西南岩石高边坡的主要特征及其演化.地球科学进展, 2005, 20(3): 292-297.
    [12]刘国霖.陡高边坡节理岩体卸荷岩体力学的物理基础.武汉水利电力大学(宜昌)学报, 2000, 22(3): 185-190.
    [13]李宁,张鹏,于冲.边坡预应力锚索加固的数值模拟方法研究.岩石力学与工程学报, 2007, 26(2): 254-261.
    [14]张国新,赵研,彭校初.考虑岩桥断裂的岩质边坡倾倒破坏的流形元模拟.岩石力学与工程学报, 2007, 26(9): 1773-1780.
    [15]张有天,周维垣.岩石高边坡的变形与稳定[M],中国水利水电出版社, 1999.
    [16]白兴平,巨广宏,贺咏梅.黄河拉西瓦水电站坝区天然高边坡特征及其治理.中国地质灾害与防治学报, 2006, 17(4): 6-10.
    [17]黄岩松,周维垣,杨若琼等.拉西瓦拱坝稳定性分析与评价.岩石力学与工程学报, 2006, 25(5):901-905.
    [18]杨根兰,黄润秋,林锋等.西南某电站河床坝基开挖卸荷条件下变形破坏的数值分析.工程地质学报, 2007, 15(3): 356-361.
    [19]王瑞红,李建林,刘杰等.考虑岩体开挖卸荷动态变化水电站坝肩高边坡三维稳定性分析.岩石力学与工程学报, 2007, 26(Supp.1):3515-3521.
    [20]张季如.边坡开挖的有限元模拟和稳定性评价.岩石力学与工程学报, 2002, 21(6): 843-847.
    [21]赵明华,刘晓平,冯汉斌等.小湾电站高边坡的稳定性监测及分析.岩石力学与工程学报, 2006, 25(Supp.1): 2746-2750.
    [22]王晓春,聂德新,冯庆祖. V型河谷地应力研究.工程地质学报, 2002, 10(2):146-151
    [23]蔡美峰,何满潮,刘东燕.岩石力学与工程[M].北京:科学出版社, 2004
    [24] E. T. BROWN, E. HOEK. Trends in Relationships between Measured In-Situ Stress and Depth. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 15, pp. 211~215, 1978
    [25]周宏伟,谢和平,左建平.深部高地应力下岩石力学行为研究进展.力学进展, 2005, 35(1):91-99
    [26] W. R. McCUTCHEN. Some Elements of a Theory for In-Situ Stress. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 19, pp. 201~203, 1982
    [27] P. R. SHEOREY. A Theory for In-Situ Stresses in Isotropic and Transversely Isotropic Rock. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr. Vol. 31, pp. 23~34, 1994
    [28]邵国建.岩体初始地应力场的反演回归分析.水利水电科技进展, 2000, 20(5):36-38
    [29]丰定祥,谷先荣,杨家岭等.关于地下工程有限元分析中初始地应力场的假定.地下工程, 1982(2):20-27
    [30]郭怀志,马启超,薛玺成等.岩体初始应力场的分析方法.岩土工程学报, 1983, 5(3):64-75
    [31]肖明.地下洞室围岩稳定与支护数值分析方法研究[D].武汉大学博士学位论文, 2002
    [32]张有天,胡惠昌.地应力场的趋势分析.水利学报, 1984(4):31-38
    [33]肖明.三维初始应力场反演与应力函数拟合.岩石力学与工程学报, 1989, 8(4):337-345
    [34]邓建辉,李焯芬,葛修润. BP网络和遗传算法在岩石边坡位移反分析中的应用.岩石力学与工程与学报, 20001, 20(1):1-5
    [35]蒋中明,徐卫亚,邵建富.基于人工神经网络的初始地应力场的三维反分析.河海大学学报, 2002, 30(3):52-56
    [36]周思孟等.复杂岩体若干岩石力学问题[M].北京:中国水利水电出版社, 1998.
    [37]于学馥,于加,徐俊.岩石力学新概念与开挖结构优化设计[M].北京:科学出版社,1995.
    [38]钱七虎.深部岩体工程响应的特征科学现象及“深部”的界定.华东理工学院学报, 2002, 27(4): 21-23.
    [39]方祖烈.拉压域特征及主次承载区的维护理论[M].北京:煤炭工业出版社, 1999.
    [40]董方庭,朱宏伟,郭志宏等.巷道围岩松动圈支护理论. 1994, 19(1): 21-31.
    [41]宋宏伟,王闯,贾颖绚.用地质雷达测试围岩松动圈的原理与实践.中国矿业大学学报, 2002, 31(4): 370-373.
    [42]史永东,张凯,赵海军.弹性波测试技术在巷道围岩松动圈中的应用.有色矿冶, 2002, 18(6):1-4.
    [43]祁方坤,赵祉君.应用围岩松动圈理论支护特大断面硐室.矿山压力与顶板管理, 2003(2): 39-40.
    [44]靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究.岩石力学与工程学报, 1999, 18(1):70-74.
    [45] Fairhurst, C.and Damjanac, B. The Excavation Damage Zone-An InternationalPerpective. In Distinct element Modeling in Geomechanics,Edit by Sharma,V.M., A.A.Balkema,Rotterdam, Brookfield, 1999, pp:1-25.
    [46] Falls, S.D. and Young, P.R.Examination of the excavation-disturbed zone in the Swedish ZEDEX tunnel using acoustic emission and ultrasonic velocity measurements[J]. In Proceeding of EUROCK’96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy,A.A.Balkema, Rotterdam,1996,Vol.2,pp:1337-1344.
    [47] Bauer,C., Homand-Etienne, F.,and Hinzen,K.G..Damage zone characterization in near field in the Swedish ZEDEX tunnel using in situ an laboratory measurements[J]. In proceedings of EUROCK’96 Prediction and Performance in Rock Mechanics and Rock Engineering Torino,Italy, A.A.Balkema,Rotterdam,1996,Vol.2,pp:1345-1352.
    [48] Davies ,N.and Mellor,D.Review of excavation disturbance measurements undertaken within the ZEDEX project [J]. In Proceeding of EUROCK’96 Prediction and Performance in Rock Mechanics andRockEngineering,Torino,Italy,A.A.Balkema,Rotterdam,1996,Vol.2,pp:1315-1322.
    [49] Emsley, S.J.,Olsson,O.,stanfors,R.,Stenberg,L.,Cosma,C. Intergrated characterization of a rock volume at the Aspo HRL utilized for EDZ experiment. In Proceeding of EUROCK’96 Prediction and Performance in Rock Mechanics and Rock Engineering,Torino, Italy, A.A.Balkema, Rotterdam, 1996, Vol.2, pp:1329-1336.
    [50] Olsson,O., Backblom.G.,et.al.Planning,organization and execution of an EDZ experiment while excavating teo test drifts by TBM boring and blasting respectively. In Proceeding of EUROCK’96 Prediction and Performance in Rock Mechanics and Rock Engineering, Torino, Italy, A.A. Balkema, Rotterdam,1996, Vol.2, pp:1323-1327.
    [51] Stephen D.Falls, R.Paul Young.Acoustic emission and ultrasonic-velocity methods used to characterize the excavation disturbance associated with deep tunnels in hard rock. Tectonophysics, 1998, Vol.289,pp:1-15.
    [52] Paul Bossart, Thomas Trick,Peter M..Meier,Juan-Carlos Mayor.Structural and Hydrogeological characterisation of the excavation-disturbed zone in the Opalinus Clay (Mont terri Project, Switzerland). Applied clay science, 2004, pp:1-20.
    [53] Zhengmeng Hou.Mechanical and hydraulic behavior of rock salt in the excavation disturbed zone around underground facilities. International Journal of Rock Mechanics & Mining Sciences,2003, vol.40, pp:725-738.
    [54] M.souley, F.Homand, S.Pesa, D.Hoxha, Damage induced permeability changes in granite-a case example at URL in Canada. International Journal of Rock Mechanics & Mining Sciences, 2001, vol.38, pp:297-310.
    [55] R.P.young. Seismic studies of rock frature at the Underground Research Laboratory.International Journal of Rock Mechanics & Mining Sciences, 2003, vol.41, pp:1277-1303.
    [56] R,A.Everitt, E.Z.Lajtai. The jifluence of rock fabric on excavation damage in the Lac du Bonnet granite. International journal of Rock Mechanics & Mining Sciences, 2002, vol.38,pp:1305-1316.
    [57] T. Sato, T.Kikuchi, K.sugihhara. In-situ experiments on an excavation disturbed zone induced by mechanical excavation in Neogence Sedimentary rock at Tono mine. Center Japan, Engineering Geology, 2000, vol.52, PP:337-359.
    [58] Goodman R.E., Kieffer D.S. Behaxior of rock slopes.Journal of Geotechnical and Geoenvironmental Engineering,ASCE, 2000, 126(8):675-684.
    [59]葛修润,等.三峡工程临时船闸和升船机之间岩体力学性状研究总报告,中国科学院武汉岩土力学研究所,水利部长江水利委员会,香港大学, 1997.
    [60]夏熙伦,周火明,盛谦等.三峡工程船闸高边坡岩体松动区及其性状.长江科学院院报, 1999, 16(4):1-5.
    [61]王夫亮.关于确定围岩松弛区半径及其相关问题的探讨.铁道工程学报, 1998(2):57-65.
    [62]周希圣,宋宏伟.国外围岩松动圈支护理论研究概况.建井技术, 1994, 4(5):67-69.
    [63] M.Cai, P.K.Kaiser. Assessment of excavation damaged zone suing a micromechanics model. Tunneling and Underground Space Technology, 2005, vol.20:301-310.
    [64] S.mitaim, E.Detournay. Damage around a cylindrical opening in a brittle rock mass. International journal of Rock Mechanics & Mining Sciences, 2004, vol.41, pp:1447-1457.
    [65]刘刚,宋宏伟.围岩松动区影响因素的数值模拟.冶矿工程, 2003(23):1-3.
    [66]吉小明.隧道开挖的围岩损伤扰动带分析.岩石力学与工程学报, 2002, 24(10):1697-1702.
    [67]杨林德等.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.
    [68]杨志法.关于位移反分析的某些考虑.岩石力学与工程学报,1995(14):11-16.
    [69]周希圣,陈明雄等.围岩松动圈灰色预测理论.煤炭学报, 1997, l6(2):15-16.
    [70]高玮,郑颖人.围岩松动圈灰预测的进化神经网络法.岩石力学与工程学报, 2002,21(5): 658-661.
    [71]朱伯芳,贾金生,饶斌,厉易生.拱坝体形优化的数学模型,水利学报, 1992(3): 23-32
    [72]朱伯芳,贾金生,厉易生等.拱坝的智能优化辅助设计系统—ADIOCAD,水利学报, 1994 (7) :32-37
    [73]厉易生.双目标优化的有效点集及拱坝双目标优化,水力发电, 1998(11):10-14
    [74]刘德富.拱坝封拱温度场多目标线性规划方法研究,水利学报, 1998(8): 77-80
    [75]刘德富.拱坝封拱温度场及体形综合优化方法,水利学报, 1998(3): 34-38
    [76]刘德富,李文正,刘从新.拱坝近似优化的人工神经网络方法,武汉水利电力大学学报, 1998,31(4): 22-25
    [77]柴军瑞,刘浩吾.高拱坝研究新进展,水利水电科技进展, 2001,21(6): 1-4
    [78]黎展眉.复形法在拱坝优化中的应用,贵州工学院学报, 1992,21(1): 9-12,51
    [79]张宇鑫,黄达海,刘德福.高拱坝混凝土温度控制优化设计研究,水利水电技术, 2003,34(4): 25-29
    [80]汪树玉,刘国华,杜王盖,马以超.拱坝多目标优化研究与应用,华东水电科技, 1994(4): 49-55
    [81]孙文俊,孙林松,王德信,李春光.拱坝体形的两目标优化设计,河海大学学报, 2000,28(3): 39-43
    [82]贾金生,朱伯芳.拱坝体形选择的专家系统,水利学报, 1992(8): 25-31
    [83]高键.拱坝体型的优化设计,云南水力发电, 1996(3): 52-56
    [84]张海南,刘国华.混合线型拱坝的优化设计,水利水电技术, 1999,30(1): 8-12
    [85]苏超,余天堂,姜弘道.基于有限单元法的高拱坝动力优化设计方法及其应用,河海大学学报, 2002,30(1): 1-5
    [86]黎满林,常晓林,周伟.基于有限元方法的拱坝体形优化研究,水电能源科学, 2003,21(2): 25-28
    [87]谢能刚,孙林松,王德信.静力与动力荷载下高拱坝体型多目标优化设计,水利学报, 2001(10): 8-11
    [88]孙林松,王德信,孙文俊.考虑开裂深度约束的拱坝体形优化设计,水利学报, 1998(10):18-22
    [89]徐则民,黄润秋,陈颖辉,罗杏春.河谷应力集中及岩体响应.工程勘察, 2003(1):4-7.
    [90]王泳嘉,邢纪波.离散单元法同拉格朗日元法及其在岩土力学中的应用,岩土力学, 1995(2): 1-14.
    [91]张东日,陶连金,李风仪等.拉格朗日元法及其应用软件[J].矿山压力与顶板管理, 1997(3- 4) : 224- 226.
    [92]郑颖人.岩土材料屈服与破坏及边(滑)坡稳定分析方法研讨—“三峡库区地质灾害专题研讨会”交流讨论综述.岩石力学与工程学报, 2007,(4):649-661.
    [93]郑颖人.广义塑性力学.北京:中国建筑工业出版社,2002.
    [94]董育坚.关于混凝土坝坝基岩体利用标准和开挖深度问题.水力发电, 1988(6) .
    [95]李仲春.试论坝基开挖标准与深度系统评价.四川水力发电, 1986(2)
    [96]白俊光,陈永福.高地应力地区拱坝坝基合理开挖形式的研究.水力发电, 2007(11):45-47.
    [97]鲍永龙,万金兰.拉西瓦水电站双曲拱坝基础开挖技术的创新.西北水力发电,2006(22):79-81.
    [98]陈正峰.高拱坝坝基开挖对建基岩体工程特性影响的研究[D].成都理工大学,2007
    [99]陈红其.拱坝坝肩岩体空间稳定分析[D]四川大学, 2005 .
    [100]谌伟宁,何金平.峡口水利水电枢纽工程双曲拱坝优化设计.中国农村水利水电, 2004 (11) :61-64.
    [101]蔡为武.拱坝设计与施工的几个问题.东北水电科技. 1979(2):1-15.
    [102]朱伯芳.国际拱坝学术讨论会综述.混凝土坝技术. 1987(2).
    [103]黎展眉.拱坝[M].北京:水利电力出版社.1982.
    [104]朱伯芳.拱坝设计与研究[M] .北京:中国水利水电出版社,2002.
    [105]李瓒.混凝土拱坝设计[M] .北京:中国电力出版社,2000.
    [106]李文武,光面爆破在拱坝坝基开挖中的应用,浙江水利科技,2002
    [107]傅荣华.坝基开挖深度的研究现状与发展趋势.成都理工大学学报(自然科学版), 1993,(01)
    [108]戚蓝,马启超,李广远.对坝基开挖工程岩体稳定性有影响的几个因素.天津大学学报(自然科学与工程技术版), 1999,(01):27-32.
    [109]陈正峰,张勇.坝基开挖产生的爆破松弛带厚度确定.地质灾害与环境保护, 2007,(03) :47-50.
    [110]邓毅国.大朝山水电站坝基开挖优化设计.水力发电, 1998(9):47-49.
    [111]中华人民共和国水利部.混凝土拱坝设计规范(SL282-2003).中国水利水电出版社.2003年.
    [112]郭海庆.复杂混凝土坝坝基对坝体结构行为影响的分析理论和方法研究[D].河海大学, 2002 .
    [113]向衍.高坝坝体与复杂坝基互馈的力学行为及其分析理论[D].河海大学, 2004
    [114]周建平,陈观福,党林才.我国高坝抗震安全评价的现状与挑战.水利学报,2007,增刊:54-59.
    [115]陈厚群.混凝土大坝抗震中的力学问题.力学与实践,2006 ,28 , (2) : 1 - 8.
    [116]董兰凤,陈万业,拉西瓦水电站峡谷地应力场特征研究,岩石力学与工程学报,2003:2544-2547.
    [117]袁志君.高地应力对坝基岩体稳定的影响.四川水力发电, 1999,(03):25-27.
    [118]邹丽春,高拱坝坝基稳定研究,水力发电, 2001:63-65
    [119]岳崇旺,王祝文,徐加益.电磁波层析技术在工程地质中的应用.物探与化探, 2008(2):216-219.
    [120]欧阳立胜.电磁波CT技术在探测堤坝工程中的应用.华南地震, 2002(1):64-69.
    [121]崔春林.钻孔电磁波层析成像CT技术及其应用.山西水利科技, 2005(1):83-85.
    [122]葛修润,王川婴.数字式全景钻孔摄像技术与数字钻孔.地下空间, 2001(4) :254-261.
    [123]王川婴,葛修润,白世伟.数字式全景钻孔摄像系统及应用.岩土力学, 2001(4) :522-525.
    [124]王川婴, LAWK Tim.钻孔摄像技术的发展与现状.岩石力学与工程学报, 2005(19):3440-3448.
    [125]吴国晓,杨凤根.物探新技术在工程地质中的应用现状及其进展.西部探矿工程, 2007(1): 118-120.
    [126]方丹,黄太平,姜荣梅.钻孔弹模计及声波仪检测岩体质量的试验研究.电力勘测设计, 2005 (3):18-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700