用户名: 密码: 验证码:
烟草废弃物热解和气化的实验及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
众所周知,合理开发利用清洁的可再生能源是解决日益严峻的化石能源形势和日趋恶化的生态环境的重要手段。生物质能作为目前唯一一种可存储和运输的可再生能源,其资源化利用备受世界瞩目。烟草行业是我国重要经济支柱产业,卷烟加工会产生近30%烟草废弃物,如何将这些废弃物高效、清洁转化利用,不仅对地区经济社会的发展和环境保护有着重要意义,而且有益于当地建立持续发展的能源系统。生物质热化学转化技术是实现其能量转化最有效的方式,尤其是热解和气化将其转化为高品位的气体燃料。然而产品气中的高焦油含量居高不下严重限制了气化产品气的应用,生物质的催化热解和水蒸气催化气化被认为是减少其产品气中焦油含量最有效的办法。本文以烟草废弃物为研究对象,对其催化热解和水蒸气气化技术展开了系统的研究,对于揭示生物质热解和气化机理具有重要的意义。
     本文中热解和气化实验所使用的烟草废弃物原料,由于原料的原始形状和颗粒大小通常不一致,为了能得到不同粒径大小的样品,便于实验和分析测试,首先要对原材料进行干燥、破碎和筛分。样品理化分析结果表明:烟草废弃物相对煤而言有较低的固定碳含量,较高的挥发份含量。而且原料中元素N和S含量极低,灰分含量小于4%,因此,烟草废弃物是一种环境友好的生物质能源。同时,本文还自制了负载型纳米镍基催化剂,以纳米氧化镍为活性成分,纳米氧化粉体先采用均匀沉淀法制备,再利用沉淀——沉积法将其负载到γ-Al_2O_3载体上得到NiO/γ-Al_2O_3催化剂,并利用APSP2020、SEM、EDX等手段对其进行了表征和分析。结果表明:催化剂有比较高的外表面积和比表面积,其中NiO负载量超过13wt.%,而且活性组分NiO主要集中在催化剂的表面,这种结构有利于NiO的催化作用,同时还能节约成本。
     利用TGA-DSC对烟草废弃物热解特性进行了系统的研究,并分析了TG-DTG和DSC曲线了解样品的热失重行为和热解特征参数,同时研究升温速率、颗粒大小和催化剂对生物质热解特性的影响,还利用Doyle和Friedman两种动力学模型计算出生物质热解反应动力学参数E和A。结果表明:样品的热裂解过程分为脱水、烘焙、热解和炭化四个阶段。升温速率的提高和催化剂对烟草废弃物的热解反应速率都有显著提高的作用。
     采用TG-GC相结合的方法,开展了烟草废弃物水蒸气催化气化的实验研究,探讨了以NiO和白云石为催化剂,在水蒸气气氛下的烟草废弃物的挥发份析出特性,半焦的气化特性、气化反应动力学特性以及催化剂对气体产物特性的影响。结果表明:样品在水蒸气气氛下的失重过程表现出明显的“两段性”,第一段为挥发分析出阶段,温度范围为217~357℃,水蒸气对此阶段的影响很小,可以忽略不计;第二段为水蒸气与第一阶段剩余的焦炭发生气化反应的阶段,温度范围为717~805℃。气化反应中热解阶段视为一级反应,半焦气化视为缩核反应。催化剂对气化反应有促进作用,提高了气体产物的产量和品质,合成气的产量有明显增加,而焦油的裂解被明显加强。添加NiO时,H2的产率最大,达到34mol/kg;添加白云石时,CO的产率最大,达到23mol/kg。
     为了进一步了解烟草废弃物热解机理和热解产物的特性,采用管式电加热炉配合气相色谱仪对烟草废弃物热解产物的分布进行了详细研究,主要考查了热解终温、固相停留时间和催化剂的添加对气体产物特性的影响。研究发现高温有利于H2和CO的产生。在NiO/γ-Al_2O_3催化剂的作用下,在850℃气体产率达到1.52Nm3/kg,H2的含量达到38.6vol.%,气体产物的热值约为15MJ/m3,可以直接用于燃气轮机、引擎和锅炉的燃烧。同时,对整个热解系统在900℃下干燥烟草废弃物的热解过程进行了能量和能量平衡计算分析,结果表明:热解系统建立的质量平衡的误差为1%;因为烟草废弃物热解过程中每一个环节都会存在一定的能量损失,而且原料中存储的化学能也不可能完全转化热解产物的化学能,所以此热解系统的制气效率、能源回收率和能耗比分别为42.16%、89.01%和2.49。
     在连续进料的方式下利用实验室规模的鼓泡流化床气化系统,对烟草废弃物水蒸气气化进行了深入研究,主要考查反应温度和S/B对气体产物特性的影响。实验结果表明:随着气化温度从700℃升高至850℃,气体中H2的含量从50.5增加至54.4%,CO的含量从14.3%提高到18.5%,而CO_2和CH_4呈现相反的变化趋势;随着S/B的升高H2的产量先从0.037kg/kg大幅增加到0.07kg/kg,再缓慢增加到0.095kg/kg,最后慢慢趋于平稳甚至减小,所以水蒸气最佳通入量为1.32(S/B)。
     此外,由于烟草废弃物水蒸气气化反应的计算结果与实验结果有一定的偏差,因此需要对热力学模型进行适当的修正,从而使得模型计算结果与实验结果更加匹配。模型计算结果表明:各组分气体在几种气化炉温度和S/B工况下的变化趋势与实验结果相似,两者之间RMS误差平均值达到2.990,但模型添加修正系数以后,两者之间的RMS误差平均值降低到1.985,说明修正以后的计算结果跟实验结果更加匹配。
As is known to all, exploring novel energy resource and clean conversion technologieshave become an important and timely research way to solve the excessive use of fossilfuels and the concerns over environmental protection. At present, biomass, as the onlyrenewable energy which can be stored and transported has attracted increasing worldwideinterest. Tobacco has been considered as one of the most important agricultural products inChina. However, tobacco wastes accounted for more than30%of the tobacco plantsproduction which counld not be used for cigarwtte production. Thus, how to treat thistremendous amount of wastes by novel and clean technologies, can promote thedevelopment of social economy, improve ecological environment and establish sustainableenergy system. Biomass thermochemical conversion is considered to be one of the mostefficient ways for converting biomass to bio-oil and bio-char especially for fuel gas whichhas high quality. However, high yield of tar in fuel gas prodution inhibits the furtherdevelopment and commercialization of biomass thermochemical conversion. Catalyticpyrolysis and steam gasification are considered as the most potent technique to decrease taryield, thus to improve the quality of fuel gas. In this study, we carried out an in-depthresearch on tobacco wastes catalytic pyrolysis and steam gasification, which were essentialto understand the fundamentals and mechanisms involved in biomass pyrolysis andgasification.
     This study primarily focused on tobacco wastes as feedstock. For analyzing and labresearch, the tobacco wastes needed to be dried, crashed and sieved in different particlesizes so as to get raw materials. The physicochemical property of the feedstock revealedthat tobacco wastes contained lower fixed carbon and more valatiles comparing to coal andthe harmful elements N and S were less than4%, which were of very low contents infeedstock. Thus, tobacco wastes are environment-friendly bioenergy sources. Meanwhile, the NiO/γ-Al_2O_3catalyst was developed in the study. NiO particles which were prepared byhomogeneous precipitation method were an active componet loaded on commercialγ-Al_2O_3carriers in this work. Based on above work, the supported NiO/γ-Al_2O_3catalystsinvolving γ-Al_2O_3as carrier were further exploited by deposition-precipitation Method.Different analytical methods such as APSP2020, SEM and EDX were used to characterizeand analysis the catalysts. The loaded capacity of active component NiO was more than13wt%. The active component NiO were only concentrated on the surface of the catalystswhich can promote catalytic activity and save cost.
     Pyrolysis characteristics and kinetics of tobacco wastes were investigated in TGAcoupled with DSC and their kinetics parameters were detemined by using Friedman andDoyle methods, simultaneously, the influence of particle size, heating rate and catalysts onbiomass pyrolysis was analyzed. It was observed that four stage pyrolysis mechanism oftobacco wastes, the first being dehydration, the second at a temperature range oftorrefaction, the third at the pyrolysis temperature range and the fourth stage at thetemperature range of graphitisation. In addition, increasing heating rate and the presence ofcatalysts showed great influence on accelerating thermal degradation.
     Tobacco wastes gasification experiments were carried out using thermogravimetricanalyzer and gas chromatographic analyzer (TG-GC). Under the catalytic and non-catalyticcondition, the pyrolysis characteristics, gasification characteristics and kinetics of tobaccowastes were investigated in nitrogen-steam atmosphere. The TGA data indicated the weightloss behavior of the sample in nitrogen-steam mixture was divided into two regions(217~357℃and717~805℃). The volumetric model was used in modeling pyrolysis ofbiomass and the shrinking model was applied for investigating the gasification of pyrolysischars. Both NiO and dolomite could decrease the gasification temperature and enhancewater gas shift reactions. The H2yield (34mol/kg) of tobacco wastes gasification with NiOwas the most. The dolomite had more remarkable effect on improving CO yield (23mol/kg).
     For the further information of the characteristics of gas products, tar and charcoal frombiomass pyrolysis, the pyrolysis of tobacco wastes was carried out in fixed-bed reactor withgas chromatograph. The effect of three important reaction parameters such as hearthtemperature, gas/solid residence time and catalysts on the gas product property was focusedon this study. The results showed that higher temperature is favorable for H2and COcontents. With presence of NiO/γ-Al_2O_3catalyst, the yield of fuel gas product reached1.52Nm3/kg with38.6vol.%H2. The calorific value of the fuel gas generated in the process wasabout15MJ/m3, which can be used directly for gas turbine, engine and boiler. Moreover,according to the mass and energy balance evaluation of pyrolysis process of dried tobaccowastes at900℃, the error of mass balance evaluation of dried tobacco wastes is1%. Byenergy evaluation, gas production efficiency, energy recovery and energy consumptionratio of this pyrolysis system were42.16%、89.01%and2.49, respectively.
     Furthermore, steam gasification of tobacco wastes was investigated by a home designedbubbling fluidized bed system with continuous feeding. The influence of various technicalparameters such as reactor temperature and Steam/Biomass (S/B) on fuel gas yield andcomposition was analyzed experimentally. It was found that H2and CO contents increasedsteadily from50.5%to54.4%and14.3%to18.5%as the temperature increased from700to850℃, while CO_2and CH_4contents exhibited the opposite tendencies. The yield of H2first increased shaply from0.037kg/kg to0.07kg/kg as the S/B increased to0.5, then itincreased slightly to0.095kg/kg as the S/B continuously increased, finally it trend to astable value or decreased. Thus, the optimum quantity of adding vapour is1.32(S/B).
     Moreover, a thermodynamics equilibrium model based on equilibrium constant andmaterial balance has been developed to predict the gas composition which has beencompared with experimental results. Calibration of the model with appropriate modelingcoefficients was necessary to achieve close resemblance with the experimental values. Theresults indicated that the trend of changing the gas compositions with temperature and S/Bwas matching with the experimental results and the average RMS error was2.990. To fit the experimental result, the pre-factor were used to calibrate the equilibrium model. It wasobserved that the average RMS value decreases to1.985. So the modified model predictsthe gas composition much closer to the experimental value.
引文
[1] McKendry P. Energy production from biomass (part1): overview of biomass.Bioresource Technology2002;83(1):37-46.
    [2] Leung DYC, Yin XL, Wu CZ. A review on the development and commercializationof biomass gasification technologies in China. Renewable and Sustainable EnergyReviews2004;8(6):565-80.
    [3] Demirbas A. Biomass resource facilities and biomass conversion processing for fuelsand chemicals. Energy Conversion and Management2001;42(11):1357-78.
    [4] Caputo AC, Palumbo M, Pelagagge PM, Scacchia F. Economics of biomass energyutilization in combustion and gasification plants: effects of logistic variables.Biomass and Bioenergy2005;28(1):35-51.
    [5] Hamelinck CN, Faaij APC. Outlook for advanced biofuels. Energy Policy2006;34(17):3268-83.
    [6] Hamelinck CN, Suurs RAA, Faaij APC. International bioenergy transport costs andenergy balance. Biomass and Bioenergy2005;29(2):114-34.
    [7]李建芬.生物质催化热解和气化的应用基础研究[D].博士论文.武汉:华中科技大学,2007.
    [8]吴创之,马隆龙.生物质能现代化利用技术[M].北京:化学工业出版社,2003.
    [9]杨国来.生物质在流化床中的催化气化焦油及裂解的试验研究[D].博士论文.武汉:华中科技大学,2007.
    [10]杨海平.油棕废弃物热解的实验及机理研究[D].博士论文.武汉:华中科技大学,2005.
    [11] McKendry P. Energy production from biomass (part1): overview of biomass.Bioresource Technology2002;83(1):37-46.
    [12] Demirbas, A. Biomass resources for energy and chemical industry. Energy Edu. SciTechnol.2000,(5):21-45.
    [13] Feng Yan, Leguan Zhang, Zhiquan Hu, et al. Hydrogen-rich gas production by steamgasification of char derived from cyanobacterial blooms (CDCB) in a fixed-bedreactor: Influence of particle size and residence time on gas yield and syngascomposition. International Journal of Hydrogen Energy.2010,35(19):10212-10217.
    [14] Natarajan, E., Ohman, M., Gabra, M., et al. Experimental determination of bedagglomeration tendencies of some common agricultural residues in fluidized bedcombustion and gasification. Biomass and Bioenergy1998,15(2):163-169.
    [15] Zevenhoven, O. M., Backman, R., Skrifvars, B.J., et al. The ash chemistry influidized bed gasification of biomass fuels. Part II: Ash behaviour prediction versusbench scale agglomeration tests.Fuel2001,80(10):1503-1512.
    [16] Agblevor, F.A., Besler, S. Inorganic compounds in biomass feedstocks.1.effect onthe quality of fast pyrolysis oils. Energy&Fuels1996,10(2):293-298.
    [17] Raveendran,K.;Ganesh,A.K.;Khilar,C.Influence of mineral matter on biomasspyrolysis characteristics.Fuel1995,74(12):1812-1822.
    [18] Williams,P.T.;Horne,P.A.The role of metal salts in the pyrolysis of biomass.Renewable Energy1994,4(1):1-13.
    [19] Turn,S.Q.;Kinoshita,C.M.;Ishimura,D.M.Removal of inorganic constituents ofbiomass feedstocks by mechanical dewatering and leaching.Biomass and Bioenergy1997,12(4):241-252.
    [20] Zevenhoven,O.M.;Backman,R.;Skrifvars,B.J.;et al.The ash chemistry in fluidizedbed gasification of biomass fuels.Part I:predicting the chemistry of melting ashes andash-bed material interaction.Fuel2001,80(10):1489-1502.
    [21] Blander,M.Biomass gasification as a means for avoiding fouling and corrosionduring combustion.Journal of Molecular Liquids1999,83(1-3):323-328.
    [22]付鹏.生物质热解气化气相产物释放特性和焦结构演化行为研究[D].博士论文.武汉:华中科技大学,2010.
    [23] Blander M.Biomass gasification as a means for avoiding fouling and corrosionduring combustion.Journal of Molecular Liquids1999;83(1-3):323-8.
    [24] Gil J,Corella J,Aznar MP,Caballero MA.Biomass gasification in atmospheric andbubbling fluidized bed:Effect of the type of gasifying agent on the productdistribution.Biomass and Bioenergy1999;17(5):389-403.
    [25] McKendry P.Energy production from biomass (part3): gasification technologies.Bioresource Technology2002;83(1):55-63.
    [26] Herguido J, Corella J, Gonzalez SJ.Steam gasification of lignocellulosic residues in afluidized bed at a small pilot scale.effect of the type of feedstock.Ind.Eng.Chem.Res.1992;31(5):1274-82.
    [27] Gil J,Aznar MP,Caballero MA,Frances E,Corella J.Biomass gasification in fluidizedbed at pilot scale with steam-oxygen mixtures.product distribution for very differentoperating conditions.Energy&Fuels1997;11(6):1109-18.
    [28] Badin J,Kirschner J.Biomass greens US power production.Renew Energy World1998;1:40-5.
    [29] A.V. Bridgwater. The technical and ecomomic feasibility of biomass gasification forpower generation. Fuel,1995,74(5):631-653.
    [30] A.V.Bridgwater. Review of fast pyrolysis of biomass and product upgrading.Biomass and Bioenergy doi:10.1016/j.biombioe.2011.01.048.
    [31]王铁柱.生物质焦油催化裂解试验研究[D].学位论文.浙江:浙江大学,2003.
    [32] Evans RJ, Milne TA. Molecular characterization of the pyrolysis of biomass.EnergyFuels1987;1(2):123-37.
    [33] Brage C,Yu Q,Chen G,Sjostrom K.Tar evolution profiles obtained from gasificationof biomass and coal.Biomass and Bioenergy2000;18(1):87-91.
    [34] Hasler P, Nussbaumer T.Gas cleaning for IC engine applications from fixed bedbiomass gasification.Biomass and Bioenergy1999;16(6):385-95.
    [35] Garcia, L., et al., Influence of catalyst weight/biomass flow rate ratio on gasproduction in the catalytic pyrolysis of pine sawdust at low temperatures.Industrialand Engineering Chemistry Research,1998.37(10):3812-19.
    [36]王磊等,生物质气化焦油在高温木炭床上的裂解试验研究[J].可再生能源,2005,5:30-34.
    [37] Perez, P., et al., Hot gas cleaning and upgrading with a calcined dolomite locateddownstream a biomass fluidized bed gasifier operating with steam-oxygenmixtures.Energy and Fuels,1997.11(6):1194-97.
    [38] Wang, T.J., et al., The steam reforming of naphthalene over a nickel-dolomitecracking catalyst. Biomass and Bioenergy,2005.28(5):508-514.
    [39] S,K.and Seshadri,Effects of Temperature,Pressure,and Carrier Gas on the Crackingof Coal Tar over a Char-Dolomite Mixture and Calcined Dolomite in a Fixed-BedReactor.Industrial and Engineering Chemistry Research,1998.37:3830-3837.
    [40] Hartman, M., et al., Reaction between hydrogen sulfide and limestone calcines. Ind.Eng. Chem. Res.,2002.41:2392-98.
    [41] Delgado, J., M.P.Aznar, and J.Corella, Calcined Dolomite, Magnesite, and Calcitefor Cleaning Hot Gas from a Fluidized Bed Biomass Gasifier with Steam: Life andUsefulness Industrial and Engineering Chemistry Research,1996.35(10):3637-3643.
    [42] Rapagna, S., et al., Steam-gasification of biomass in a fluidised-bed of olivineparticles. Biomass and Bioenergy,2000.19(3):187-197.
    [43] Devi, L., et al., Olivine as tar removal catalyst for biomass gasifiers: Catalystcharacterization. Applied Catalysis A: General,2005.294(1-2):68-79.
    [44] Corella, J., J.M.Toledo, and R.Padilla, Olivine or dolomite as in-bed additive inbiomass gasification with air in a fluidized bed: Which is better? Energy and Fuels,2004.18(3):713-720.
    [45] Devi, L., K.J.Ptasinski, and F.J.J.G.Janssen, Pretreated olivine as tar removal catalystfor biomass gasifiers: Investigation using naphthalene as model biomass tar. FuelProcessing Technology,2005.86(6):707-730.
    [46]胡伟,何洪诚,谭利娟.废次烟草中有效成分研究进展[J].湖南林业科技,2005,32(5):83-85.
    [47]左天觉.安全烟草及安全烟草制品(中国烟草学会成立大会会刊)[M].北京:轻工业出版社,1985.
    [48]彭靖里,马敏象,吴绍倩等.论烟草废弃物的综合利用技术及其发展前景[J].中国资源综合利用,2001,12(8):18-20.
    [49]赵才,王凤林,刘连成.由烟厂废料提取天然烟碱的研究[J].河北轻工业学院学报,1994,15(4):19-20.
    [50]朱荣誉,于学玲等.烟草废弃物的综合利用[J].中国野生植物资源,2000,18(3):25-27.
    [51] Felicita Briski, Nina Florgas Marija Vukovic, Zoran Gomzi. Aerobic compositing oftobcacco industry solid waste-simulation of the process. Clean Tech Environ Policy,2003,5:295-301.
    [52] Demirbas, A. Biomass resource facilities and biomass conversion processing forfuels and chemicals. Energy Conversion and Management2001,42(11):1357-1378.
    [53] Kawser, M.J., Nash, F.A.Oil palm shell as a source of phenol.Journal of Oil PalmResearch2000,12:86-94.
    [54] Mayoral MC, Izquierdo MT, Andres JM, Rubio B.Different approaches to proximateanalysis by thermogravimetry analysis.Thermochimica Acta2001;370:91-7.
    [55] Mattsson JE.Country Report on Standardization of Solid Biofuels in Sweden.2000.
    [56]陈文敏.煤的发热量和计算公式[M]北京:煤炭工业出版社,1989.
    [57] McKendry P.Energy production from biomass (part1): overview of biomass.Bioresource Technology2002;83(1):37-46.
    [58] Sebastian Werle, Ryszard K. Wilk. A review of methods for the thermal utilization ofsewage sludge: The Polish perspective [J]. Renewable Energy,2010,35(9):1914-1919.
    [59]肖波,郭勇,杨加宽,等.生物质粉体燃烧技术的初步研究[J].能源技术,2004,25(5):197-199.
    [60] Guo Xianjun, Xiao Bo, Hu Zhiquan, et a.l Gasification characteristics ofbiomassmicron fuel (BMF): Study on steam gasification for hydrogen-rich gasproducts [J]. Fresenius environmental bulletin,2008,17(5):1431-1435.
    [61]易仁金.城市生活垃圾催化热解的实验研究[D].华中科技大学,2007.
    [62]李新禹.城市固体垃圾热解的设备与特性研究[D].天津大学,2006.
    [63]罗思义,肖波,郭献军.生物质微米燃料旋风燃烧实验研究[J].锅炉技术,2010,41(1):69-72.
    [64] Campoy, M., Gómez-Barea, A., Vidal, F.B., et al. Air-steam gasification of biomassin a fluidised bed: process optimisation by enriched air [J]. Fuel Process. Technol.2009,90(5):677-685.
    [65]傅玉普,郝策,曹殿学.物理化学[M].大连:大连理工大学出版社,2000.
    [66] Wang,Y., Namioka,T., Yoshikawa,K. Research on gasification and power generationfrom waste paint dregs [J]. J. Environ. Eng.2008,3(1):182-191.
    [67] Sun, S.Z., Zhao, Y.J., Tian, H.M., et al. Experimental study on cyclone airgasification of wood powder [J]. Bioresour. Technol.2009.100(17):4047-4049.
    [68]马志刚,吴树志,白云峰.生物质与煤混合燃烧的技术评述[J].电站系统工程,2009,25(6):1-4.
    [69]肖波,邹先枚,杨家宽,等.生物质粉体燃烧特性的研究[J].可再生能源,2007,25(1):47-50.
    [70] Devi L, Ptasinski KJ, Janssen FJG. A review of the primary measures for tarelimination in biomass gasification processes.Biomass and Bioenergy2003;24(2):125-40.
    [71] Devi L, Ptasinski KJ, Janssen FJJG. Pretreated olivine as tar removal catalyst forbiomass gasifiers: investigation using naphthalene as model biomass tar. FuelProcessing Technology2005;86(6):707-30.
    [72] Sutton D, Kelleher B, Ross JRH. Review of literature on catalysts for biomassgasification.Fuel Processing Technology2001;73(3):155-73.
    [73] Furusawa T, Tsutsumi A. Comparison of Co/MgO and Ni/MgO catalysts for thesteam reforming of naphthalene as a model compound of tar derived from biomassgasification. Applied Catalysis A: General2005;278(2):207-12.
    [74] Kittikun AH, Prasertsan P, Srisuwan G, Krause A. Environmental management forpalm oil mill. Internet Conference on Material Flow Analysis of IntegratedBio-Systems,2000.
    [75] van Dillen AJ, Terorde R, Lensveld DJ, Geus JW, de Jong KP. Synthesis ofsupported catalysts by impregnation and drying using aqueous chelated metalcomplexes. Journal of Catalysis2003;216(1-2):257-64.
    [76] Zhang R, Brown RC, Suby A, Cummer K. Catalytic destruction of tar in biomassderived producer gas. Energy Conversion and Management2004;45(7-8):995-1014.
    [77] Demirbas, A. Biomass resource facilities and biomass conversion processing forfuels and chemicals. Energy Conversion and Management2001,42(11):1357-1378.
    [78] McKendry, P. Energy production from biomass (part2): conversion technologies.Bioresource Technology2002,83(1):47-54.
    [79] Blasi, C.D., Signorelli, G., Russo, C.D., et al.Product distribution from pyrolysis ofwood and agricultural residues. Ind.Eng.Chem.Res.1999,38:2216-2224.
    [80] Raveendran, K., Ganesh, A., Khilar, K.C. Pyrolysis characteristics of biomass andbiomass components.Fuel1996,75(8):987-998.
    [81] Li, S., Xu, S., Liu, S., et al. Fast pyrolysis of biomass in free-fall reactor forhydrogen-rich gas. Fuel Processing Technology2004,85(8-10):1201-1211.
    [82]蔡正千.热分析[M].高等教育出版社.1993.
    [83] Varhegyi, G., Antal, J.J.M., Jakab, E., et al. Kinetic modeling of biomass pyrolysis.Journal of Analytical and Applied Pyrolysis1997,42(1):73-87.
    [84] Rao, T.R., Sharma, A. Pyrolysis rates of biomass materials. Energy1998,23(11):973-978.
    [85] Orfao, J., Antunes, F., Figueiredo, J. Pyrolysis kinetics of lignocellulosicmaterials-three independent reaction model. Fuel1999,78:349-358.
    [86] Blasi, C.D. Comparison of semi-global mechanism for primary pyrolysis oflignocellulosic fuels. Journal Analytical and Applied Pyrolysis1998,47:43-64.
    [87]刘振海.热分析导论[M].北京:化学工业出版社,1991.99~116.
    [88]陈镜泓,李传儒.热分析及其应用[M].北京:科学出版社,1985.
    [89] Nair S M K, JamesC. Thermochimica Acta.1985,83(2):387~389.
    [90] Doyle C D. Estimating isothermal life from thermogravimetric data. Journal ofApplied Polymer Science,1962,6(24):639~642.
    [91] Friedman, H.L. Kinetics of thermal degradation of char-forming plastics fromthermogravimetry application to phenolic plastic. J. Polym. Sci,1965,6:183–195.
    [92] Ferdous, D., Dalai, A.K., Bej, S.K., Thring, R.W. Pyrolysis of lignins: experimentaland kinetic studies. Energy and Fuels,2002,16:1405–1412.
    [93] Di Blasi, C. Modeling chemical and physical processes of wood and biomasspyrolysis. Progress in Energy and Combustion Science,2008,34:47–90.
    [94] Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D. Pyrolysis behavior and kineticsof biomass derived materials. Journal of Analytical and Applied Pyrolysis,2003,62:331–349.
    [95] Encinar JM, Gonzalez JF, Rodriguez JJ, Ramiro MJ. Catalysed and uncatalysedsteam gasification of eucalyptus char: influence of variables and kinetic study. Fuel2001,80:2025–36.
    [96] Lv, P.M., Xiong, Z.H., Chang, J., Wu, C.Z., Chen, Y., Zhu, J.X. An experimentalstudy on biomass air-steam gasification in a fluidized bed. Bioresource Technology,2004,95(1):95–101.
    [97] Demirbas, A. Effects of temperature and particle size on bio-char yield frompyrolysis of agricultural residues. J Anal Appl Pyrol,2004,72:243–248.
    [98] Park, Y.H., Kim, J., Kim, S.S., Park, Y.K.,2009. Pyrolysis characteristics andkinetics of oak trees using thermogravimetric analyzer and micro-tubing reactor.Bioresource Technology100,400–405.
    [99] Wang, G., Li,W., Li, B., Chen, H.,2008. TG study on pyrolysis of biomass and itsthree components under syngas. Fuel87,552–558.
    [100] Müller-Hagedorn, M., Bockhorn, H., Krebs, L., Müller, U.,2003. A comparativekinetic study on the pyrolysis of three different wood species. Journal of Analyticaland Applied Pyrolysis68–69,231–249.
    [101] Zhang, S.Y., Hong, R.Y., Cao, J.P., Takayuki, T.,2009. Influence of manure typesand pyrolysis conditions on the oxidatation behavior of manure char. Bioresour.Technol.100,4278–4283.
    [102] Devi, L., Ptasinski, K.J., Janssen, F.J.J.G., van Paasen, S.V.B., Bergman, P.C.A., Kiel,J.H.A.,2005. Catalytic decomposition of biomass tars: use of dolomite and untreatedolivine. Renewable Energy.30,565–587.
    [103] Silva, I.F., Mckee, D.W., Lobo, L.S.,1997. A kinetic and in situ XRD study ofcarbon reactions catalyzed by nickel, cobalt, molybdenum, and their mixtures. J.Catal.170,54–61.
    [104] Koltypin, Y., Fernandez, A., Rojas T.C., Campore, J., Palma, P., Prozorov, R.,Gedonken, A.,1999. Encapsulation of nickel nanoparticles in carbon obtained by thesonochemical decomposition of Ni(C8H12). Chem. Mater.11,1331–1335.
    [105]杨帅,甘云华,杨泽亮.生物质成型燃料热解与燃烧特性研究[J].电站系统工程,2010,26(6):45-48.
    [106] Osvalda Senneca. Kinetics of pyrolysis, combustion and gasification of threebiomass fuels [J]. Fuel Processing Technology,2007,88(1):87-97.
    [107] Changbo Lu, Wenli Song, Weigang Lin. Kinetics of biomass catalytic pyrolysis [J].Biotechnology Advances,2009,27(5):583-587.
    [108] C.R. Cardoso, M.R. Miranda, K.G. Santos, et al. Determination of kinetic parametersand analytical pyrolysis of tobacco waste and sorghum bagasse [J]. Journal ofAnalytical and Applied Pyrolysis,2011,92(2):392-400.
    [109] Nasrin Aghamohammadi, Nik Meriam Nik Sulaiman, Mohamed Kheireddine Aroua.Combustion characteristics of biomass in SouthEast Asia [J]. Biomass and Bioenergy,2011,35(9):3884-3890.
    [110] Shinji Fujimoto, Takahiro Yoshida, Toshiaki Hanaoka, et al. A kinetic study of in situCO2removal gasification of woody biomass for hydrogen production [J]. Biomassand Bioenergy,2007,31(8):556-562.
    [111]曹小伟.生物质气流床气化特性及半焦气化动力学研究[D].浙江大学,2007.
    [112]肖军,沈来宏,邓霞,等.生物质催化热解气化热重分析研究[J].太阳能学报,2009,30(9):1252-1257.
    [113]杨帅,甘云华,杨泽亮.生物质成型燃料热解与燃烧特性研究[J].电站系统工程,2010,26(6):45-48.
    [114] Osvalda Senneca. Kinetics of pyrolysis, combustion and gasification of threebiomass fuels [J]. Fuel Processing Technology,2007,88(1):87-97.
    [115] Changbo Lu, Wenli Song, Weigang Lin. Kinetics of biomass catalytic pyrolysis [J].Biotechnology Advances,2009,27(5):583-587.
    [116] Yi Chen, Jia Duan, Yong-hao Luo. Investigation of agricultural residues pyrolysisbehavior under inert and oxidative conditions [J]. Journal of Analytical and AppliedPyrolysis,2008,83(2):165-174.
    [117] L.T Vlaev, I.G Markovska, L.A Lyubchev. Non-isothermal kinetics of pyrolysis ofrice husk [J]. Thermochimica Acta,2003,406(1-2):1-7.
    [118] Hu, S., Jess, A., Xu, M.H. Kinetic study of Chinese biomass slow pyrolysis:comparison of different kinetic models [J]. Fuel,2007,86(17-18):2778-2788.
    [119] Li, D.M., Chen, L.M., Zhao, J.S., et al. Evaluation of the pyrolytic and kineticcharacteristics of Enteromorpha prolifera as a source of renewable bio-fuel from theYellow Sea of China [J]. Chem. Eng. Res. Des,2010,88(5-6):647-652.
    [120]米铁,陈汉平,唐汝江,等.生物质半焦气化的反应动力学[J].太阳能学报,2005,26(6):765-771.
    [121]赵辉,周劲松,曹小伟,等.生物质半焦高温水蒸汽气化反应动力学的研究[J].动力工程,2008,28(3):453-458.
    [122]李晓翔,舒新前,李刚,等.3种农林生物质的热解及动力学研究[J].可再生能源,2010,28(6):63-70.
    [123]傅旭峰,仲兆平,肖刚,等.不同生物质热解特性及动力学的对比研究[J].锅炉技术,2011,42(5):60-64.
    [124] Luo SY, Xiao B, Hu ZQ, Liu SM, Guo XJ, He MY. Hydrogen-rich gas fromcatalytic steam gasification of biomass in a fixed bed reactor: influence oftemperature and steam on gasification performance. International Journal ofHydrogen Energy2009;34:2191–94.
    [125] Demirbas, A., Arin, G. An overview of biomass pyrolysis. Energy Sources2002,24(5):471-482.
    [126] Bridgwater, A.V. Catalysis in thermal biomass conversion. Applied Catalysis A:General1994,116(1-2):5-47.
    [127] Li, S., Xu, S., Liu, S., et al. Fast pyrolysis of biomass in free-fall reactor forhydrogen-rich gas. Fuel Processing Technology2004,85(8-10):1201-1211.
    [128] Zanzi, R., Sjostrom, K., Bjornbom, E. Rapid pyrolysis of agricultural residues athigh temperature.Biomass and Bioenergy2002,23(5):357-366.
    [129] Dai, X., Wu, C., Li, H.B., et al. The fast pyrolysis of biomass in CFB reactor.Energy&Fuels2000,14(3):552-557.
    [130] Ates, F., Putun, A.E., Putun, E. Fixed bed pyrolysis of Euphorbia rigida withdifferent catalysts. Energy Conversion and Management2005,46(3):421-432.
    [131] Chen, G., Andries, J., Spliethoff, H., et al. Biomass gasification integrated withpyrolysis in a circulating fluidised bed. Solar Energy2004,76(1-3):345-349.
    [132] Williams, P.T., Nugranad, N. Comparison of products from the pyrolysis andcatalytic pyrolysis of rice husks.Energy2000,25:493-513.
    [133] Loffler, G., Wargadalam, V.J., Winter, F. Catalytic effect of biomass ash on CO. CH4,and HCN oxidation under fluidized bed combustor conditions. Fuel2002,81(6):711-717.
    [134] Sutton, D., Kelleher, B., Ross, J.R.H. Review of literature on catalysts for biomassgasification. Fuel Processing Technology2001,73(3):155-173.
    [135] Agblevor, F.A., Besler, S. Inorganic compounds in biomass feedstocks.1.effect onthe quality of fast pyrolysis oils. Energy&Fuels1996,10(2):293-298.
    [136] Demirbas, A. Gaseous products from biomass by pyrolysis and gasification: effectsofcatalyst on hydrogen yield. Energy Conversion and Management2002,43(7):897-909.
    [137] McKendry, P. Energy production from biomass (part3): gasification technologies.Bioresource Technology2002,83(1):55-63.
    [138] Devi, L., Ptasinski, K.J., Janssen, F.J.J.G. A review of the primary measures for tarelimination in biomass gasification processes. Biomass and Bioenergy2003,24(2):125-140.
    [139]贺鹏.热解温度对生物质焦油裂解率影响的实验研究[D].哈尔滨工业大学,2010.
    [140]罗思义.城市生活垃圾破碎机的研制及粒径对垃圾热解气化特性的影响研究[D].华中科技大学,2010.
    [141] Florin, N.H., Harris, A.T.,2008. Mechanistic study of enhance H2synthesis inbiomass gasifiers with insitu CO2capture using CaO. AICHE J.54,1096–1109.
    [142] Li, J.F., Yan, R., Xiao, B., Liang, D.T., Lee, D.H.,2008. Preparation of nano-NiOparticles and evaluation of their catalytic activity in pyrolyzing biomass components.Energy&Fuels.22:16–23.
    [143] Yang, H.P., Yan, R., Chen, H.P., Lee, D.H., Zheng, C,G.,2007. Characteristics ofhemicellulose, cellulose and lignin pyrolysis. Fuel.86,1781–1788.
    [144] Garcia, L., Salvador, M.L., Arauzo, J., Bilbao, R.,2001. Catalytic pyrolysis ofbiomass: influence of the catalyst pretreatment on gas yields. J. Anal. Appl. Pyrol.58–59,491–501.
    [145] Zhao, B.F., Zhang, X.D., Li, S., Meng, G.F., Chen, L., Lu, Y.X.,2010. Hydrogenproduction from biomass combining pyrolysis and secondary decomposition. Int JHydrogen Energy.35,2606–2611.
    [146]熊思江.污泥热解制取富氢燃气实验及机理研究[D].博士论文,武汉:华中科技大学,2010.
    [147]赖春华,马春元,施明恒.生物质燃料层热解过程的传热传质模型研究[J].热科学与技术,2005,4(3):219-223.
    [148]斯派莎克工程(中国)有限公司编著.蒸汽和冷凝水系统手册[M].上海:上海科学技术文献出版社.2007.
    [149]万云.固体废弃物的热解技术研究[D].重庆大学硕士学位论文.2004.
    [150]国家建筑材料工业局. JC488-92玻璃池窑热平衡测定与计算方法[S].北京中国标准出版社出版,1992.
    [151]曾丹荃,敖越,张新铭等.工程热力学[M].北京:高等教育出版社.2004.
    [152]于清航.油泥热解特性基础研究[D].沈阳航空工业学院硕士学位论文,2008.
    [153] Kim Y., Parker W. A technical and economic evaluation of the pyrolysis of sewagesludge for production of bio-oil. Bioresource Technology,2008,99:1409-1416.
    [154] Jance A.M.C., Westerhout R.W.J., Prins W. Modelling of flash pyrolysis of a singleparticle. Chemical Engineering and Processing,2000,39(3):239-252.
    [155] Cao, Y., Wang, Y., Riley, J.T., et al. A novel biomass air gasification process forproducing tar-free higher heating value fuel gas [J]. Fuel Process. Technol.2006,87(4):343-353.
    [156] Cohce, M.K., Dincer, I., Rosen, M.A. Energy and exergy analyses of a biomassbased hydrogen production system [J]. Bioresour. Technol.2011,102(18):8466-8474.
    [157]刘鹏,王万福,岳勇等.含油污泥热解工艺技术方案研究[J].油气田环境保护.2010,6:10-14.
    [158]伊晓路,张晓东,郭东彦,等.循环流化床螺旋给料器料封装置[J].可再生能源,2004,117(5):41-43.
    [159] Probstein RF, Hicks RE. Synthetic fuel. New York: McGraw-Hill;1982.
    [160] JANAF thermochemical tables. Part1+2.3rd ed.;1986. New York.
    [161] Gong Cheng, Qian Li, Fangjie Qi, et al. Allothermal gasification of biomassusing micron size biomass as external heat source [J]. Bioresource Technology.2012,107(68-69):471-475.
    [162]高宁博.高温过热水蒸气的制备及生物质高温气化重整制氢特性研究[D].大连理工大学.2009.
    [163] Franco C, Pinto F, Gulyurtlu I, et al. The study of reactions influencing the biomasssteam gasification process [J]. Fuel,2003,82(7):835-842.
    [164]赵先国,常杰,吕鹏梅,等.生物质富氧-水蒸气气化制氢特性研究[J].太阳能学报,2006,27(7):677-681.
    [165]李琳娜,应浩,涂军令,等.木屑高温水蒸气气化制备富氢燃气的特性研究[J].林产化学与工业,2011,31(5):18-24.
    [166] Jarungthammachote S, Dutta A. Thermodynamic equilibrium model and second lawanalysis of a downdraft gasifier. Energy2007;32(9):1660–9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700