用户名: 密码: 验证码:
热作模具材料TD渗铬处理试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
模具生产技术水平的高低不仅是衡量一个国家产品制造水平高低的重要标志,而且在很大程度上决定着这个国家产品质量、效益及新产品开发能力。随着我国工业的不断发展,对模具性能要求越来越苛刻,寿命问题日益突出。表面强化技术作为提高模具使用性能和使用寿命的一种重要手段,在模具工业中占有十分重要的地位,得到了国内外的广泛关注。
     TD法渗铬是TD法盐浴渗金属技术的一种,本文对相关理论和影响因素进行了归纳和分析,对盐浴、模具选材等影响覆层性能的关键环节进行了研究,寻求一种可应用于工业化生产的模具表面处理工艺。探讨了5CrMnMo、H13和3Cr2W8V钢盐浴渗铬,主要考察了不同含碳量以及不同合金含量对覆层厚度的影响。得出了不同温度对典型钢种可覆性、处理层性能的影响;处理层厚度增长与含碳量、合金含量、处理时间的变化规律。
     对低碳模具材料渗碳可以提高表面的耐磨性、耐冲击性等,结合基体塑性好、韧性高等优点,可以提高模具的使用寿命,但对于热作模具材料还要要求有较高的热疲劳和良好的抗高温氧化性,针对某些含碳量不能满足TD处理要求的材料,先对其渗碳,然后再进行TD处理,可以使模具的服役寿命进一步提高。本文探讨了渗碳箱的尺寸、渗碳时间、渗碳厚度的变化规律,研究了1Cr18Ni9Ti、1Cr13不锈钢在不同渗碳剂处理的对比实验,考察了处理层的涂覆情况并进行了性能测试。结论为,添加少量的稀土可以显著催渗覆层的形成,提高了表层硬度。渗碳件的碳含量的增加,为再进行TD处理提供了先决条件。
     同时,采用测试分析仪器对处理层的成分与结构进行了分析,确定了在不同工艺参数下对组织性能的影响。结果显示,处理层完整,厚度达到预期的目标,工件表面质量较好,并获得了良好的基体硬度。
     TD法和固体渗碳工艺获得的处理层厚度均匀、致密、完整,具有极高的显微硬度,且和基体的结合力强。在应用于热作模具和零件表面强化中取得了显著效果,即使在温度较高的情况下也表现出良好的热硬性和高温抗氧化性,节能和无公害等诸多优点,具有广泛的推广价值。通过TD法形成铬碳化合物层的理论和试验研究,基本解决了该技术存在的几个主要问题,为工业化生产奠定了基础,具有重要的参考价值。
Mould technique is not only a important symbol of national product manufacture horizon, but also decide the country's product quality, the benefit and the ability of developing new product to some extent. As the development of the industry, the requirement of the performance of moulds becomes higher and higher, the life question is prominent day by day. Surface strengthening technique plays a very important role in the mould industry, and attracts widely attentions.
     Salt-bath infiltrating chromium by TD method belongs to one of infiltrating metal, this paper analyze and introduce correlated theory and influence factors, probe into the key point of salt-bath, mold selection effecting the coating performance, and seek one kind surface treatment craft to apply the industrial production. Explore a series of 5CrMnMo, H13, 3Cr2W8V matrix affecting the coating performance, and mainly inspect the different carbon amount as well as the different alloy content influence the coating thickness. We obtain the different temperature work on the typical steel able-coating and the processing layer performance; carbon amount, alloy content and process time infect processing layer thickness.
     To the low-carbon steel, Solid carburization can enhance resistance to wear, bear the impact of superficial matrix. Mix with the original good plasticity and the tough higher merits, it can obviously enhance the mold service life. But hot work die steel request a higher heat weary and good anti-high temperature oxidability, so some materials which can't carry on TD processing firstly carburize, and then actualize TD processing, which may make mold service life to go a step further. This paper discusses the variational rule of carburization box size, carburization time influence carburization thickness. Study the processing of 1Cr18Ni9Ti and 1Cr13 stainless steel at the different carburization dosage, contrast experiment, and inspect the processing layer spreading situation and the performance test. The conclusion is: a few RE can remarkably urge to infiltrate the coating, and enhance the surface hardness.
     At the same time, use the instrument analyze the layer ingredient and the structure, and determine different processing parameter influence the metallographic phase under the different craft. The result shows, the processing layer is integrity, achieve the ideal thickness, the surface quality is well, and obtain the good hardness.
     TD method processing and Solid carburization layer thickness is even, compact, integrity, own extremely high micro-hardness, and integrating force is strong. Achieve remarkable effect apply to hot work die and the components surface strengthening, display hot anti-oxidability and rigidity in high temperature situation, and also have the merit of energy conservation and few environmental damage, so it value to widespread everywhere. Through theory and experimental study, some main problems are solved perfectly. It paves the way from a technique in lab. to application of this surface strengthening method in industry.
引文
[1] 曾晓雁,吴懿平.表面工程学.北京:机械工业出版社,2001
    [2] Kim Sun K. Formation of wear-resistant vanadium carbide and nitride layers on tool steels. TMS Annual Meeting, Elevated Temperature Coatings: Science and Technology Ⅱ, 1996. 3-10
    [3] Shah Swapnil V. Dahotre Narendra B. Laser surface-engineered vanadium carbide coating for extended die life. Journal of Materials Processing Technology, 2002. 124(1-2): 105-112
    [4] Lange K. Cold Forging Today and Tomorrow. Wire, 1985. 35(5): 219 -226
    [5] ANON. Tooling Technology in the 1970's. Metal Progr, 1970.97(4): 68-72, 74-76, 78-80,82-4, 86-90
    [6] Arai Tohru, Mizutani Massayoshi, Komatsu Noboru. Diffusion Layers of Steel Surfaces Immersed in Fused Borax Baths Containing Various Kinds of Additives. Journal of the Japan Institute of Metals, 1975. 39(3): 247-255
    [7] T Arai. Carbide Coating Process by Use of Molten Borax Bath in Japan. J. Heat Treat. 1979. 18(2): 15-22
    [8] Arai Tohru, Sugimoto Yoshihiko, Komatsu Noboru. Formation of Carbide Layer on Steels Immersed in Fused Borax Bath Containing Eleetrolytieally Dissolved V, Nb, Cr or Ta. Journal of the Japan Institute of Metals, 1977. 41(1): 68-72
    [9] Arai T. Komatsu N. Carbide Coating Process by Use of Salt Bath and Its Application to Metal Forming Dies. Digest of Technical Papers - IEEE MTT-S International Microwave Symposium, 1978. 225-231
    [10] H. M. Glaser. The Thermal Diffusion Process: Technology and Case Studies. World class Productivity Conf. Chicago: Precision Metal forming Association, 1991. 507-527
    [11] 郦振声.杨明安.现代表面工程技术.机械工业出版社:2005
    [12] Jyh-WeiLee, Jenq-Gong Duh. Corrosion resistance and microstructural evaluation of the chromized coating process in a dual phase Fe-Mn-Al-Cralloy[J]. Surface and Coatings Technology, 2002, 153(1): 59-66
    [13] Castle A R, Gabe DR. Chromium diffusion coatings[J]. International Materials Reviews, 1999, 44(2): 37-58
    [14] 刘新田.表面工程.河南大学出版社2000.206
    [15] 利霍维奇.金属和合金的化学热处理手册[M].上海:上海科学技术出版社,1986.262
    [16] 陈锡栋.模具精饰加工及表面强化技术.北京:机械工业出版社,2000
    [17] 新井透.TD处理的实用状况.热处理,1972.(10):278
    [18] 王运朋.钢在熔融硼砂中扩散涂覆碳化物.广东机械,1982.(4):25~27
    [19] 李棣泉等.用盐浴法在钢铁表面形成碳化物被覆层的研究.金属热处理,1992.(10): 25~28
    [20] 张素英等.安全阀的盐浴渗铬处理.工程机械,1984.(5):27~29
    [21] 常士春.盐浴渗铬在模具上的应用.南京机械,1991.(1):15~17
    [22] 李杰等.铬钒共渗研究.金属热处理,1993.(12):10~12
    [23] 吴勇,杨开任.金属稀土共渗盐浴.中国专利,CN89101222.2
    [24] 刘智勇等.盐浴渗铬提高模具寿命.模具工业,1987.(3):40~12
    [25] 刘磊等.稀土铬共渗工艺的应用研究.热加工工艺,1994.(3):32~34
    [26] #12
    [27] Baudis, etal. Method of forming a carbide on a carbon substrate. United States Patent Number, 4440581
    [28] 张来启.内热式中性盐浴渗钛和渗铬的研究:[山东工业大学硕士论文].山东:材料科学与工程系,1992
    [29] B. Chicco, W. E. Borbidge,E. Aummerville. Experimental study of vanadium carbide and carbonitride coatings. Materials Science and Engineering, 1999, A266:62-72
    [30] 王书恒,金山同.熔融体系下钢铁表面碳化物覆层成长动力学研究.河北理工学院学报,1998,20(2):8-14
    [31] 吴彦西.冷挤压模具TD法处理的研究:[硕士学位论文].武汉:武汉理工大学材料科学与工程系,2005
    [32] 程先华,谢超英.稀土元素在钢中的化学热处理中的作用机理研究[J].中国稀土学报,1994,12(4):336
    [33] 王蓉滨,海燕.盐浴稀土硫氮共渗工艺[J].金属热处理,2000,(12):43
    [34] 韦永德,刘志儒,王春义,等.用化学法对20钢、纯铁表面扩渗稀土元素的研究[J].金属学报,1983,19(5):197
    [35] 樊华.20CrMnTi钢稀土低温渗碳工艺及应用的研究[J].南华大学学报(理工版),2003,17(3):85
    [36] 冯承明,许斌,华磊.渗硼过程的稀土催渗与共渗研究进展[J].金属热处理,1995,(6):3
    [37] 江静华,蒋建清,马爱斌等.稀土化学热处理及其发展现状[J].中国表面工程,2003,(5):10
    [38] 谢飞,张建林,张建林等.钢中稀土对化学热处理的影响与作用机理[J].稀有金属材料工程,1997,26(1):52
    [39] 常延武,徐洲.稀土对化学热处理催渗作用的机理探讨[J].上海金属,2001,23(5):14
    [40] 谈育煦,胡志忠.材料研究方法.北京:机械工业出版社,2004,6:232-234
    [41] Gordan M. Baker. Servicing Basic For Longer Tester Life. Heating Treating. 1991, 23(4)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700