用户名: 密码: 验证码:
高强度铁基粉末冶金材料复合制备方法及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用渗碳烧结技术制备了高强度粉末冶金材料。首次对渗碳烧结技术做了较全面、系统的研究。设计了铜/铁粉和镍/铁粉烧结模型,以此研究了渗碳烧结过程中元素之间的相互扩散规律。建立了纯Fe压坯渗碳烧结后的碳浓度分布的数学模型,并进行了数学解析和实验验证。结果表明:渗碳烧结能提高元素的扩散速率,促进材料的烧结,并使烧结材料致密化。本文还利用已建立的数学模型,对渗碳烧结材料的碳浓度分布进行了数学模拟,模拟结果与实验测量值比较吻合,所以此模型可以对渗碳烧结工艺进行优化选择,并指导生产。
     首次将激光烧结和锻造技术相结合制备出了高强度粉末冶金材料,并对激光烧结热锻的工艺和激光烧结热锻材料的组织演变做了深入的研究。结果表明:激光烧结热锻能同时发挥变形强化和热处理强化的综合作用,能够使烧结钢韧化,获得高性能的粉末冶金材料。
     实际应用结果表明:采用渗碳烧结技术和激光烧结热锻技术制备的粉末冶金材料能够满足使用要求。渗碳烧结技术已经运用到粉末冶金零件的批量生产中。激光烧结热锻技术制备的高强度粉末冶金材料的性能超过了美国克莱斯勒对气门座圈烧结材料制定的标准,达到了使用要求。
With the entrance to 21st century, the resource and environment problems have become the principle problems in the sustainable development of human beings. Therefore in the long term, the trends of the industrial development all over the world can be reduced to the saving of energy and resource, and what is more, the pursuit of natural production. Powder metallurgy (PM) parts, which have many excellent and unique properties, such as net shape, economize on material and energy, cost-effective, unpolluted and material with good integrated properties; therefore, increasing attention has been paid to powder metallurgy in many industrial applications. Consequently, it is considered that powder metallurgy parts are the most worthy and exploitative "natural engineering materials" with greatly potential application in this century.
     This paper is mainly aimed at the preparation of high strength PM with the methods of carbusintering (CBS) and hot forging of sintered compacts by laser irradiation (HFSCLI) and at the current processing route of the sintering for further textual research, and then present a novel and more feasible approach of activation carbusintering as a result of the combination of internal reaction attribution of material system and the feature of the carbusintering technique, followed with a deep and systematic study to test and realize it. The high performance PM parts are prepared by HFSCLI, and then laser sintering process and microstructure evolvement of HFSCLI are further studied for the first time.
     To begin with carbusintering powder compacts represented with Fe-C、Fe-Ni、Fe-Ni-Cu、Fe-Ni-Cr, we discussed the effects of carbusintering on the Fe-based materials of porosity structure, sintering behavior and the densification behavior. Establishing the carbusintering process: sintering temperature 1120℃~1150℃and sintering time 60 min was carried out. In the aspect of alloy elements distribution in carbusintering, the sintering model of Cu/Fe and Ni/Fe powder is designed,and homogenizing parameter ( F ) is calculated in theory. The experimental results of carbusintering process further indicated that the method of CBS can decrease activity energies of iron, accelerate the spheroidizing process of the pores, facilitate the diffusion of alloy elements, and promote the sintering and densification. The reasons were as follows: the carbusintering accelerated the diffusion velocity ofγ-Fe and the increase of carbon content can facilitate the grain fine of austenite, so it provided more boundary area for the diffusion, densification and sintering.
     A reasonable mathematical model of the carbon concentration distribution after carbusintering of the Fe-based powder compacts was set up and given a mathematical analysis and an experimental verification. The results show that the deduced analytical formula is accurate and obvious in the expression of physical meanings; on the other hand, it has been numerically solved by the MathCAD computer program. And the finite elemental analysis result coincides well with that of the experiment. Besides, the integrated influences of green density, sintering temperature, sintering time and the carbon potential in the carburizing box on the carbon concentration distribution were discussed detailed in the paper. The above model can be fully used to guide the design and production, selection of material systems and optimization of processing parameters for the carbusintering.
     The diffusion coefficient of carbon and activity energies under 5 different densities were calculated by diffusion equation and the values were: 295 kJ/mol (6.0 g/cm3), 21 kJ/mol (6.2 g/cm3), 35 kJ/mol (6.8 g/cm3), 82 kJ/mol (7.0 g/cm3), 184 kJ/mol (7.3 g/cm3). It can be seen that the activity energies of the carbon diffusion had a consanguineous contact with the porosities of green compacts. When the porosity is above 20%, the pores are almost open interconnected pores and the carbon atoms that dissolve in the Fe crystal lattice decrease due to the fluxion of carburizing gas in the open pores, i.e., the migratory atoms dissolved in the clearance of Fe crystal lattice which can change their positions and fluctuate decrease. So it induces the increase of the carbon diffusion activity energies. With the decrease of the porosities (from 20% to 10%), the fluxion capability of carburizing gas in the green compacts weakens, and the carbon atoms that dissolve in the Fe crystal lattice increase. At this time, it has enough energy and the atoms that can change their positions and fluctuate increase, so the activity energies of carbon diffusion decrease.
     The effects of the post-treatment process on Fe-based microstructure and properties during carbusintering were thoroughly investigated. The microstructures and properties of the carbusintering materials were also studied in detail with SEM, EDS, TEM, MTS810, MM-200 type wear testing machine measurement. It was found that the physical and mechanical properties of carbusintering materials were better that of the conventional sintering: the fracture strength of carbusintering materials reached 471 MPa (withρof 6.75g/cm3), and after heat treatment it was up to 530 MPa (withρ? of 6.79g/cm3); and the tensile strength improved by 23~25% compared with that of the conventional materials. The wear property of carbusintering materials was also better than that of the conventionally sintered materials. The TEM micrographs of the carbusinterig materials after heat treatment showed that the surface layer was mainly composed of typical needle-like martensite and 3 mm beneath the surface layer was lathing martensite. The optimal heat treatment parameters from the data of carbusintering materials were: quenching temperature about 870℃, heat preservation time 30 min and tempering temperature about 250℃.
     The microstructure evolvement and properties of the high-powered materials prepared by HFSCLI were studied. The results showed that the HFSCLI not only consisted of laser sintering, plastic deformation and heat treatment, but also it could make sintered steel toughening by deformation strengthen and heat treatment strengthen. HFSCLI can produce high strength PM parts with: the density of 7.5 g/cm3, the radial crushing strength of 900 MPa after 500℃tempering and hardness beyond 100 HRB, which achieved the performance of 45# steel. The laser sintering forging can facilitate the grain fine of austenite, smash of lathing martensite and precipitation ofε?carbide. The amount of lathing martensite increased after laser sintering forging and quenching in the high-carbon steel, so it improved the properties of the sintering steel.
     The PM productions, produced by CBS and HFSCLI, have been certificated by correlative department and have been manufactured by corporations. And it has brought good economical and social benefits for the corporations.
     In a word, based on the systematic study of the correlative theories and processes about the CBS and HFSCLI, a basic frame of CBS and the HFSCLI preparation of high strength Fe-based powder materials has been established. It is considered that some work in this paper is not only for the improvement on the current PM process, but also the important supplement of the conventional sintering process and its related theories. Also, it provides a referable processing route and ideology for the current research of sintering process. Therefore, the work in this paper is of rather available values in theory and practical application.
引文
[1] J. Capus, S. Pickering, A. Weaver, Hoeganaes offers higher density at lower cost, Metal Powder Report, 1994, 49 (7-8), 22-24.
    [2] H.G. Rutz, F.G. Hanejko, High density processing of high performance ferrous materials, The International of Powder Metallurgy, 1995, 31 (1), 9-17.
    [3] H. G. Rutz, F.G Hanejko, S. Luk, Warm compaction offers high density at low cost, Metal Powder Report, 1994, 49 (9), 40-47.
    [4] F. Bocchinig, Warm compaction of metal powders: why it works, why it requires asophisticated engineering approach, Powder Metallurgy, 1999, 42 (2), 171-180.
    [5] L. Blanco, M. Campos, J.M. Torralba, D. Klint, Quantitative evaluation of porosity effects in sintered and heat treated high performance steels, Powder Metallurgy, 2005, 48, 315-322.
    [6] 曹顺华, 高海燕, 曲选辉, 用作温压基粉原料的 Fe-Ni-Mo 合金钢粉温压与烧结行为研究, 粉末冶金材料科学与工程, 2001, 6 (2), 128-132.
    [7] 曹顺华, 易建宏, 温压致密化机理及其在温压粉末设计中的应用, 粉末冶金材料科学与工程, 2001, 6 (3), 198-204.
    [8] 果世驹, 粉末冶金温压技术的进展, 粉末冶金工业, 2003, 13 (2), 5-6.
    [9] 果世驹, 林涛, 李明怡, 粉末烧结钢温压粘结剂玻璃化温度调整的预测方程, 粉末冶金技术, 1997, 15 (2), 85-88.
    [10] 果世驹, 林涛, 侧压系数及压坯高径比对温压有效性的影响, 粉末冶金工业, 1998, 8 (4), 7-10.
    [11] 林涛, 果世驹, 李明怡等, 温压过程致密化机制探讨, 北京科技大学学报, 2000, 22 (2), 131-133.
    [12] 项品峰, 李元元, 聚合物加入方式对粉末冶金温压成形的影响, 机械工程材料, 2001, 25 (3), 23-25.
    [13] 李元元, 项品峰, 徐铮等, 温压技术中的致密化机制, 材料科学与工程, 2001, 19 (1), 39-42.
    [14] G. Veltl, A. Oppert, F. Petzoldt, Warm flow compaction fosters more complex PM parts, Metal Powder Report, 2001, 56 (2), 26-28.
    [15] Y.Y. Li, Z.Y. Xiao, N.T. Leo, et al., Warm compacted NbC particulate reinforced iron-basecomposite (Ⅰ), Transactions of Nonferrous Metals Society of China, 2002, 12 (4), 659-663.
    [16] Y.Y. Li, Z.Y. Xiao, N.T. Leo, et al., Warm compacted NbC particulate reinforced iron-base composite (Ⅱ), Transactions of Nonferrous Metals Society of China, 2002, 12 (4), 664-668.
    [17] Z.Y. Xiao,Y.Y. Li, N.T. Leo, et al., Warm compaction behavior of iron-based powder using different kinds of graphite, Transactions of Nonferrous Metals Society of China, 2003, 13 (5), 1181-1184.
    [18] Y.Y. Li, N.T. Leo, Z.Y. Xiao, et al., Study on mechanical properties of warm compacted iron-base materials, Journal of Central South Univer of Technology, 2002, 9 (3), 154-158.
    [19] Y.Y. Li, N.T. Leo, Z.G Datong, et al., Effect of die wall lubrication on warm compaction powder metallurgy, Journal of Materials Processing Technology, 2002, 129 (1-3), 354-358.
    [20] N.T. Leo, W.P. Chen, Z.Y. Xiao, et al., Die wall lubricated warm compaction of iron-based powder metallurgy material, Transactions of Nonferrous Metals Society of China, 2002, 12 (6), 1095-1098.
    [21] J. Ren, S.C. Lu, J. Shen, C.H. Yu, Electrostatic dispersion of fine particles in the air, Powder Technology, 2001, 120 (3), 187-193.
    [22] 韩凤麟, 模壁润滑与温压技术——高密度与高强度粉末冶金零件制造新工艺, 新材料产业, 2007, 1, 59-67
    [23] J. Ren, S.C. Lu, J. Shen, C.H. Yu, Research on the composite dispersion of ultra fine powder in the air, Materials Chemistry and Physics, 2001, 69 (1-3), 204-209.
    [24] B.A. James, Die wall lubrication for powder compaction: a feasible solution, Powder Metallurgy, 1987, 30 (4), 273-280.
    [25] W.G. Ball, P.F. Hibner, F.W. Hinger, et al., New die wall lubrication system, The International Journal of Powder Metallurgy, 1997, 33 (1), 23-30.
    [26] W.G. Ball, P.F. Hibner, F.W. Hinger, et al., Replacing internal with external lubricants: Phase III [A], Howard F, Donald T. Advances in Powder Metallurgy and Particulate Materials[C], Princeton, NJ: Metal Powder Industry Federation, 2000, 11, 32-37.
    [27] A. Babakhani, A. Haerian, M. Ghambari, On the combined effect of lubrication andcompaction temperature on properties of iron-based PM parts, Materials Science and Engineering A, 2006, 437 (2), 360-365.
    [28] F. Richard, HVC punches PM to new mass production limits, Metal Powder Report, 2002, 57 (9), 26-31.
    [29] L.M. Michael, G. Fillari, P. King, K.S. Narasimhan, Sintering a path to cost-effective hardened parts, Metal Powder Report, 2005, 60 (6), 42-46.
    [30] M. Gagne, Y. Trudel, Effect of post-sintering cooling on the properties of low alloy sintered materials, 1991 Advances in Powder Metallurgy, Metal Powder Industry Federation, Priceton, 1991, 4, 115-130.
    [31] F. Chagnon, D. Barrow, Advances in Structural PM Components Production, European Powder Metallurgy Association, Shrewsbury, U K, 1997, 273-282.
    [32] H. Danniger, Sintering of low alloy steels prepared from elemental powders, Powder Metallurgy Science and Technology, 1993, l1 (4), 22-36.
    [33] J. Capus, Chrome brightens the way for sinter-hardening, Metal Powder Report, 2003, 58 (10), 40-44.
    [34] W. B. James, Considerations in the development of ferrous PM alloys for sinter hardening applications, Industrial Heating, 1999, 66 (9), 63-72.
    [35] L. Fordn, S. Bengtsson, M. Bergstrm, Comparison of high performance PM gears manufactured by conventional and warm compaction and surface densification, Powder Metallurgy. 2005, 4 (1), 10-12.
    [36] H.D. Armas, L. Llanes, J. Pe?afiel, J. Bas, M. Anglada, Tempering effects on the tensile response and fatigue life behavior of a sinter-hardened steel, Materials Science and Engineering A, 2000, 277 (1-2), 291-296.
    [37] 郭瑞金, 烧结硬化用低合金钢粉, 粉末冶金工业, 2003, 13 (4), 1-5.
    [38] F.H. Froes, O.N. Senkov, E.G. Baburaj, Synthesis of nanocrystalline materials an overview, Materials Science Engineering A, 2001, 301, 44-53.
    [39] Y. P. Kathuria, Microstructuring by selective laser sintering of metallic powder, Surface and Coatings Technology. 1999, 116/119, 643-647.
    [40] W.L. Weiss, D.L. Bourell, Selective laser sintering of intermetallics, Metallurgical and Materials Transactions A, 1993, 24, 757-759.
    [41] D.L. Bourell, H.L. Marcus, J.W. Barlow, J. J.Beaman, Selective laser sintering of Metalsand ceramics, The International Journal of Powder Metallurgy, 1992, 28 (4), 369-381.
    [42] N.K. Tolochko, S.E. Mozzharov, N.V. Sobolenko, et al., Main relationships governing laser sintering of loose single-component metallic powders, Journal of Advanced Materials, 1995, 2 (2), 151-157.
    [43] N.K. Tolochko, V.B. Michailov, T. Laoui, L. Froyen, et al., Laser sintering of single-component metal and two-components metal/ceramic powders, Science of sintering, 2000, 32 (20), 53-59.
    [44] K.P. Wieters, W.L. Schau, B. Kieback, Laser sintering of composite metal powders, Advances in Powder Metallurgy and Particulate materials, 1996, 4 (Proc. Conf.,), Washington, DC, USA, 16-21 June 1996, Metal Powder Industries Federation, 105 College Rd. East. Princeton, NJ 08540-6692, USA, 1996, Part 15, 77-91.
    [45] C. Hu, T. N. Baker, An analysis of the capillary force and optimum liquid volume in transient liquid phase sintering process, Materials Science and Engineering A, 1995, (19), 125-129.
    [46] R.M. German, S. Farooq, C.M. Kipphut, Kinetics of Liquid Phase Sintering, Materials Science and Engineering A, 1988, 105, 215-220.
    [47] J.R. Groza, H.R. Subhash, Y. Kazuo, Plasma activated sintering of additive free AlN powder to near theoretical density, Journal Materials Research, 1992, 7 (10), 2643-2645.
    [48] T. Takeuchi, Y. Takeda, R. Funahashi, Rapid preparation of dense (La0.9 Sr0.1) CrO3 ceramics by spark plasma sintering, Journal of The Electrochemical Society, 2000, 147 (11), 3979-3982.
    [49] T. Nishimura, M. Mitomo, H. Hirotsuru, Fabrication of silicon nitride nanoceramics by spark plasma sintering, Journal of Materials Science Letters, 1995, 14 (15), 1046-1047.
    [50] K. Akira, Observation of sample sintering temperature by the plasma activated sintering (PAS) furnace, Journal of Materials Science Letters, 1998, 17 (1), 49-51.
    [51] G.S. Upadhyaya, Some issues in sintering science and technology, Materials Chemistry and Physics, 2001, 67, 1-5.
    [52] 鹿 云, 刘勇兵, 氮化处理粉末烧结材料耐磨性研究, 农业机械学报, 2001, 32 (5), 100-106.
    [53] 秦展琰, 陈文华, 铁基粉末冶金材料多元共渗层的摩擦与磨损, 粉末冶金技术, 1995, 13 (4), 276-181.
    [54] F. Borgioli, E. Galvanetto, T. Bacci, G. Pradelli, Influence of the treatment atmosphere on the characteristics of glow-discharge treated sintered stainless steels, Surface and Coatings Technology, 2002, 149, 192-197.
    [55] A. Molinari, B. Tesi, T. Bacci, T. Marcu. Plasma nitriding and nitrocarburising of sintered Fe-Cr-Mo and Fe-Cr-Mo-C alloys, Surface and Coatings Technology, 2001, 140, 251-255.
    [56] A. Molinari, Plasma nitriding of sintered iron-chromium-molybdenum steels, Powder Metallurgy, 1999, 42 (2), 119-125.
    [57] S. D. De Souza, M. Olzon-Dionysio, E.J. Miola, C.O. Paiva-Santos, Plasma nitriding of sintered AISI 316L at several temperatures, Surface and Coatings Technology, 2004, 184, 176-181.
    [58] S. Mansoorzadeh, F. Ashrafizadeh, The effect of thermochemical treatments on case properties and impact behaviour of Astaloy CrM, Surface and Coatings Technology, 2005, 192, 231-238.
    [59] J. Kazior, C. Janczur, T. Pieczonka, J. Ploszczak, Thermochemical treatment of Fe–Cr–Mo alloys. Surface and Coatings Technology, 2002, 151, 333-337.
    [60] J. Kazior, A. Molinari, C. Janczur, T. Pieczonka, Microstructural characterisation and properties of thermochemically treated iron-based alloys, Surface and Coatings Technology, 2000, 125, 1-8.
    [61] J.S. Park, S.Z. Lee, J.H. Kim, K.N. Lee, Tribological characteristics of ion nitrided sintered steels, Surface and Coatings Technology, 1999, 114, 169-173.
    [62] 张殿锟, 渗碳烧结钢衬套, 铁道车辆, 1981, 10, 31-34.
    [63] 王松波, 宋玉霞, 姚清泉, 铁基粉末冶金烧结渗碳淬火后硬度分布的研究,2002 年黑龙江省机械工程学会年会论文集, 143-149.
    [64] 张晓宇, 吴迪, 季长涛, 鞠育平, 含纳米颗粒的铁基粉末冶金件直接渗碳工艺研究, 2006, 35 (24), 54-56.
    [65] 黄培云, 粉末冶金原理, 冶金工业出版社, 1997, (第二版), 320-328.
    [66] 美国金属学会编, 韩凤麟主译, 金属手册, 机械工业出版社, 1994 (第九版), 458-475.
    [67] A.T. Sibley, T.L. Ellison, Effect s of nitrogen content on the properties of ferrous compacts sintered in nitrogen containing atmosphere , Industrial Heating, 1981, 48 (12), 29-31.
    [68] 韩凤麟, 粉末冶金机械零件, 机械工业出版社, 1987 (第一版), 70-75.
    [69] L.D. Brownlee, R. Edwards, T. Raine, Sintering furnace atmosphere [A]. Grosvenor Gardens, Harrison & Sons L TD. Symposium on Powder Metallurgy[C]. London: The Iron and Steel Institute, 1956, 143-148.
    [70] M. Nowotarski, G. Gaines, Improved carbon control in the sintering of structural PM parts, Industrial Heating, 1981, 48 (12), 26-27.
    [71] 陈焕贤, 铁基制品烧结用分解氨气氛的脱碳控制, 粉末冶金工业, 1999, 9 (6), 35-38.
    [72] D.J. Bowe, K.R. Berger, J.G. Marsden, Optimization of nitrogen/hydrogen sintering atmosphere composition for carbon steel, The International Journal of Powder Metallurgy, 1995, 31 (1), 29-32.
    [73] J. Takata, N. Kawai, Dimensional changes during sintering of iron based powders, Powder Metallurgy, 1995, 38 (3), 209-213.
    [74] 包崇玺, 舒正平, 沈周强, 气氛对铁基粉末冶金制品烧结的影响, 粉末冶金材料科学与工程, 2005,10 (4), 220-224.
    [75] 郭正军, 孙正军, 张晓东, 被动棘轮复压复烧工艺探究, 粉末冶金工业, 2004, 14 (4), 21-23.
    [76] 梁华, 粉末锻造的现状, 粉末冶金技术, 1992, 10 (2), 142-145.
    [77] U. Eilrich, H. Newbert, Krebsoge advances powder forging, Metal Powder Report, 1995, 50 (1), 35-39.
    [78] 李念辛, 李森蓉, 我国铁基粉末冶金锻造技术的发展, 粉末冶金技术, 1996, 14 (1), 58-62.
    [79] 李绍忠, 粉末锻造连杆在汽车发动机上的应用, 粉末冶金工业, 1998, 8 (6), 36-39.
    [80] C.B. Boyer, Historical review of HIP equipment [C] M. Koizumi, Hot isostatic pressing theory and applications: Proceedings of 3rd international conference, London and NewYork: Elsevier Applied Science, 1992, 466-510.
    [81] 王声宏, 热等静压技术国内外发展概况, 中国机械工程学会 PM 分会, 第三次全国等静压学术会议论文集, PM 技术编辑部, 1992, 110.
    [82] 邬荫芳, 热等静压技术的新进展, 硬质合金, 2000, 17 (2), 113-117.
    [83] 胡建东, 李章, 中国专利, B22f90110104, 1990, 12.30.
    [84] 张剑峰, 沈以赴, 赵剑峰等, 激光烧结成形金属材料及零件的进展, 金属热处理, 2001, 26 (12), 1-4
    [85] 郭作兴, 铜基粉末冶金材料激光辐射烧结组织性能研究, 吉林工业大学硕士研究生毕业论文, 1993.
    [86] 胡建东, 李玉龙, 李章等, 铁基粉末压坯激光烧结研究, 中国激光, 1992, 19 (7), 540-544.
    [87] J.D. Hu, Y.L. Li, Z. Li, Microstructure and properties of a Fe-C-Cu-MoS2 alloy prepared by laser sintering, Journalof Materials Science, 1993, 28, 2664-2668.
    [88] 李玉龙, 关庆丰, 郭作兴, 胡建东, 粉末压坯激光整体烧结后的组织和性能, 粉末冶金技术, 1995, 13 (3), 192-195.
    [89] J.D. Hu, H. Wu, Z.X. Guo, Q.F. Guan, Laser sintering of some powder alloys, Materials by Powder Technology, PTM’93, Edited by F. Alinder, 119-124.
    [90] J.D. Hu, Z.X. Guo, Q.F. Guan, Y.L. Li, Laser Sintering of Green Compact, Optics and Laser Technology, 1997, 29 (2), 75-78.
    [91] 郭作兴, 胡建东, 关庆丰, 铜基粉末材料激光烧结研究, 应用激光, 1997, 17 (3), 119-121.
    [92] Z.X. Guo, J.D. Hu, Z.F. Zhou, Laser sintering of Cu-Sn-C system PM alloys, Jounal of Materials Science, 1999, 34, 5403-5406.
    [93] 王存山, 粉末梯度功能材料激光辐射烧结研究, 吉林工业大学硕士研究生毕业论文, 1994.
    [94] J.D. Hu, Z.X. Guo, Q.F. Guan, S. Ping, Laser sintering of Fe-based PM automotive parts, Science of Sintering, 1997, 29 (3), 195-200.
    [95] 沈平, 激光烧结铁基粉末合金的初步研究, 吉林工业大学硕士研究生毕业论文, 1998.
    [96] P. Shen, J.D. Hu, Z.X. Guo, Q.F. Guan, A study on laser sintering of Fe-Cu powder compacts, Metallurgical and Materials Transactions A, 1999, 30, 2229-2235.
    [97] 郭作兴, 沈平, 刘亦丰, 胡建东, 激光烧结三种铁基粉末压坯的初步研究, 应用激光, 1999, 19 (2), 52-56.
    [98] 郭作兴, 粉末压坯激光烧结冶金与工艺研究, 吉林工业大学工学博士学位论文, 2000.
    [99] A. Greco, A. Maffezzoli, Polymer melting and polymer powder sintering by thermal analysis, Journal of Thermal Analysis and Calorimetry, 2003, 72, 1167-1174.
    [100] 果世驹, 粉末烧结理论, 冶金工业出版社, 1998 (第一版), 40-42.
    [101] J. Frenkel, The viscous flow in crystal bodies, Journal of Physics, 1945, 9, 385-386.
    [102] J. Frenkel, On the surface creep of particles in crystals and natural roughness of the crystal face, ibid, 1945, 9, 392-395.
    [103] G.C. Kuczynski, Self diffusion in sintering of metallic particles, Trans. AIME, 1949, 185, 169-172.
    [104] W.D. Kingery, M. Berg, Study of the initial stages of sintering solids by viscous flow, evaporation-condensation and self-diffusion, Journal of Applied Physics, 1955, 26, 1205-1211.
    [105] J.G.R. Rockland, The determination of the mechanism of sintering, Acta Metallurgica, 1967, 15, 277-286.
    [106] D.L. Johnson, New method of obtaining volume, grain boundary and surface diffusion coefficient from sintering data, Journal of Applied Physics, 1969, 40, 192-194.
    [107] R.L. Eadie, X. Chen, Lattice diffusion from the grain boundary in sintering of metal powders, The International Journal of Powder Metallurgy, 1996, 32 (3), 265-270.
    [108] 崔国文, 缺陷、扩散与烧结, 清华大学出版社, 1990 (第一版), 143-188.
    [109] 黄培云, 烧结理论研究之一, 综合作用理论(沈阳金属物理学术会议文件), 1961.
    [110] H.E. Exner, P. Bross, Material transport rate and stress distribution during grain boundary diffusion driven by surface tension, Acta Metallurgica, 1979, 27, 1007-1012.
    [111] F. Parhami, R.M. Mcmeeking, A network model for initial stage sintering, Mechanics of Materials, 1998, 27, 111-124.
    [112] 景晓宁, 赵建华, 何陵辉, 固相烧结后期晶粒和气孔拓扑生长演化的二维相场模拟, 材料科学与工程学报, 2003, 21 (2), 170-173.
    [113] W. Zhang, J. H. Schneibel, The sintering of two particles by surface and grain boundary- a two-dimensional numerical study, Acta Metallurgica Materials, 1995, 43 (12), 4377-4386.
    [114] J. Pan, A.C.F. Cocks, A numerical technique for the analysis of coupled surface and grain-boundary diffusion, Acta Metallurgica Materials, 1995, 43 (4), 1395-1406.
    [115] W. Zhang, I. Gladwell, Sintering of two particles by surface and grain boundary diffusion a three-dimensional model and a numerical study, Computational Materials Science, 1998, 12, 84-104.
    [116] J.Z. Fan, L.K. Shi, Interface characterization of the SiCp/Al composites made by powder metallurgy, Journal of Materials Science and Technology, 1999, 15 (2), 147-149.
    [117] 樊建中, 左涛, 徐骏, 石力开, 高能球磨粉末冶金 SiC-p/Al 复合材料的界面结构, 稀有金属, 2004, 28 (4), 648-651.
    [118] P. Zovas, K.S. Hwang, C. Li, et al., Activated and liquid phase sintering - progress and problems, Progress in Powder Metallurgy, 1982, 38, 439-448.
    [119] 夏德宏, 邓娜, 邬传谷, 铁矿烧结过程中的活化技术研究, 冶金能源, 2006, 25 (5), 20-23.
    [120] R.M. German, B.H. Rabin, Enhanced sintering through second phase addition, Powder Metallurgy, 1985, 28 (1), 7-12.
    [121] R.M. German, Z.A. Munir, Sintering of tantalum with transition metal additions. Powder Metallurgy, 1977, 20 (3), 145-150.
    [122] M. Sarasola, T. G. Acebo, F. Castro, Liquid generation during sintering of Fe–3.5%Mo powder compacts with elemental boron additions, Acta Materialia, 2004, 52 (15), 4615-4622.
    [123] K.S. Hwang, H.S. Huang, The liquid phase sintering of molybdenum with Ni and Cu additions, Materials Chemistry and Physics, 2001, 67 (1-3), 92-100.
    [124] T.B Sercombe, G.B Schaffer, The effect of trace elements on the sintering of Al–Cu alloys, Acta Materialia, 1999, 47 (2), 689-697.
    [125] K.H. Lin, C.S. Hsu, S.T. Lin, Structure analysis of the constitutional phases in liquid phase sintered W–Mo–Ni–Fe heavy alloys, International Journal of refractory Metals and Hard Materials, 2003, 21, 193-203.
    [126] K.H. Lin, C.S. Hsu, S.T. Lin, Variables on the precipitation of an intermetallic phase for liquid phase sintered W–Mo–Ni–Fe heavy alloys, International Journal of Refractory Metals and Hard Materials, 2002, 20, 401-408.
    [127] S.G. Cai, X.F. Ma, H.G. Tang, Preparation of W–Al–Mo ternary alloys by mechanical alloying, Journal of Alloys and Compounds, 2007, 430, 77-80.
    [128] A.P. Miodownik, Figure of merit for activated sintering, Powder Metal, 1985, 28 (1), 151-154.
    [129] D.S. Madan, R.M. German, Quantitative assessment of enhanced sintering concepts, Powder Metall, 1990, 33 (1), 45-52.
    [130] D.S. Madan, Enhanced sintering and property improvement in ferrous PM compacts, The International Journal of Powder Metallurgy, 1991, 27 (4), 339-344.
    [131] M. Khaleghi, R. Haunes, Sintering and heat treatment of steels made from a partially prealloyed iron powder, Powder Metallurgy, 1985, 28 (4), 217-223.
    [132] 刘咏, 黄伯云, 龙郑易, 贺跃辉, 从 PM2004 看世界粉末冶金的发展现状, 粉末冶金材料科学与工程, 2005, 10 (1), 10-15.
    [133] L. Blanco, M. Campos, J.M. Torralba, Porosity evaluation for sintered and heating treated high performance steels[A], D. Herbert and R. Raimund Euro PM2004 Conference Proceedings [C], Shrewsbury U K: European Powder Metallurgy Association, 2004, 3, 225-230.
    [134] T. Murphy, Quantifying the degree of sinter in ferrous PM materials, ibid, 3, 219-224.
    [135] T.M. Puscas, M. Signorini, A. Molinari, G. Straffelini, Image analysis investigation of the effect of the process variables on the porosity of sintered chromium steels, Materials Characterization, 2003, 50, 1-10.
    [136] N. Candela, F. Velasco, J.M. Torralba, Fracture mechanisms in sintered steels with 3.5% (wt.) Mo, Materials Science and Engineering A, 1999, 259, 98-104.
    [137] K.V. Sudhakar, Fatigue behavior of a high density powder metallurgy steel, International Journal of Fatigue, 2000, 22, 729-734.
    [138] B.A. Gethinga, D.F. Heaneya, D.A. Kossa, T.J. Muellera, The effect of nickel on the mechanical behavior of molybdenum PM steels, Materials Science and Engineering A, 2005, 390, 19-26.
    [139] K. Koki, Y. Takeda, A. Bergmark, et al., Influence of secondary operations on mechanical properties of low alloyed sintered steel, ibid, 3, 179-184.
    [140] S. Giovanni, T.M. Puscas, A. Molinari, Influence of plasma nit riding on the axial fatigue behaviour of astaloy CrM, ibid, 3, 159-164.
    [141] K.S. Hwang, C.H. Hsieh, G.J. Shu, Comparison of mechanical properties of Fe–1.75Ni–0.5Mo–1.5Cu–0.4C steels made from PIM and press and sinter processes, Powder Metallurgy, 2002, 45 (2), 160-166.
    [142] N.J. Shaw, Densification and Coarsening during solid state sintering of ceramics: Areview of the Models 1. Densification, Powder Metallurgy International, 1989, 21 (3), 16-21.
    [143] 宋玉强, 李世春, 元素粉末法制备 Fe-Ni 合金的工艺研究, 新技术新工艺, 2004, 4, 40-42.
    [144] R.W. Heckel, An analysis of homogenization in powder compacts using the concentric-sphere diffusion model, Trans. ASM, 1964, 57, 443-463.
    [145] V.M. Kenker, L. Skala, Theory of microwave interactions ceramic materials phenomenon of thermal runaway, Journal of Materials Science, 1991, 26, 2483-2489.
    [146] R.M. German, S. Farooq, C.M. Kipphut, Kinetics of liquid phase sintering, Materials Science and Engineering A, 1988, 105/106, 215-220.
    [147] W.A. Kaysser, S. Takajo, G. Petzow, Skeleton dissolution and skeleton formation during liquid phase sintering of Fe-Cu, Modern Developments in Powder Metallurgy, 1981,12, 473-482.
    [148] W.J. Huppmann, W.A. Kaysser, D.N. Yoon, G. Petzow, Progress in liquid phase sintering, International Powder Metallurgy, 1979, 11 (2), 50-51.
    [149] J. Takata, N. Kawai, Dimensional changes during sintering of iron based powders, Powder Metallurgy, 1995, 38 (3), 209-213.
    [150] R.L. Lawcock, T.J. Davies, Effect of carbon on dimensional and microstructural characteristics of Fe-Cu compacts during sintering, Powder Metallurgy, 1990, 33 (2), 147-150.
    [151] R.M. German, K.A. Dangele, Enhanced sintering treatment for ferrous powders, Intnational Metals Review, 1984, 29 (4), 249-272.
    [152] V.B. Phadke, T.J. Davies, Comparing diffusion and penetration theories of growth in PM iron-copper alloys, Intnational Journal Powder Metallurgy and Powder Technology, 1973, 13 (4), 253-258.
    [153] 隋永江, 王兴庆, 何宝山, Fe-Cu 及 Fe-Cu-C 合金的烧结特性, 粉末冶金技术, 1988, 6 (3), 135-140.
    [154] R.M. German, M. Bulger, A modle for Densification by Sintering of Bimodal Particle Size Distribution, The International Jourmal of Powder Metallurgy, 1992, 28 (1), 301-311.
    [155] R. Haynes, Development of sintered low alloy steels, Powder Mwtallurgy, 1989, 32 (2), 156-160.
    [156] 陈华, 扩散型合金粉末的高密度烧结, 金属热处理, 2005, 30 (5), 40-42.
    [157] 王才德等, Fe-Cr-Mo-C 系粉末压坯烧结致密化机理, 中南工业大学学报, 1998, 29 (2), 153-156.
    [158] M. Campos, D. Sanchez, M.J. Torralba, Sintering behavior improvent of a low Cr-Mo prealloyed powder steel through Mn additions and others liquid phase promoters, Journalof Materials Processing Technology, 2003, 143, 464-469.
    [159] 孔德谆, 化学热处理原理, 航空工业出版社, 1992 (第一版), 185-190.
    [160] R.W. Heckel, An analysis of homogenization in powder compacts using the concentric-sphere diffusion model, Trans. ASM, 1964, 57, 443-463.
    [161] R. A. Phillips, J. E. King, J. R. Moon, Fracture toughness of some high density PM steels, Powder Metallurgy, 2000, 43 (1), 43-48.
    [162] C.J. Smithells, Metals reference book, Butterworths (Publishers), 1976, 5th edition, 867-881.
    [163] 姜训勇, 高学平, 宋德瑛, 普通渗碳剂与新型高聚物渗碳剂进行 NiTi 合金固体渗碳的对比, 金属学报, 2003, 39 (9), 962-966.
    [164] 金家敏, 再论渗碳剂中碳酸盐的催化机理, 金属热处理, 2000, 10, 37-41.
    [165] 郑金松, 伏国芬, 倪振尧等, 固体渗碳剂中 Na2CO3、BaCO3 的催化作用, 金属热处理学报, 1988, 9 (2), 42-47.
    [166] F.S. Chen, L.D. Liu, Deep-hole carburization in a vacuum furnace by forced-convection gas flow method, Materials Chemistry and Physics, 2003, 82, 801-807.
    [167] N. Okumura, A. Iwase, Vacuum carburizing using acetylene gas, Journal of Japan Society Heat Treatment, 1998, 38 (4), 195-196.
    [168] W. Gr?fen, B. Edenhofer, Acetylene low-pressure carburizing-anovel and superior carburizing technology, Heat Treatment of Metals, 1999, 4, 81-83.
    [169] 潘金生, 仝建民, 田民波, 材料科学基础, 清华大学出版社, 1998 (第一版), 488-499.
    [170] 林建生, 陈仁梧, 气体渗碳中渗碳势的热力学意义, 金属热处理学报, 1988, 2, 7-8.
    [171] 安运铮, 热处理工艺学, 机械工业出版社, 1981 (第一版), 71-73.
    [172] 孙和庆, 陈翠娥, 张幸等, 深层渗碳渗层质量的控制, 金属热处理, 1996, 8, 18-21.
    [173] 胡赓祥, 钱苗根, 金属学, 上海交通大学出版社, 1980 (第一版), 348-367.
    [174] 章帆, 渗碳气氛的碳传递系数 β 值的测量方法初探, 热加工工艺, 1986, 5, 43-44.
    [175] M.F. Yan, Study on absorption and transport of carbon in steel during gascarburizing with rare-earth ddition, Chemistry and Physics, 2001, 70, 242-244.
    [176] R. Collin, The influence of reaction rate on gas carburizing of steel in a CH4-H2-N2 atmosphere, JISI, 1969, 8, 1122-1128.
    [177] M.F. Yan, W. Pan, T. Bell, Z. Liu, The effect of rare earth catalyst on carburizing kinetics in a sealed quench furnace with endothermic atmosphere, Chemistry and Physics, 2001,173, 91-94.
    [178] A.I. Katsamas, G.N. Haidemenopoulos, Surface hardening of low-alloy 15CrNi6 steel by CO2 laser beam, Surface and Coatings Technology, 1999, 115, 249-255.
    [179] S. Rossi, L. Fedrizzi, Corrosion protection of PM parts by hot dipping, International Journal of Powder Metallurgy, 2002, 38 (3), 61-69.
    [180] F. Fariaut, C.B. Leborgne, E.L. Menn, Surface carburization of aluminum alloys by excimer laser, Surface and Coatings Technology, 2001, 146/147, 324-330.
    [181] B. Edenhofer, W. Gr?fen, J.M. Ziller, Plasma-carburising a surface heat treatment process for the new century, Surface and Coatings Technology, 2001, 142/144, 225-234.
    [182] L.D. Liu, F.S. Chen, Super-carburization of low alloy steel in a vacuum furnace, Surface and Coatings Technology, 2004, 183, 233-238.
    [183] 徐祖耀, 金属学与热处理, 机械工业出版社, 1957 (第三版), 409-420.
    [184] 古里维契 (苏), 拉赫玛诺夫著, 高后秀译, 粉末钢的热处理, 天津大学出版社, 1990 (第一版), 67-80.
    [185] M. Khaleghi, R. Haynes, Heat treatment of sintered steels made from a partially prealloyed iron powder, Powder Metallurgy international, 1988, 20 (1), 9-12.
    [186] R.P. Baron, F.E. Wawner, J.A. Wert, Relationship between fractional porosity and tensile strength for high porosity sintered ferrous powder compacts, Scripta Materialia, 1998, 39 (3), 269-275.
    [187] R.P. Baron, F.E. Wawner, J.A. Wert, Relationship between fractional porosity and tensile strength for high-porosity sintered ferrous powder compacts, Scripta Materialia, 1998, 39 (3), 269-275.
    [188] G. Straffelini, C.Menapace, A. Molinari, Interpretation of effect of matrix hardening on tensile and impact strength of sintered steels, Powder metallurgy, 2002, 45 (2), 167-172.
    [189] S.J. Polasik, J.J. Williams, N. Chawla, Fatigue crack initiation and propagation of binder-treated powder metallurgy steels, Metallurgical and materials Transactions, 2002, 33 (1), 73-81.
    [190] N. Chawla, T.F. Murphy, K.S. Narasimhan, Axial fatigue behavior of binder-treated versus diffusion alloyed powder metallurgy steels, Materials Science and Engineering A, 2001, 308, 180-188.
    [191] N. Candela, F. Velasco, J.M. Torralba, Fracture mechanisms in sintered steels with 3.5%(wt.) Mo, Materials Science and Engineering A. 1999, 259, 98-104.
    [192] M. Campos, J.M. Torralba, Surface assessment in low alloyed Cr–Mo sintered steels after heat and thermochemical treatment, Surface and Coatings Technology, 2004, 182, 351-362.
    [193] J. Wang, H. Danninger, Dry sliding behavior of molybdenum alloyed sintered steels, Wear, 1998, 222, 49-56.
    [194] 陈积伟, 郭威, 连建设, 超塑性变形中的孔洞长大模型, 吉林工业大学学报, 1991,3, 83-89.
    [195] 王晓东, 董允等, 预变形对 FeNiC 合金马氏体相变形态影响, 材料科学与工艺, 2005, 13 (4), 390-393.
    [196] 李刚, 朱芯花, 变形诱发马氏体相变的位向分析, 稀有金属材料与工程, 1991, 20 (5), 18-22.
    [197] 张修睦, 李依依, 铁基合金马氏体的形核与长大, 金属学报, 2000, 27 (3), 179-186.
    [198] 侯增寿, 卢光熙, 晶体缺陷与金属热处理, 机械工业出版社, 1988 (第一版), 195-199.
    [199] 周作平, 申小平, 粉末冶金机械零件实用技术, 化学工业出版社, 2006 (第一版), 476-485.
    [200] 胡光立, 谢希文, 钢的热处理, 西北工业大学出版社, 1993 (第二版), 204-239.
    [201] R. A. Petkouic, Recovery and Recrystallization of carbin steel between interrals of hot working, Metal Science, 1994, 19 (1), 7-18.
    [202] 愈德刚, 钢的组织强度学, 上海科学技术出版社, 1983 (第一版), 182-183.
    [203] 林爱琴, 基于 Pro/E 的螺旋锥齿轮的三维参数化造型, 辽宁工学院工学硕士论文, 2005.
    [204] 齿轮手册编委会著, 齿轮手册(上册), 机械工业出版社, 1990 (第一版), 13-121.
    [205] 张友阳, 刘鹄然, 黄晓宇, 粉末冶金齿轮的齿型计算和最佳圆角, 机械, 2004, 31 (7), 17-18.
    [206] 印红羽, 张华诚, 粉末冶金模具设计手册, 机械工业出版社, 2002 (第二版), 28-40.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700