用户名: 密码: 验证码:
纳米粒子吸附抗癌药物的载体效应及其药动学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验主要是观察了载体纳米粒子(NPC,nanoparticles)吸附抗癌药物(ANTC,anticancer drugs)即卡波霉素(CBMC)的载体效应并测定其在大鼠体内的药代动力学参数。方法:采用纳米粒度仪测定了靶向载体NPC的表征;根据NPC对ANTC的吸附特性研究结果设计了具有特定载药量的CBMC并进行了中试制备研究;使用HPLC法分析了CBMC的释药特性;采用改良寇式法分别测定了NPC、ANTC和CBMC经腹腔注射和静脉注射对小白鼠的急性毒性并比较了NPC、ANTC和CBMC的LD50;采用MTT法评价了CBMC对体外培养的6种人癌细胞的细胞生长抑制作用,并计算了CBMC对6种细胞的IC50;采用6种动物肿瘤模型评价了CBMC的体内抗肿瘤作用,运用电镜技术和组织病理学方法初步观察了NPC的肿瘤靶向作用;采用流式细胞术观察了NPC对人癌细胞的细胞周期的影响,探讨了NPC可能存在的对抗癌药物的增效机制;测定了CBMC及ANTC经腹腔注射后在大鼠体内的药代动力学特征及腹腔组织分布特点,并获得了药代动力学参数。结果:
     1.经高精度CPS纳米粒度仪对NPC纳米粒子表征,本实验所用NPC平均粒径为319±111 nm;
     2. NPC对ANTC有很强大的吸附作用,25℃时,NPC吸附ANTC约0.5h即可达到平衡,且达平衡时间与NPC:ANTC质量比无关。NPC吸附ANTC的量M与溶液中游离ANTC浓度C符合经公式172*C0.145(R=0.953,P<0.0001),单位质量NPC可吸附ANTC的量最高可达285mg/g。
     3.根据NPC吸附ANTC特点,建立了CBMC中试生产配方,并进行了中试制备,获得3批次CBMC,共计954支混悬注射剂;
     4.用改良寇式法测定了NPC、ANTC和CBMC腹腔注射及静脉注射急性毒性,结果显示,NPC腹腔注射后LD50﹥4000mg/kg;静脉注射LD50约为308.52mg/kg;ANTC腹腔LD50约为5.83mg/kg,静脉注射LD50约为4.79mg/kg;CBMC腹腔注射LD50约为122.91mg/kg,毒性比含药量相等的ANTC低约3.5倍。
     5.采用MTT法评价了CBMC对体外培养的6人癌细胞的细胞生长抑制作用的结果显示,NPC对体外培养的人癌细胞无明显的抑制生长作用,CBMC对体外培养的多种人癌细胞均有较强的抑制生长作用,具有较好的剂量效应关系,且其作用均显著高于相等浓度的游离ANTC组。经计算,CBMC作用于人胃癌BGC-823细胞48h时IC50为41.8μg/mL、人肝癌HepG-2细胞48h时IC50为31.4μg/ mL、人肝癌7701细胞48h时IC50为97.08μg/ mL、人肺鳞癌H460细胞48h时IC50为256.14μg/ mL、人非小细胞肺癌H1299细胞48h时IC50为129.13μg/ mL、人胰腺癌JF305细胞48h时IC50为58.60μg/ mL。
     6.建立了6种肿瘤移植模型,包括白血病移植模型、腹水瘤移植模型及实体瘤移植模型评价CBMC的体内抗肿瘤作用。体内实验结果显示,CBMC对6种动物肿瘤模型均有显著的治疗作用,且具有较好的剂量-效应关系。含ANTC量相等的6mg/kgCBMC组其生命延长率及抑瘤率均显著高于1mg/kgANTC组。低剂量CBMC(2mg/kg)组其生命延长率及抑瘤率与1mg/kgANTC组无显著性差异。结果提示NPC的载体效应,即NPC由于其局部滞留性、肿瘤附着性及淋巴趋向性,可将ANTC滞留于给药局部或经过淋巴系统导向肿瘤组织,在肿瘤局部形成药物高浓度并经过缓慢释放维持药物浓度,使药物直接作用于肿瘤组织。
     7.部分肿瘤病灶的病理切片及TEM观察结果显示[0],NPC可附着于肿瘤组织并进入肿瘤病灶,进而进入肿瘤细胞释放药物并杀伤肿瘤细胞,其细胞内靶分子主要为细胞核、线粒体、溶酶体。
     8. NPC对BGC-823细胞周期影响的结果显示,大剂量NPC可将肿瘤细胞抑制于S期,NPC可能具有对化疗药物的增效作用。
     9.建立了CBMC的HPLC测定方法;获得了CBMC和ANTC经腹腔注射后在大鼠体内的药代动力学参数及腹腔组织分布特点,结果显示,CBMC腹腔注射与ANTC相比具有消除慢、血药浓度低、选择性好等特点,其组织药物浓度以肿瘤细胞较易附着的大网膜、胃、腹膜、膈肌、淋巴结最高。
OBJECTIVE: To study the development and research of CBMC that is ANTC adsorbed by NPC. METHODS: The size of targeting carrier(NPC) was characterized by NPC; Adsorption features of NPC for ANTC was investigated by uLtraviolet spectrophotometer; Design and prepare the CBMC, the drug loading of which was specified, according to the resuLts of adsorption features of NPC; The release characteristics of CBMC was studied by HPLC; The LD50 of NPC, ANTC and CBMC was determined and compared; The anti-cancer effect of CBMC was studied by MTT; Then measured the dose-effect relationship and calcuLated the IC50 based on the MTT resuLts. The anti-cancer action of CBMC in vivo was studied by observing its effect on the animal tumor model. Meanwhile, the guiding effect of the CBMC to NPC is observed by conventional dye and TEM. The cell cycle was distinguished by PI staining was detected flow cytometer in order to explore the synergistic action of NPC for anti-cancer drugs. The peritoneal and plasma distribution in rats was studied by HPLC, then the corresponding pharmacokinetic parameters based on the time process of blood drug concentration were calcuLated.
     RESULTS:
     1. The average particle size was 319±111 nm for NPC.
     2. NPC can absorb ANTC effectively and the absorption curve is consistent with exponential form 172*C0.145(R=0.953,P<0.0001) at 25℃. Reached equilibrium time of NPC for ANTC was about 0.5h, which was unrelated to the mass ratio of NPC to ANTC. The quantity of ANTC adsorbed by Per unit mass NPC was 285mg/g.
     3. The production formuLa of CBMC was established according to the adsorption features of NPC for ANTC. 3 batches, totally 954 branches, CBMC injection was obtained by middle test.
     4. LD50 of mice received intraperitoneal injection of NPC was more than 4000mg/kg. LD50 of mice received intravenous injection of NPC was about 308.52mg/kg. LD50 of mice received intraperitoneal and intravenous injections of NPC were 5.83 and 4.97mg/kg. LD50 of mice received intraperitoneal injection of CBMC was about 122.91mg/kg. Toxicity of CBMC was 3.5 times that of ANTC.
     5. CBMC exhibits advanced function of anticancer, which displays better dose-effect relationship. The inhibitory concentration 50%(IC50) of CBMC in BGC-823, HepG-2, 7701, H460, H1299 and JF305 were 41.8, 31.4, 97.08, 256.14, 129.13 and 58.60μg/ mL, respectively.
     6. In vivo CBMC can inhibit the growth of solid tumor in and prolong the life span of ascetic tumor mice. CBMC exhibits advanced function of anticancer, which displays better dose-effect relationship; CBMC with the better postponed life property and the inhibition the growth of tumor shows much higher than the dissociated MMC with equivalent quantities. The resuLts suggest that ANTC can stay on the local or can been guided to tumor tissues because of carrier effect of NPC, then high-concentration was formed at the local and ANTC was released.
     7. The resuLts of pathological section and TEM showed that NPC can adhere on and entere into tumor tissues. Then, NPC can enter into tumor cells. The target molecuLes of NPC were cell nuclear, mitochondria and lysosome.
     8. In vitro high dose of NPC can block the BGC-823 cell cycle in S phase which suggested that he synergistic action of NPC for anti-cancer drugs.
     9. HPLC of CBMC in rats was established. Then the corresponding pharmacokinetic parameters were calcuLated. The resuLts showed that CBMC was eliminated slower, blood drug concentration lower and selectivity better than that of rats received intraperitoneal injection. The tissue drug concentration of ANTC in great epiploon, stomach , peritoneum, diaphragmatic and lymph was high than that of other tissues.
引文
1.张d泽,徐光炜等.《肿瘤学》[M].d津:d津科技出版社1995:1486.
    2. Tateishi M, Lchiyoshi Y, Kawano T, etal.Recurrent patern of digestive tract carcinoma in the Japanese:comparison of gastric to colon cancer [J].Int Surg, 1995;80:41.
    3. Machara Y, Moriguchi S, Kakeji Y, et al.Peritonent risk factor and gastric carcinoma with synchronous peritoneal dissemination or liver metastasis [J].Surgery, 1991;110:820.
    4. SchiPer DL and Wagener. Chemotherapy of gastric cancer. Anticancer Drugs [M], 1996:7:137.
    5. Peter Crookes, Cynthia Gail Leichman, Lawrence Leichiman, MathewTan, Loren Laine, et al. Systemic chemotherapy for gastric carcinoma followed by postoperative intraoperative therapy [J]. Cancer, 1997:79(9):1767一1775.
    6. Kalbara N. Hyperthermic peritoneal perfusion combined recurrence of gastric cancer [J]. Hepato-gastroneterol, 1989;36:75.
    7. Sugarbaker PH, Graves T, Debruijn, et al. Early postoperative peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies [J]. CanCer Res, 1990, 50:5790.
    8. Sugarbaker PH, Graves T, Debruijn, et al. Early postoperative peritoneal carcinomatosis from gastrointestinal cancer: pharmacological studies [J]. CanCer Res, 1990, 50:5790.
    9. Shimotsuma M, Sakuyama A, Shirasu M, et al. The role of the lymphatic system of the greater omentum and diaphragm in intraperitoneal cancer dissemination [J]. Jpn J Lymphol, 1993:16:l-5.
    10. Yoo C H, Noh S H, Shin D W, et al. Recurrence following curative resection For gastric carcinoma. [J] Br J Surg.2000, 87(2):236-242.
    11. Kaibara N, Hamazoe R, Litsuka Y, Maeta M, Koga S. Hyperthermic peritoneal perfusion combined with anticancer chemotherapy as prophylactic treatment of peritoneal recurrence of gastric cancer. [J] Hepatogastroenierology.1989 Apr;36(2):75-80.
    12.李春启,张秀荣。胃癌的化学治疗[M]。北京:中国医药科技出版社,1995.170-1730.
    13. Tsujimoto H, Takhash T, Hagiwara A et al. Site-specific implantation in the milky spots of malignant cells in peritoneal dissemination: immunchistochemical observation in mice inocuLated intraperitoneally with bromodeoxyuridine-labelled cells. [J] Br J Cancer.1995 : 71(3):468一472.
    14. Shimotsuma M, Shields JW, Simpson MW, et al. Morpho-physiology function and roleof omental milky spots as omental-associated lymphoid tissue(QALT) in the peritoneal cavity [J]. Lymphology, 1993;26:90-95.
    15.卿华三.大剂量大容积5-Fu腹腔化疗治疗消化系恶性肿瘤[J].普外临床,1995;10(l):54.
    16.陈军.进展期胃癌术后早期表阿霉素腹腔内化疗(附18例报告)[J].普外临床,1995:10(2):76.
    17.卿华三.结直肠癌术后早期5-Fu腹腔化疗的临床研究(附36例报告)[J].中国实用外科杂志,1996;16(3):142.
    18.黄承锁,王哲海。胃癌靶向药物研究进展。肿瘤防治研究[J],2008;35(1):67-69.
    19. Shapiro GJ, Harper JW. Anticancer drug targets cell cycle and checkpoint control [J]. J Clin Invest, 1999, 104(12):1645-1653.
    20. Ocean AJ, Schnoll-Sussman F, Chen X, et al. PhaseⅡstudy of PS-341(VELCADE, bortezomib) with or without irinotecan in patients(pts) with advanced gastric adenocarcinomas(AGA) [J]. Gastrointestinal Cancers Symposium, 2005,2:abstr 31.
    21. Kubben FJ, Sier CF, van Duiji W, et al. Matrix metalloproteinase-2 is a consistent prognostic factor in gastric cancer [J]. Br J Cancer, 2006, 94(7): 1035-1040.
    22. Tierney GM, Griffin NR, Stuart RC, et al. A pilot study of the safety and effects of the matrix metalloproteinase inhibitor marimastat in gastric cancer [J]. Eur J Cancer, 1999, 35(4):563-568.
    23. McMahon G.VEGF receptor signaling in tumor angiogenesis [J]. Oncologist, 2000, 5(suppl 1):3-10.
    24. Arao T, Yanagihara K, Takigahira M, et al.ZD6474 inhibits tumor growth and intraperitoneal dissemination in a highly metastatic orthotopic gastric cancer model [J]. Int J Cancer, 2006, 118(2):483-489.
    25. Tokuyama J, Kubota T, Saikawa Y, et al.Tyrosine kinase inhibitor SU 6668 inhibits peritoneal dissemination of gastric cancer via suppression of tumor angiogenesis [J]. Anticancer Res, 2005,25:17-22.
    26.李战,吴敏。2003,纳米技术和纳米中药的研究进展。上海中医药杂志,37(1): 61-63。
    27.李民乾。纳米生物学。现代科学仪器,1998,(1-2): 13-16.
    28.任建敏。2000,纳米技术在生物医学工程中的应用。第三军医大学学报,22(3): 299-300.
    29.张阳德。2005,纳米生物材料学,科学技术出版社,第一版:168-175.
    30.张阳德。2005,纳米生物技术学,科学技术出版社,第一版:102.
    31.张文萍,张志耘。我国纳米技术在药学领域中的应用现状。d津药学,2002,14(5):17-20.
    32. S. Moein Moghimi, A.Christy Hunter. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine,Trends in biotechnology, 2000, 18(10):412-420.
    33. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vascuLature: the key role of tumor-selective macromolecuLar drug targeting. Adv Enzyme ReguL ,2001, 41:189 207.
    34. Mornet S, Vasseur S. Magnetic nanoparticle design for medical applications. Progress in Solid State Chemistry, 2006:237-247.
    35. Cai Q, Zhang ZR. Lectin-mediated cytotoxicity and specificity of 5-fluorouracil conjugated with peanut agglutinin (5-Fu-PNA) in vitro. J Drug Target, 2005, 13:251-257.
    36. Sinto S, Jeffrey S, StepHan J, et al. The complexity of targeting EGFR signalling in cancer: From expression to turnover. Biochemica et BiopHysica Acta, 2006:120-139.
    37. Sutherland MS, Sanderson RJ, Gordon KA, et al. Lysosomal trafficking and cysteine protease metabolism confer target-specific cytotoxicity by peptide-linked anti-CD30-auristatin conjugates. J Biol chem, 2006, 281:10540-10547.
    38.沈星灿。纳米粒子特性与生物分析。分析化学,2003,31(70):880-885.
    39.林章碧。纳米粒子在生物分析中的应用。分析化学,2002,30(2):237-241.
    40. Khandare J, Minko T. Polymer-drug conjugates: progress in polymeric prodrugs. Prog Polym Sci, 2006, 31(4):359-397.
    41. Moghimi SM, Hunter AC. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine. Trends Biotechnol, 2000, 18(10):412-420.
    42. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vascuLature: the key role of tumor-selective macromolecuLar drug targeting. Adv Enzyme ReguL, 2001, 41:189-207.
    43. David A, KopeckováP, Minko T, et al. Design of a muLtivalent galactoside ligand for selective targeting of HPMA copolymer- doxorubicin conjugates to human colon cancer cells. Eur J Cancer, 2004, 40(1):148-157.
    44. Modi S, Prakash Jain J, Domb AJ, et al. Exploting EPR in plomer drug conjugate delivery for tumor targeting. Curr PHarm Des, 2006, 12(36):4785-4796.
    45. Chau Y, Padera RF, Dang NM, et al. Antitumor efficacy of a noval polymer-peptide-drug conjugate in human tumor xenograft models. Int J Cancer, 2006, 118(6):1519-1526.
    46. Chau Y, Dang NM, Tan FE, et al. Investigation of targeting mechanism of new dextrom-peptide-methotrexate conjuagetes using biodistribution study in matrix-metalloproteinase-overexpressing tumer xenograft model. J PHarm Sci, 2006, 95(3):542-551.
    47. Mornet S, Vasseur S, Grasset F, et al. Magnetic nanoparticle design for medical applications. Prog Solid State Chem, 2006, 34(2-4):237-247.
    48. Zhou J, Leuschner C, Kumar C, et al. A TEM study of functionalized magnetic nanoparticles targeting breast cancer cells. Mater Sci Eng C, 2006, 26(8):1451-1455.
    49. Dhaarap SS, Qiu B, Williams GC, et al. MuLecuLar targeting of drug delivery systems to ovarian cancer by BH3 and LHRH peptides.J Control Release, 2003, 91(1/2):61-73.
    50. Cai Q, Zhang ZR. Lectin-mediated cytotoxicity and specificity of 5-fluorouracil conjugated with peanut agglutinin (5-Fu-PNA) in vitro. J Drug Target, 2005, 13(4):251-257.
    51. Sebastian S, Settleman J, Reshkin SJ, et al. The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochem BiopHys Acta, 2006, 1766(1):120-139.
    52. Dassonville O, Bozec A, Fischel JL, et al. EGFR targeting therapies: monoclonal antibodies versus tyrosine kinase inhibitors. Similarities and differences. Crit Rev Oncol Hematol, 2007, 62(1):53-61.
    53. Carette JE, Graat HC, Schagen FH, et al. A conditionally replicating adenovirus with strict selectivity in killing cells expressing epidermal groeth factor receptor. Virology, 2007, 36(1):56-67.
    54. S. Moein Moghimi, A.Christy Hunter. Poloxamers and poloxamines in nanoparticle engineering and experimental medicine,Trends in biotechnology, 2000, 18(10): 412-420.
    55. Brigger I, Dubernet C, Couveur P. Nanoparticles in cancer therapy and diagnosis. Adv Drug Deliv Riv, 2002, 54(5):631.
    56.胡兴,邹国林。可降解聚合物纳米粒给药载体。氨基酸和生物资源,2003,25(2):52.
    57. Salafasky B, He Y X, Li J, etal. Study on the efficacy of a new long-acting formuLation of N,N-diethyl-m-toluamide(DEET) for the prevention of thic attachment. American Journal of Tropical Medicin and Hygiene, 2000, 62(2):169.
    58. Singh M, Srivastava I. Advances in vaccine adjuvants for infectious diseases. Curr HIV Res, 2003, 1(3):309.
    59. Caracciolo G, Pozzi D, Cammiti R, etal. Structual characterization of a new lipid/DNA complex showing a selective thansfection efficiency in ovarian cancer cells. Eur Phys J E Soft Matter, 2003, 10(4):331.
    60. Sharma A, Straubinger R M. Pharm Res, 1994, 11(6):889.
    61. Nill B, Katarina E. Journal of Colloid and interface Science, 2004, 276(2):400.
    62. Hou D Z, Xie CS, Huang KJ, etal.The production and characteristics of solid lipidnanoparticles (SLNs). Biomaterials, 2003, 24(10):1781.
    63. Wang ZY, Zhang DS. J South east Univ(Med Sci Edi), 2004, 23(2):131.
    64. Yasugi K, Nagasaki Y, Kato M, etal. J Controlled Release, 1999, 162(1-2):89
    65. Lin WJ, Juang LW, Lin CC. Pharm Res, 2003, 20(4):668.
    66. Soma CE, Dubernet C, Baratt G, etal. Ability of doxorubicin-loaded nanoparticles to overcome muLtidrug resistance of tumor cells after their capture by macrophages. Pharm Research. 1999, 16(11):1710-1716.
    67. Yoo HS, Park TG. In vitro and in vivo antitumor activities of nanoparticles based on doxorubicin-PLGA conjugates. PolymPrer. 2000, 41(1):992-993.
    68. CHEN MM, FANG YX, GU H. The application of nano in oral insuLin delivery. JOURNAL OF JINGGANGSHAN MEDICAL COLLEGE. 2004, 11(5):12-13.
    69.袁弘,胡富强,应晓英等。胰岛素纳米粒的制备[J]。中国药学杂志,2002,17(4):272-273.
    70.王新春。白藜芦醇三个不同载体材料纳米口服给药系统的研究。博士学位论文[M],四川大学.
    71. Sokolovaa VV, Radtkeb I, Heumann R, etal. Effective transfection of cells with muLti-shell calcium phosphate-DNA nanoparticles [J]. Biomaterials, 2006, 27:3147.
    72. He QQ, XIAO XX, FENG DY. Study on arginine modifying magnetic nanoparticles as gene vector [J]. Applied Chemical Industry. 2008, 37(8):844-864.
    73. CHANG J, LIU HF, XU XQ, et al. Oligonucleotide-PLA-o-CMC nanoparticles: a promising delivery system for human malignant glioma gene therapy [J]. CHINESE JOURNAL OF BIOMEDICAL ENGINEERING. 2002, 21(6):515-519.
    74.孙悦,卢敏,殷学锋。纳米脂质体包裹荧光试剂进入单细胞的研究[J]。高等学校化学学报,2006,27(4):632-634.
    75. ZHANG XM, GE YQ, JIANG GL, et al. Pharmacokinetics of cisplatin packaged in a nanometer liposome [J]. CHINA ONCOLOGY. 2007, 17(11):863-866.
    76.原梅,王晓英,王觅娟等。注射用紫杉醇纳米乳剂和紫杉醇注射液在比格犬体内的药代动力学比较[J]。军事医学科学院院刊,2008,32(5):458-460.
    77.朱瀛,陆伟根,张琳。丝裂霉素C磁性纳米粒Ⅱ.大鼠体内的药动学和靶向性[J]。中国医药工业杂志,2006,37(4):240-244.
    78. Labhasetwar V, Song C, Humphrey W, et al. Nanoparticles for site specific delivery of U-86983 in rest enosis in pig coronary arteries[J]. Proc Int Symp Control Release Bioact Master, 1995, 22(7):182.
    79.赵玲辉,王久莉,马庆莹。耳鼻咽喉淋巴系与恶性肿瘤[M]。北京:北京医科大学中国协和医科大学联合出版社,1994.35.
    80. Haagensen CD, Bhonsalay SB, Guttmann RJ, et al. Metastasis of carcinoma of the breast to the periphery of the region lymph node filter [J]. Ann Surg, 1969,169(2):174-190.
    81.李超英,蒋学华,侯世祥。淋巴靶向给药系统研究与应用[J]。中国新药杂志,2001,10(12):903-907.
    82.景纯,温玉明,王昌美,等。口腔颊舌鳞癌癌周淋巴管形态学特征与颈淋巴结转移[J ]。华西口腔医学杂志,1995,13(2)∶130 -134.
    83.李龙江,温玉明,毛祖彝,等。颊粘膜鳞癌血管生成与转移关系的临床研究[J]。华西口腔医学杂志,1996,14(1)∶25-27.
    84.邱存平。恶性肿瘤淋巴化疗[J]。国外医学·口腔分册,1998,25(1)∶13-16.
    85. Maeda H. The enhanced permeability and retention (EPR) effect in tumor vascuLature: the key role of tumor-selective macromolecuLar drug targeting. Adv Enzyme ReguL , 2001, 41:189 207.
    86. Nakase Y, Hagiwara A, Kin S, et al. Intratumoral administration of methotrexate bound to activated carbon:antitumor effectiveness against hunman colon carcinoms xenografts and acute toxicity in mice. J Pharmacol Exp Ther, 2004,311(1):382-387.
    87.沓仁芝,陈济民,姚崇舜.淋巴靶向制剂—吸附抗癌药毫微粒活性炭的研究进展[J].沈阳药科大学学报,2002,19(2):66-69.
    88. Dong YM, Ta XR, Yao CS, et al. Effect of actived nanocarbon on absorption and release of fluorouracil[J]. J Chin Med Univ, 2004,33(3):205-211.
    89. Sie TL, Draper HH, Bell RR. Hypocalcemia, hyper-parathyroidism, and bone resorption in rats induced by dietaryphosphate [J]. J Nutr, 1974,104(9):1195-1201.
    90. Biano A, Kostarelos K, Prato M, et al. Applications of carbon nanotubes in drug delivery [J]. Curr Opin Chem Biol, 2005;9(6):674-679.
    91.陈纯义.活性炭微粒在肿瘤临床中的应用[J ] .实用肿瘤学杂志,1992 ,6 (1)∶47 - 48.
    92. A.E. Hawley, S.S. Davis, L. Illum, Targeting of colloids to lymph nodes : influence of lymphatic physiology and colloiydal characteristics, Adv. Drug. Deliv. Rev. 17 (1995) 129-148.
    93. Y. Nishioka, H. Yoshino, Lymphatic targeting with nanopar ticuLate system, Adv. Drug Deliv. Rev. 47 (2001) 55-64.
    94.林章碧等。纳米粒子在生物分析中的应用。分析化学,2002,30(2):237-241.
    95.陈浩,黄广健.倪泉兴等.活性炭在淋巴结中的移行、分布规律研究[J].消化外科,2006,5(4):288-290.
    96. Takahashi T. Paths of innovative surgery in gastrointestinal can2cer in ourdepartment [J ] . Nippon Geka Gakkai Zasshi ,1997 ,98(9)∶789 - 793.
    97. Huang GJ, Chen ZQ, Liu Y, et al. Guidance of activated carbon nanoparticles in gastric cancer lymphadenectomy. China Journal of Modern Medicine. 2005,15(2):233-235.
    98. Kam NW, O’Connell M, Wisdom JA, et al. Carbon nanotubes as muLtifunctional biological transporters and near-infrared agents for selective cancer cell destruction. Proe Natl Acad Sci USA, 2005, 102(33):11600-11605.
    99.梁寒,唐贺文,郝希山等。活性炭吸附丝裂霉素C腹腔化疗的药代动力学研究[J]。中华肿瘤杂志,2005,27(7):412-415.
    100. Hagiwara A, Takahashi T, Ueda T, et al. Intraoperative chemotherapy with carbon particles adsorbing mitomycin C for gastric cancer with peritoneal dissemination in rabbits. Surgery, 1988, 104(5):874-881.
    101. Hagiwara A, Takahashi T, Ueda T, et al. Intraoperative chemotherapy with carbon particles adsorbing mitomycin C for gastric cancer with peritoneal dissemination in rabbits. Surgery, 1988, 104(5):874-881.
    102. New ferro-carbon adsorbents for magnetically guided transport of anti-cancer drugs.
    103. Qu QL, Zhang YG, Yang LZ, et al. Intraperitoneal chemotherapy with mitomyc in C bound to activa ted carbon nanoparticles for nude mice bear ing human gastric carcinoma[J]. Chin J Onocl, 2006,28(4):257-260.
    104. Magrez A, Kasas S, Salicio V, et al. CelluLar toxicity of carbon-based nanomaterials.Nano Lett, 2006,6(6):1121-1125.
    105. Ito T, Hagiwars A, Takagi T, et al. Local administration of methotrexate bound to activated carbon particles for treating cancers in mice. Anticancer Res, 2003, 23(2B):1401-1404.
    106. Hagiwara A, Takahashi T, Kitamura K, et al. Endoscopic local injection of a new drug delivery formuLation, anticancer drug bound to carbon particles, for digestive cancers:pilot study. J Gastroenterolm, 1997, 32(2):141-144.
    107.钱浩然,范健,刘颖斌等。活性炭吸附紫杉醇治疗肿瘤淋巴结转移的实验研究[J]。Journal of Practical Oncology,21(2):146-148.
    108. C. Sakakura, T. Takahashi, K. Sawai, et al. Enhance- Pintomentof therapeutic efficacy of aclarubicin against lymphnode metastases using a new dosage form : aclarubicinadsorbed on activated carbon particles, Anti-Cancer Drugs 3 (1992) 233236.
    109. A. Hagiwara, T. Takahashi, K. Sawai, et al. Selective drug delivery toperi-tumoral region and regional lymphatics by local injection of aclarubicin adsorbed on activated carbon particles in patients with breast cancer—a pilot study, Anti-Cancer Drugs 8 (1997) 666 670.
    110. Huang GJ, Chen ZQ, Liu Y, et al. Guidance of activated carbon nano particles in gastric cancer lymphadenectomy[J]. China Journal of Modern Medicine,2005,15(2),233-235.
    111. Okamoto K, Sawai K, Minato H, et al. Number and anatomical extent of lymph node metastases in gastric cancer: analysis using intra-lymph node injection of activated carbon particles(CH40). Jpn J Clin Oncol, 1999, 29(2):74-77.
    112. Wu WJ, Zeng J, Pan CE. Efficacy of activated char coal-epirubicin suspension for tr eatment of br east cancer with axillary metastasis[J]. J South Med Univ, 2006, 26(12):1812-1814.
    113. Zhang L, Wang XN, Ding XM et al. Experimental study of intraperitoneal chemotherapy with mitomycin C bound to carbon nanopaticles. CHIN J CANCER PREV TREAT, 2008, 15(7): 503-506.
    114. Qu QL, Zhang YG, S L. Adsorption and sustained release of mitomycin C by activated carbon nano-particles. BuLl Acad Mil Med Sci. 2004,28(6): 552-561.
    115. Wang Guijuan, Cao Mingli, Yu Yongfu. Study on preparation of Al-pillared Montmorillonite and its Adsorption, Industrial Minerals and Processing,2003, 11: 9-11.
    116. Yin MZ, Han YC, Bauer IW, et al. Effect of hydroxyapatite nanoparticles on the uLtrastructure and function of hepatocellar carcinoma cells in vitro. Biomed Mater, 2006, 1(1): 38-41.
    117.杜益群,张东生,倪海燕等。肿瘤热疗用Fe3O4磁性纳米粒子的生物相容性研究。南京大学学报,2006,3(42):324-330.
    118. Carmichael J, De Graff WG, Grazdar AF, et al. Evaluation of tetrazolium based semiaumated colorimetric assay: assessment of chemosensitivity testing. J Cancer Res, 1987,47: 936-942.
    119. Zhou G, Sheng W, Yao W, et al. Effect of low molecuLar lambda-carrageenan from Chondrus ocellatus on antitumor H-22 activity of 5-Fu. PHarmacol Res. 2006; 53(2): 129-134.
    120. Yu ZH, Wei PK, Xu L, et al. Anticancer effect of jinlongshe granuLes on in situ-transplanted human MKN-45 gastric cancer in nude mice and xenografted sarcoma
    180 in Kunming mice and its mechanism. World J Gastroenterol. 2006; 12(18):2890-2894.
    121.梁世凯,许菲菲。马兜铃酸致癌性研究进展。国外医学泌尿系统分册, 25(2):256-260.
    122. Yang M, Li B, Tomchick DR, et al. P31 comet blocks Mad2 activation through stuctral mimicty. Cell, 2007, 131(4): 744-755.
    123. JakubíkováJ, Sedlák J. Garlic-derived organosuLfides induce cytotoxicity, apoptosis, cell cycle arrest and oxidative stress in human colon carcinoma cell lines. Neoplasma. 2006, 53(3): 191-199.
    124. Takafumi K, Masaji Y, Akihiro I et al. Pharmacokinetic characteristics of 5-fluorouracil and mitomycin C in intraperitoneal chemotherapy. [J] J Pharm Pharmacol1994 46(8):685-9.
    125. Xiong X, Lim B ,ALat-Luna M et al. Quantitation of mitomycin C in human ocuLar tissues by high-performance liquid chromatography-photo-diode array detection. [J]J Chromatogr B Biomed Sci Appl. 2001 5(755): 65-72.
    126. Hagiwara A, Toshio MD,Takahashi, MD et al. Intraoperative chemotherapy with carbon particles adsorbing mitomycin C for gastric cancer with peritoneal dissemination in rabbits. [J] Surgery November 1988 104 (5):874-881.
    127.孙言才,屈建,刘建等。HPLC法测定原位肝脏隔离灌注猪血浆中丝裂霉素的浓度[J]。安微医药2002;6(1):8-9.
    128. Song D, Jessie L. Direct injection isocratic high-performance liquid chromatographic analysis of mitomycin C in plasma. [J]J Chromatography B Biomed Appl. 1996 676(1):165-168.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700