用户名: 密码: 验证码:
海水侵蚀环境下水泥土的力学性质试验研究及耐久性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泥土因具有材料来源广泛、施工便捷、价格低廉、性能良好等特点,而广泛应用于基坑围护、地基处理和边坡加固等工程中。港珠澳大桥珠海连接线拱北隧道作为港珠澳大桥的重要组成部分,其明挖段基底采用高压旋喷和深层搅拌相结合的方式进行加固处理,处理后的基底含有大量的水泥土;同时,该基底地下水与具有侵蚀性的海水连通,海水侵蚀会引起水泥土的矿物成分和微细观结构发生改变,从而导致其力学性能劣化、耐久性降低。因此,探索海水侵蚀环境下水泥土的力学性质和耐久性能,是亟需研究的课题。本文依托港珠澳大桥珠海连接线拱北隧道基底加固工程,研究海水侵蚀环境下水泥土强度随龄期的变化规律,建立海水侵蚀环境下水泥土强度性质的溶液浓度-侵蚀时间等效模型,预测海水侵蚀环境下水泥土加固体的耐久性,具有重要的理论意义和工程应用价值。
     首先,在室内配制多种化学溶液来模拟海水侵蚀环境,将不同性质的水泥土试块置于溶液中进行预定时间的浸泡。通过单轴压缩试验、电镜扫描以及离子色谱测定,分别得到了水泥土试块的无侧限抗压强度、水泥土试块微观结构图、浸泡后溶液离子浓度。
     分析水泥土试块的无侧限抗压强度数据,得到清水、氯化钠溶液、氯化镁溶液、硫酸镁溶液、氯化钠和氯化镁混合溶液、氯化钠和硫酸镁混合溶液中水泥土试块无侧限抗压强度与侵蚀溶液浓度和侵蚀时间之间的关系;将侵蚀环境下水泥土试块无侧限抗压强度分解为清水环境下试块的无侧限抗压强度和侵蚀环境导致水泥土无侧限抗压强度的变化两部分,利用后者研究了水泥土试块无侧限抗压强度与侵蚀溶液浓度和侵蚀时间之间的关系;分析水泥土试块微观结构图及浸泡后化学溶液离子浓度,分别得到侵蚀后水泥土试块微观结构随溶液浓度和浸泡时间的变化规律以及侵蚀环境中离子浓度随侵蚀时间的变化规律。
     其次,建立海水环境下水泥土强度特征的等效模型。水泥土的强度来自于土体颗粒的密实程度和颗粒之间胶结物的充填和胶结强度,假定:侵蚀环境对水泥土土颗粒的密实程度无影响,只对水化后土颗粒之间的胶结物产生影响,基于损伤力学和化学动力学,建立了水泥土强度性质的侵蚀溶液浓度-侵蚀时间等效关系。采用侵蚀环境导致的水泥土试块的强度变化试验数据,对水泥土强度性质的侵蚀溶液浓度-侵蚀时间等效关系进行了验证。
     最后,以港珠澳大桥珠海连接线拱北隧道基底处理工程为依托,分析水泥土加固体的耐久性。一方面,根据试验数据得到清水环境下水泥土强度与龄期之间的关系,并结合水泥土强度性质的侵蚀溶液浓度-侵蚀时间等效原理和氯化钠环境下水泥土的无侧限抗压强度试验数据,得到0.34g/l的氯离子(该工程所处海水中氯离子浓度)环境导致的水泥土试块无侧限抗压强度的变化值与侵蚀时间之间的关系;然后,将清水环境下水泥土试块的无侧限抗压强度和侵蚀环境导致的水泥土无侧限抗压强度的变化值相加,得到0.34g/l氯离子环境中水泥土试块的无侧限抗压强度与侵蚀时间的关系。最后,根据清水环境下水泥土试块的强度与龄期之间的关系,假定龄期270d后,清水浸泡下水泥土试块的无侧限抗压强度保持不变,应用上述关系式,预测了仅考虑海水中氯离子的影响时,水泥土加固体的长期强度。另一方面,采用侵蚀环境下水泥土试块无侧限抗压强度试验数据,对旋喷桩和搅拌桩单桩设计公式进行了修正,得到了修正系数建议取值范围。从水泥土加固体的设计原理和长期强度预测两方面进行了海水环境下水泥土加固体的耐久性分析,为海水环境下水泥土加固工程的设计、施工和运行提供重要的参考依据。
Cement-soil, with the characteristics of extensive sources, easy construction, low price and good performance, is widely used in foundation pit support, foundation treatment, slope reinforcement and other engineering projects. One of the important parts of the Hong Kong-Zhuhai-Macao Bridge is the connecting line project in Zhuhai, the basement of whose open excavation section is reinforced by combining the methods of high pressure jet grouting and deep mixing, thus the treated basement contains a lot of cement-soil. In the meantime, the groundwater under the basement is connected with erosive brine. The erosion of brine changes the mineral composition and microstructure of the cement-soil, thus deteriorates its mechanical properties and durability. Therefore, to explore the mechanical properties and durability of cement-soil under erosive environment are subjects that worthy pay great attention. In this paper, combined with the engineering practice of Hong Kong-Zhuhai-Macao Bridge, the change rule of strength of cement-soil under brine environment was studied. Then, an equivalent model of the strength characteristics of cement-soil under brine environment was established and used to forecast the durability of cement-soil under brine environment, which can serve as a guide to the engineering practice, and has great theoretical value and engineering significance.
     Firstly, in order to simulate the brine environment, a variety of chemical solutions were prepared and soaked the cement-soil samples of different characteristics in the chemical solutions at the scheduled times. Then, the uniaxial compression tests, electron microscope scanning and Ion chromatographic determination were performed. And unconfined compressive strength of the cement-soil samples, microstructure pictures of these samples and solution concentration after soaking were obtained respectively.Through analyzing the unconfined compressive strength datum of cement-soil under pure water, sodium chloride solution, magnesium chloride solution, magnesium sulfate solution, solutions of sodium chloride and magnesium chloride, the mixed solutions of sodium chloride and magnesium sulfate respectively, the relationship between the unconfined compressive strength of the cement-soil samples under these six kinds of solutions and the solution concentration as well as the erosion time was obtained. Then, the unconfined compressive strength of cement-soil under erosive environment was decomposed into two parts, the unconfined compressive strength under pure water and the unconfined compressive strength change under erosive environment. Based on the latter part, the relationship between the unconfined compressive strength and the solution concentration as well as the erosion time was studied. The microstructure picture of the cement-soil and the solution concentration were analyzed after the erosion. The relationship between the microstructure of cement-soil and the solution concentration as well as the soak time and the relationship between the ion concentration of erosive solution and erosion time were obtained respectively.
     Then, a cemented soil strength characteristic equivalent model was built. The strength of a cemented soil sample is mainly composed of.compaction rate of soil particle and cement filing between particles and cementing strength. Suppose that the erosive environment have no effect on compaction rate of soil particle,and only have effect on cementing agent between soil particle,based on damage mechanics and chemical kinetics, an erosion solution concentration-erosion time equivalence principle of cemented soil strength was deduced. Experimental data of strength change of cemented soil induced by erosive environment was used to test and verify erosion solution concentration-erosion time equivalence principle of cemented soil strength.
     Finally, rely on the basal treatment engineering of Gonbei tunnel, Zhuhai connecting line Hong Kong-Macau-Zhuhai Bridge, durability of cemented soil reinforcement body was analyzed. On the one hand, relationship between strength and age of cemented soil in fresh water environment was obtained from the experiment data, and then combined the experiment data of unconfined compression strength of cemented soil in NaCl erosive environment with combined with erosion solution concentration-erosion time equivalence principle of cemented soil strength to to get the relationship between age and unconfined compression strength change of cemented soil induced by0.34g/1(the concntration of the project site) chloride ion environment. Relationship further more, add unconfined compression strength of cemented soil in fresh water environment with that of unconfined compression strength change of cemented soil induced by erosive environment, relationship between age and unconfined compression strength of cemented soil in0.34g/1chloride ion environment was obtained. At last, according to relationship between age and strength of cenmented soil test block in fresh water environment, assume that unconfined compression strength of cemented soil remain unchanged after soaked in fresh water more then270d, applied the relational expression obtained above, long term strength of cemented soil reforcement boy only affected by chloride ion in seawater was forecasted. On the other hand, single pile design formulas of jet grouting pile and mixing pile were amended, recommended value range of correction factor was obtained. Durability analysis of cemented soil in brine environment, which guided from two aspects:design of cemented soil and long-term strength forecast, provide a significant reference frame for design, construction and running of cemented soil engineering in brine evironment.
引文
[1]中交公路规划设计院有限公司.港珠澳大桥工程可行性研究报告[R].珠海:中交公路规划设计院有限公司,2008.
    [2]中交公路规划设计院有限公司和中交第二航务工程勘察设计院有限公司.港珠澳大桥主体工程详勘地质报告(隧道)[R].珠海:中交公路规划设计院有限公司和中交第二航务工程勘察设计院有限公司,2009.
    [3]中交公路规划设计院有限公司设计联合体.港珠澳大桥初步设计文件报告[Z].珠海:中交公路规划设计院有限公司设计联合体,2010.
    [4]赵永强.污染对水泥土影响的力学试验及其损伤本构模型研究[D].博士学位论文.太原理工大学.2008.
    [5]Terashi M, Kitazume M. An investigation of long term strength of lime and cement treated marine caly [R], Technical Note of Port and Harbour Research Institute,1992,1-15.
    [6]Niina A, Sato S, Baba R, MIyata K, Study on soil improved by DCM [R], Technical Report of Takenaka Research Institute,1981, (26),45-55.
    [7]宁宝宽,陈四利,刘斌.水泥土的环境侵蚀效应与破裂过程分析[J].岩石力学与工程学报,2005,24(10):1778-1782.
    [8]宁宝宽,陈四利.环境侵蚀下水泥土的力学效应试验研究[J].岩土力学,2005,26(4):600-603.
    [9]宁宝宽,陈四利.环境侵蚀下水泥土力学特性的时间效应分析[J].水文地质工程地质,2005,32(2):82-86.
    [10]宁宝宽,金生吉.侵蚀性离子对水泥土力学特性的影响[J].沈阳工业大学学报,2006,28(2):178-181.
    [11]宁宝宽.环境侵蚀下水泥土的损伤破裂试验及其本构模型[D].沈阳:东北大学,2005.
    [12]宁宝宽,陈四利.冻融和酸碱腐蚀对水泥土的效应研究[J].低温建筑技术,2005(4):7-19.
    [13]宁宝宽,刘斌.环境侵蚀对水泥土桩承载力影响的试验及分析[J],东北大学学报(自然科学版),2005,26(1):95-98.
    [14]韩鹏举,白晓红,赵永强,董晓强,任杰.Mg2+和SO42-相互影响对水泥土强度影响的实验研究[J].岩土工程学报,2009,31(1):72-76.
    [15]刘鑫,洪宝宁,陈艳丽,张华杰.侵蚀环境下水泥土强度及微结构变化规律研究[J].武汉理工大学学报,2010,32(10):11-15.
    [16]白晓红,赵永强,韩鹏举,乔俊义,吴植安.污染环境对水泥土力学特性影响的试验研究[J].岩土工程学报,2007,29(8):1260-1263.
    [17]陈四利,宁宝宽.化学侵蚀下水泥土的无侧限抗压强度试验[J].新型建筑材料,2006(6):40-42.
    [18]黄新,杨晓刚,胡同安.硫酸盐介质对水泥加固土强度的影响[J].工业建筑,1999,19(4):19-23.
    [19]黄新恩,董晓强,耿兴华等.环境污染对水泥土力学性能影响的试验研究[J].中北大学学报(自然科学版),2009,30(5):450-452.
    [20]黄汉盛,都泰宁.软土深层搅拌桩的水泥土抗腐蚀性室内试验[J].地质科技情报,2005,26(sup):85-88.
    [21]焦志斌,刘汉龙.淤泥质酸性土水泥土强度试验研究[J].岩土力学,2005,26(sup):57-60.
    [22]储诚富,邵俐.有机质含量对水泥土强度影响的室内定量研究[J].岩土力学,2006,27(9):1613-1616.
    [23]储诚富,邵俐.含盐量对水泥土强度影响的室内试验研究[J].工程地质学报,2007,15(1):139-143.
    [24]杨俊杰,孙涛,张玥宸,苗佳丽.腐蚀性场地形成的水泥土的劣化研究[J].岩土工程学报,2012,34(1):130-137.
    [25]Budiansky B.Micromechanics[J].Computers & Structures 1983;16(1):3-12.
    [26]杨卫.细观力学和细观损伤力学[J].力学进展1992;22(1):1-9.
    [27]许江,李贺,鲜学福,尹光志.对单轴应力状态下砂岩微观断裂发展全过程的实验研究[J].力学与实践1986;8(4):24-8.
    [28]谢和平.岩石混凝土损伤力学[M]:中国矿业大学出版社;1990.
    [29]李长春,陈良森,李灏,吴玉山,林卓英,袁建新.岩石类脆性材料的细观损伤本构关系[J][J].岩土力学1989;10(2):55-68.
    [30]凌建明.节理岩体损伤力学及时效损伤特性的研究[博士学位论文]:上海:同济大学;1992.
    [31]凌建明,蒋爵光,付永胜.非贯通裂隙岩体力学特性的损伤力学分析[J].岩石力学与工程学报1992;11(4):373-83.
    [32]凌建明,孙钧.脆性岩石的细观裂纹损伤[J].岩石力学与工程学报1993;12(1993).
    [33]赵永红,黄杰藩,王仁.岩石微破裂发育的扫描电镜即时观测研究[J].岩石力学与工程学报1992;11(3):284-94.
    [34]赵永红,黄杰藩.岩石细观破裂的实验观测研究及其对认识地震活动性的启示[J].地球物理学报1995;38(5):627-36.
    [35]孙钧,凌建明.三峡船闸高边坡岩体的细观损伤及长期稳定性研究[J].岩石力学与工程学报1997;16(1):1-7.
    [36]张梅英,袁建新,李廷芥,尚嘉兰,孔常静.单轴压缩过程中岩石变形破坏机理[J].1998.
    [37]尚嘉兰,孔常静,李廷芥,张梅英.岩石细观损伤破坏的观测研究[J].1999.
    [38]肖洪天,周维垣.脆性岩石变形与破坏的细观力学模型研究[J].岩石力学与工程学报2001;20(2):151-5.
    [39]邵鹏,贺永年.脆性岩石细观损伤分析与临界破坏行为[J].煤炭科学技术2001;29(7):31-2.
    [40]尹光志,鲜学福,许江,王宏图.岩石细观断裂过程的分叉与混沌特征[J].重庆大学学报(自然科学版)2000;23(2):56-9.
    [41]李浩,郭应桐.岩石在复杂荷载下的细观损伤模型[J].岩土力学2001;22(2):159-62.
    [42]周维垣,剡公瑞.岩石,混凝土类材料断裂损伤过程区的细观力学研究[J].水电站设计1997;13(1):1-9.
    [43]郯公瑞,周维垣.岩石混凝土类材料细观损伤流变断裂模型及其工程应用[J].水利学报1997;(10):33-8.
    [44]Kaplan M. Crack propagation and the fracture of concrete. ACI Journal Proceedings; 1961: ACI; 1961.
    [45]董聪,杨庆雄.细观损伤力学新进展[J].强度与环境1993;(4):1-9.
    [46]余寿文,冯西桥.损伤力学[M]:清华大学出版社;1997.
    [47]Bazant ZP, Tabbara MR, Kazemi MT, Pijaudier-Cabot G. Random particle model for fracture of aggregate or fiber composites[J]. Journal of engineering mechanics 1990; 116(8): 1686-705.
    [48]Mohamed AR, Hansen W. Micromechanical Modeling of Concrete Response under Static Loading? Part 1:Model Development and Validation[J]. ACI Materials Journal 1999; 96(2).
    [49]唐春安,朱万成.混凝土损伤与断裂-数值试验[J].2003.
    [50]朱万成,黄明利,唐春安.混凝土试件裂纹扩展及破坏过程的计算机模拟[J].辽宁工程技术大学学报(自然科学版)2000;19(3):271-4.
    [51]朱万成,唐春安,杨天鸿.岩石破裂过程分析(RFPA2D)系统的细观单元本构关系及验证[J].岩石力学与工程学报2003;22(1):24-9.
    [52]李宁,朱运明.酸性环境中钙质胶结砂岩的化学损伤模型[J].岩土工程学报,2003,25(3):395-399.
    [53]程昌炳,徐昌伟.天然针铁矿胶结土样与盐酸反应的化学动力学及其力学特性预报[J].岩土工程学报,1995,17(3):44-50.
    [54]Kachanov ML. A microcrack model of rock inelasticity part I:Frictional sliding on microcracks[J]. Mechanics of Materials 1982; 1(1):19-27.
    [55]Rabotnov YN. Paper 68:On the Equation of State of Creep. Proceedings of the Institution of Mechanical Engineers, Conference Proceedings; 1963:SAGE Publications; 1963. p. 2-117-2-22.
    [56]Janson J, Hult J. Fracture mechanics and damage mechanics- A combined approach. (International Congress of Theoretical and Applied Mechanics,14 th, Delft, Netherlands, Aug 30-Sept 4,1976) Journal de Mecanique Appliquee; 1977; 1977. p.69-84.
    [57]Krajcinovic D. Damage mechanics[M]:North Holland; 1996.
    [58]Lemaitre J.损伤力学教程[M]:科学出版社;1996.
    [59]Li Z, Qian J. Creep damage analysis and its application to nonlinear creep of reinforced concrete beam[J]. Engineering Fracture Mechanics 1989; 34(4):851-60.
    [60]Tirosh J, Miller A. Damage evolution and rupture in creeping of porous materials[J]. International journal of solids and structures 1988; 24(6):567-80.
    [61]Yu T, Miao X, Xiong J, Jiang H, Lee H. An orthotropic damage model for concrete at different temperatures[J]. Engineering fracture mechanics 1989; 32(5):775-86.
    [62]黄克智,徐秉业.固体力学发展趋势[J].1995.
    [63]余天庆,宁国钧.损伤理论及其在混凝土结构研究中的应用[J].桥梁建设1986;2(26.30).
    [64]L(?)land K. Continuous damage model for load-response estimation of concrete[J]. Cement and Concrete Research 1980; 10(3):395-402.
    [65]Mazars J. Application de la mecanique de l'endommagement au comportement non lineaire et a la rupture du beton de structure; 1984.
    [66]何明,符晓陵,徐道远.混凝土的损伤模型[J].福州大学学报(自然科学版)1994;22(4):109-14.
    [67]钱济成,周建方.混凝土的两种损伤模型及其应用[J].河海大学学报:自然科学版1989;(3).
    [68]余天庆.混凝土的分段线性损伤模型[J].岩石,混凝土断裂与强度1985;2(14.16).
    [69]Supartono F, Sidoroff F. Anisotropic damage modeling for brittle elastic materials. Symposium of franc-poland; 1984; 1984. p.235-47.
    [70]Kajcinovic D. Constitutive equation for damaging platerials[J]. J Appl Mechan 1983; 50: 355.
    [71]Chaboche J. Continuum damage mechanics[J]. J appl Mech 1988; 55(1):59-64.
    [72]Lemaitre J. How to use damage mechanics[J]. Nuclear Engineering and Design 1984; 80(2): 233-45.
    [73]程光旭,楼志文,匡震邦.一种基于材料延性耗散模型的疲劳损伤研究方法[J].力学学报1993;25(4):496.
    [74]张盛东.混凝土损伤本构关系的研究[D]:哈尔滨:哈尔滨建筑大学;1997.
    [75]鞠杨.钢纤维(增强)混凝土疲劳损伤行为及其累积损伤理论和疲劳寿命估算方法研究[D];1995.
    [76]谢里阳,吕文阁.两级载荷作用下疲劳损伤状态的试验研究[J].机械强度1994;16(3):52-4.
    [77]Del Grande NK, Durbin PF. Dual-band infrared imaging to detect corrosion damage within airframes and concrete structures:Lawrence Livermore National Laboratory,1994.
    [78]Hamad B. Evaluation and repair of fire damaged reinforced concrete structures in Beirut, Lebanon[J]. Journal of Applied Fire Science 1997; 6(2):127-39.
    [79]Ju J, Zhang Y. A thermomechanical model for airfield concrete pavement under transient high temperature loadings[J]. International Journal of Damage Mechanics 1998; 7(1):24-46.
    [80]周苏波.混凝土损伤的定量分析[D]:南京:河海大学;1999.
    [81]Dougill J, Lau J, Burt N. Towards a Theoretical Model for Progressive Failure and Softening in Rock, Concrete, and Similar Materials[J]. Mech in Engng, ASCE-EMD 1976:335-55.
    [82]Dragon A, Mroz Z. A continuum model for plastic-brittle behaviour of rock and concrete[J]. International Journal of Engineering Science 1979; 17(2):121-37.
    [83]Krajcinovic D. Creep of structures-a continuous damage mechanics approach[J]. Journal of structural mechanics 1983; 11(1):1-11.
    [84]谢和平.岩石材料的局部损伤拉破坏[J].岩石力学与工程学报1988;7(2):147-54.
    [85]谢和平,陈至达.岩石的连续损伤力学模型探讨[J].煤炭学报1988;1:32-42.
    [86]唐春安,徐小荷.岩石损伤参量与本构关系的统计理论解及实验确定[J].岩石,混凝土断裂与强度1988;8(1):80-6.
    [87]卢应发,葛修润.岩石损伤本构理论[J].岩土力学1990;11(2):67-71.
    [88]王金龙,林卓英,吴玉山,袁建新.脆性岩石的损伤与裂隙扩展[J].岩土力学1990;11(3):1-8.
    [89]叶黔元.岩石的内时损伤本构模型[J].第四届全国岩土力学数值分析与解析方法讨论会论文集武汉:武汉测绘科技大学出版社1991:85-90.
    [90]李庆斌,郝军保.岩石三轴损伤本构模型[J].见:中国青年学者岩土工程力学及其应用研讨会论文集北京:科学出版社1994;155.
    [91]殷有泉.岩石的塑性,损伤及其本构表述[J].地质科学1995;30(1):63-70.
    [92]周光泉,陈德华.岩石连续损伤本构方程[J].岩石力学与工程学报1995;14(3):229-35.
    [93]李广平.类岩石材料微裂纹损伤模型分析[J].岩石力学与工程学报1995;14(2):107-117.
    [94]吴政,张承娟.单向荷载作用下岩石损伤模型及其力学特性研究[J].岩石力学与工程学报1996;15(1):55-61.
    [95]杨友卿.岩石强度的损伤力学分析[J].岩石力学与工程学报1999;18(1):23-27.
    [96]刘立,邱贤德,黄木坤,阎宗岭.复合岩石损伤本构方程与实验[J].重庆大学学报(自然科学版)2000;3:015.
    [97]朱建明,徐秉业,任天贵,高谦.基于三轴压缩试验的破裂岩损伤演化方程的建立[J].工程地质学报2000;8(2):175-9.
    [98]秦跃平.岩石损伤力学模型及其本构方程的探讨[J].岩石力学与工程学报2001;20(4):560-562.
    [99]周维垣,剡公瑞.岩体弹脆性损伤本构模型及工程应用[J].岩土工程学报1998;20(5):54-57.
    [100]陶振宇,曾亚武,赵震英.节理岩体损伤模型及验证[J].水利学报1991;12(6):33-45.
    [101]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报1992;14(2):1-11.
    [102]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展1994;25(2):257-64.
    [103]袁建新.岩体损伤问题[J].岩土力学1993;14(1):1-31.
    [104]李术才,朱维申.复杂应力状态下断续节理岩体断裂损伤机理研究及其应用[J].岩石力学与工程学报1999;18(2):142-6.
    [105]沈珠江,章为民.损伤力学在土力学中的应用[J].第三届全国岩土力学数值分析与解析方法讨论会论文集,武汉:武汉测绘科技大学出版社1988;51.
    [106]孙红,赵锡宏.软土的弹塑性各向异性损伤分析[J].岩土力学1999;20(3):7-12.
    [107]赵锡宏,孙红,罗冠威.损伤土力学[M]:同济大学出版社;2000.
    [108]何思明.双标量描述的土的损伤模型及其应用[J].岩土力学2002;23(3):337-340.
    [109]Coop M, Atkinson J. The mechanics of cemented carbonate sands[J]. Geotechnique 1993; 43(1):53-67.
    [110]K1TAZUME M, OKANO K, MIYAJIMA S. Centrifuge model tests on failure envelope of column type deep mixing method improved ground[J]. Soils and Foundations 2000; 40(4): 43-55.
    [111]Rollings RS, Burkes JP, Rollings MP. Sulfate attack on cement-stabilized sand[J]. Journal of geotechnical and geoenvironmental engineering 1999; 125(5):364-72.
    [112]Vatsala A, Nova R, Murthy BS. Elastoplastic model for cemented soils[J]. Journal of Geotechnical and Geoenvironmental Engineering 2001; 127(8):679-87.
    [113]张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究:杭州:浙江大学;1992.
    [114]童小东,龚晓南,蒋永生。水泥土的弹塑性损伤试验研究[J],土木工程学报,2002,35(4),82-85
    [115]Su K, Hoteit N, Ozanam O. Effects of desiccation and rehumidification on the thermo-hydro-mechanicaL behaviour of the CaLLovo-Oxfordian argiLLaceous rock [A]. In: Stepansson O, Jing L, Hudson J A. ed. Proceedings of the InternationaL Conference GeoProc [C]. StockhoLm, Sweden:[s. n.],2003.415-420.
    [116]Chan T, Guvanasen V, StancheLL F. Verification and validation of a three-dimensionaL finite eLement code for coupLed thermo-hydromechanicaL and saLinity (chemicaL) modeLing in fractured rock mass [A]. In:Stepansson O, Jing L, Hudson J A ed. Proceedings of the InternationaL Conference GeoProc [C]. StockhoLm, Sweden:[s. n.],2003.447-452.
    [117]Preuss K. TOUGH2- a generaL-purpose numerical. simuLator for muLtiphase fLuid and heat fLow (Report LBL-29400) [R]. BerkeLey, CA:Lawrence BerkeLey Laboratory,1991.
    [118]龚晓南.复合地基地基理论及工程应用[M],北京:中国建筑工业出版社,2004.
    [119]龚晓南.复合地基[M],杭州:浙江大学出版社,1992.
    [120]牛荻涛.混凝土结构耐久性评定标准编制,土建结构工程的安全性与耐久性[J].北京,2001.
    [121]Brown P W. The distributions of bound suLfates and chLorides in concrete subjected to mixed NaCl, MgSO4, Na2SO4 attack [J]. Cement and concrete research,2000,30(10).
    [122]Brown P W, ApriL Doerr, ChemicaL changes in concrete due to the ingress of aggressive species [J]. Cement and concrete research,2000,30(3).
    [123]Rasheeduzzafar, DakhiL FH. Corrosion of reinforcement in concrete structures in the middle east [J]. Concrete internationaL design and construction,1985,7(9).
    [124]MasLehuddin M, Saricimen H. Performance of concrete in a high chLoride-surfate environment [J]. ACI SpeciaL PubLication,1990, SP-122.
    [125]Maher ABader. Performance of concrete in a coastaL environment [M]. Cement and concrete research,2003,25.
    [126]Huseyin Saricimen, Mohammed MasaLehuddin, Asfaha Lob and Omar AEdit. EvaLuation of a surface coating in retarding reinforcement corrosion [J]. Construction and BuiLding MateriaLs,1996,10(7).
    [127]马孝轩等.混凝土及钢筋混凝土材料酸性土壤腐蚀规律的试验研究[J].混凝土及水泥制品,2002(2).
    [128]马孝轩等.钢筋混凝土桩在沿海地区腐蚀规律试验研究[J].混凝土与水泥制品,2002.
    [129]张春文.预应力混凝土管桩在腐蚀性地质中应用的探讨[J].建筑结构,2002,36(6).
    [130]牛全林,冯乃谦,张明辉.盐碱环境中混凝土路桥材料的耐久性问题[J].中国水泥,2004(1).
    [131]马保国,贺行洋,苏英等.内盐湖环境中混凝土硫酸盐侵蚀破坏研究[J],混凝土,2001(4).
    [132]张誉.结构耐久性研究的展望,现代土木工程的新发展[M].东南大学出版社,1998.
    [133]《建筑桩基技术规范》(JGJ94-2008)[S].中国建筑工业出版社,2008.
    [134]建筑结构可靠度设计统一标准(GB50068-2001)[S].北京:中国建筑工业出版社,2001.
    [135]混凝土结构设计规范(GB50010-2002)[S].北京:中国建筑工业出版社,2002.
    [136]贡金鑫,赵国藩.钢筋混凝土结构耐久性研究的进展[J].工业建筑,2000(5):1-5.
    [137]民用建筑可靠度鉴定标准(GB50292-1999)[S].北京:中国建筑工业出版社,1999.
    [138]郭坤.海洋手册[M].海洋出版社,1984.
    [139]肖林,王春义,郭汉生.建筑材料水泥土[M].北京:水利电力出版社,1985.
    [140]白冰,周健.扫描电子显微镜测试技术在岩土工程中的应用与进展[J].电子显微学报,2001,20(2):152-160.
    [141]Tovey N K. A digitai computer technigue for orientation anaiysis of micrographs of soii fabric. Jr of Microscopy,1990,120:303-315.
    [142]Bai X, Smart P. Change in microstructure of Kaiiin in consoiidation and undrained shear. Geotechnigue,1997,47(5):1009-1017.
    [143]Bazant. Micropiane modei for creep of anisotropic ciay[J]. Jr of Engrg Mech Div, ASCE, 1985,101(1):57-78.
    [144]王家澄,张学珍,王玉杰.扫描电子显微镜在冻土研究中的应用[J].冰川冻土,1996,18(2):184-188.
    [145]谭罗荣.土的微观结构研究概况和发展[J].岩土力学,1983,6(2):40-48.
    [146]施斌.粘性土微观结构简易定量分析法[J].水文地质工程地质.1997,(1):7-10.
    [147]张梅英,袁建新.岩土介质微观力学动态观测研究[J].科学通报,1993,38(10):920-924.
    [148]吴义祥.工程粘性土微观结构的定量评价[J].中国地质科学院院报,1991,23.
    [149]宋世诲,香雅正.化学反应速率理论[M].北京:高等教育出版社,1990.
    [150]M.贝伦斯,H.霍夫曼,A.林肯.张继炎译.化学反应工程[M].北京:中国石化出版社.1994.
    [151]鞭岩,森山昭.蔡志鹏,谢裕生.冶金反应工程[M].北京:科学出版社。1981.
    [152]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社,1987.
    [153]王军民,薛芳,刘芸.物理化学[M].北京:华大学出版社,1993.
    [154]Tianqing Yu, Jicheng Qian. Damage Theory and its AppLication [J]. Press of NationaL Defence and Industry. Beijing,1993,36-38.(in Chinese).
    [155]Kachnaov L M. Time of rupture process under creep condition [J]. TVZ Akad Nauk, S. S. R. Otd, Tech. Nauk,1958, VoL.8.
    [156]Rabotnov Y. N. Creep rupture, Proc.12th Int. Conf. on AppL. Mech. IUTAM,1968.
    [157]Lemaitre J. EvoLution of dissipation and damage in metaLs, Proc. I. C.M.1, Kyoto Japan, 1971.
    [158]黄新,宁建国,郭晔,朱宝林.水泥含量对固化土结构形成的影响研究[J].岩土工程学报,2006,28(4):436-441.
    [159]姚海林,刘少军,程昌炳.一种天然胶结土粘聚力的微观本质[J].岩石力学与工程学报,2001,20(6):871-874.
    [160]程昌炳,刘少军,王远发.胶结土的凝聚力的微观研究[J].岩石力学与工程学报.1999,18(3):322-326.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700