用户名: 密码: 验证码:
水处理中生物活性炭吸附性能及其数学模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活性炭具有优异的吸附性能,广泛的应用于给水和污水净化过程中。并且,当活性炭颗粒表面附着生物膜之后,大大降低了活性炭的物化再生频率,延长了活性炭柱的使用寿命。因此生物活性炭技术作为水处理新技术在饮用水及污水的深度处理中得到推广。
     生物活性炭技术利用活性炭巨大的比表面积及发达的孔隙结构,对水中有机物及溶解氧产生强吸附特性。其可作为载体可成为微生物集聚、繁殖、生长的良好场所。在适当的温度及营养条件下,可同时发挥活性炭的物理吸附作用和微生物生物降解作用。
     膨胀床和固定床是水处理中常用的两种形式的活性炭床。膨胀生物活性炭床的建模思路是,首先,假定膨胀床内的颗粒、流体完全混合,活性炭颗粒所处的外部环境状态一致,及溶解氧、底物浓度等条件相同;第二,假设颗粒活性炭为理想化的球形颗粒,微生物膜在球形颗粒活性炭表面均匀分布;第三,底物在生物膜、活性炭颗粒内的扩散满足Fick扩散定律;第四,底物的在微生物中的降解过程遵循Monod法则。最后,采用Galerkin有限元法作为模型的求解方法。
     固定床生物活性炭的建模过程,借鉴了膨胀床活性炭床的建模思路。首先,将固定床分隔成N个小段,假设每段活性炭层内的活性炭颗粒所处的外部环境一致,另外由于固定床本身的特性,造成颗粒间的现对摩擦较小,另外流体对颗粒表面生物膜的剪切作用较小,因此可认为正常运行状态无微生物膜进入流体内,然后利用Galerkin有限元法一次求取每段活性炭床流、入流出流体的底物浓度。
     最后,采用小试试验对模型进行了拟合和校正,发现生物活性炭膨胀床的数学模型对出水的预测值高于试验过程的出水值,但是数学模型的拟合趋势和试验测量值的变化趋势拟合程度较好。因此,该模型对于实际的生产运行具有一定的指导意义。
Activated carbon has been widely used in feed water supply and wastewater treatment since its remarkable adsorption ability. Especially, once the microorganism was attached on the surface of activated carbon, the regeneration frequencies of the activated carbon is significantly lowered, and the service life span the carbon column is greatly extended. Biological activated carbon (BAC) technology, as one kind of new technology in water treatment industry, has been widely introduced in water and wastewater advanced treatment.
     Biological activated carbon technology is Method using the large specific surface of activated carbon, developed porosity, and strong adsorption to organic matter and dissolved oxygen to provide a perfect place for microorganism's assembling, growing and reproducing. At the appropriate temperate and good nutrition, physical adsorption and microbial biodegradation functions will be effective synchronously in the BAC.
     Expanded carbon Bed and Fixed Carbon Bed are widely use in water treatment. Before modeling the expanded carbon bed effectively and conveniently, four assumptions were given. First, the fluid and the particles in the expanded bed are completely mixed, and every granular activated carbon is in the same external environment. Second, there are no spatial differences in the GAC/biofilm particles, and each of the GAC is calculated as a sphere. Third, the process of substrate percolating of the biological membrane and the carbon match the Fick Law. Fourth, microbiological degradation for substrate follow the Monod Law. Then, the mathematic model of the expanded biological carbon bed will be solved by the Galerkin Finite Method.
     The mathematical model development for the fix biological activated carbon is similar with the process of the model for expanded carbon bed development. First, the fixed bed column was separated by sevral parts, and every part the particle of granular activated carbon is in the same external environment. For the specific characteristics of the fixed bed, frictions among the particles of granular activated carbon are tiny and the shears on the biological membrane outside of the particle of granular activated carbon is little, which means there is no microorganism washed into the bulk fluid.
     At last, a batch experiment was carrying on for the model's simulation and calibration. It comes out that the predict value is higher than the real concentration of the effluent water, however the tendency of the simulation curves fit the real concentration tendency of effluent water. And the model does owe some significance guidance for the practical production.
引文
[1]国家环保总局.2008年中国环境状况(水环境)[M].2008:1-4.
    [2]王琳,王宝贞.优质饮用水净化技术[M],北京:科学出版社,2000.
    [3]高乃云等.水中内分泌干扰物处理技术与原理[M],北京:中国建筑工业出版社,2010.
    [4]范吉,马军等.控制饮用水加氯消毒副产物的研究[J],净水技术:2004,23(1)4-6,.
    [5]陈萍萍,张建英,金坚袁.饮用水中卤乙酸和三卤甲烷的形成及影响因素研究[J].环境化学,2005,24(4):343-237.
    [6]张林生.水的深度处理与回用技术[M],2009,北京:化学工业出版社.
    [7]王琳,王宝贞.饮用水深度处理技术[M],2002,北京:化学工业出版社.
    [8]兰淑澄.活性炭水处理技术[M],1991:北京:活性炭水处理技术.
    [9]Shuichi M, Jiro N.1994. An advanced purification system combining ozonation and BAC[M], developed by The Bureau of Waterworks Tokyo Metropolitan Government. Desalination,98:207-215.
    [10]Yin,W.C. and Weber E.J. Jr Bio-physicochemical Adsorption Model Systems for Wastewater Treatment[J], Journal WPCF,1979,51:2661-2667.
    [11]Imai A et al. Biodegradation and adsorption in refractory leachate treatment by the biological activated carbon fluidized bed process[J]. Water Research,29(2): 687-694.1995.
    [12]Orshansky F, Narkis N. Characteristics of organics removal by pact simultaneous adsorption and biodegradation[J]. Water Research,31(3):391-398,1997.
    [13]Klimenko N et al.2002. Role of the physic-chemial factors in the purification process[J]. Water Research,36:5132-5140.
    [14]S.R Ha, Ands Vintinantharat. Competitive removal of phenol and 2,4-dichlorophenol in biological activated carbon system[J]. Environmental Technology,2000(21):378-396.
    [15]S.R Ha, Qishan L., Vinthantharat S. COD removal of phenolic wastewater by biological activated carbon-sequencing batch reactor in the presence of 2,4-DCP[J], Water science and technology,2000(42):171-178.
    [16]许保玖,龙腾锐.当代给水与废水处理原理[M],北京:高等教育出版社,2000.
    [17]Wei-chi Ying. Investigation and Modeling of Bio-phsicochemical Processes in Actvated Carbon Columns. PhD theis[D], University of Michigan,1978.
    [18]R.Peel and A.Benedek. The modeling of activated carbon adsorbers in presence of bio-oxidation[J]. In AIChE Symposium Series:Water I Physical Chemical Wasterwater Treatmet, pages 25-35,1976.
    [19]Wei-chi Ying and W.J. Weber, Jr. Bio-physicochemical adsorption systems model[J]. Journal WPCF,51(11),1979.
    [20]G.F. Andrews and Chi Tien. Bacterial film growth in adsorbent surfaces[J]. AIChE Journal,27(3):396,1981.
    [21]H.Ted Chang and Bruce E.Rittmann. Mathematical modeling of biofilm on activated carbon[J]. Enviromental Science and Technology,21(3);273-280, 1987.
    [22]Gerald E.Speitel, Jr, Konstantios Dovantzis, and Francis A. Digiano. Mathematical modeling of bioregeneration in GAC colum[J]. Journal of Environmental Engineering,113(1):32, February 1986.
    [23]关红欣,胡洪波等.膨胀床吸附层析技术基础性能研究进展[J].化学工业与工程,2004,21(4):254-258.
    [24]Gerald E. Speitel, Jr., Konstantinos Dovantizis, and Francis A. Digiano. Mathematical modeling of bioregeneration in GAC colums[J]. Journal of Environmental Engineering,113(1):32, February 1986.
    [25]H. Ted Chang and Bruce E. Rittmann. Mathematical modeling of biofilm on activated carbon[J]. Environmental Science and Technology,21(3):273-280, 1987.
    [26]Gerald Recktenwald.数值方法和MATLAB实现与应用[M].2004,机械工业出版社.
    [27]Bruce E. Rittmann, Perry L. McCarty. Variable-order model of bacterialfilm kinetics[J]. Journal of the Environmental Engineering Divison,104(5):889-900, 1979.
    [28]Shoichiro Nakamura科学计算引论一基于MATLAB的数值分析[M].电子工业出版社:2002 119-142.
    [29]Bruce E. Rittmann. The effect of shear stress on biolfilm loss rate[J]. Biotechology and bioengineering,24:501,1982.
    [30]Walter J. Weber, Jr. Physcochemiacal Processes[M]. John Wiley and Sons,1972, New York.
    [31]Richardson J F, Zaki W N. Sedimentation and fluidization:Part I [J]. Trans Inst Chem Eng,1954,32:35-53.
    [32]Tong X D, Sun Y. Particle Size and Desity Distributions of Two Dense Matrices in an Expanded Bed System[J]. J. Chromatogr. A,2002,977:173-183.
    [33]周小平,史清洪,孙彦.膨胀床中QMA Spherosil LS介质粒径分布[J].过程工程学报,6(5):703-707,2006.
    [34]李红兵,乔俊莲.生物膜法废水处理技术的探讨[J].江苏环境科技,4:1-4,1997.
    [35]赵庆良,黄汝常.复合生物膜反应器中生物膜的特性[J].环境污染与防治,2000,22(1):4-7.
    [36]Lazarova V., Pierzo V.etc. Integrated Approach for Biolfilm Characterization and Biomass Control[J]. Wate. Sci. Technol.,1994,7:235-354.
    [36]Bruce E.Rittmann. Comparative performance of biofilm reactor types[J]. Biotechnology and Bioengineering,1982,24:1341-1370.
    [37]Eaton A D. Measuring UV-Absorbing Organics:A Standard Mehod[J]. Jour. AWWA,1995,87(2):86-90.
    [38]周娜,罗斌等.紫外吸收光谱法直接测定化学需氧量的研究[J].四川环境25(1):84-87,2006.
    [39]蒋绍介,刘宗源.UV254作为水处理中有机物控制指标的意义[J].重庆建筑大学学报,2(24):61-65,2005.
    [40]张怡,黄敏等,长吸附带填料柱有效吸附容量计算方法[J].给水排水,S1:,2011.
    [41]陈慧.活性炭柱吸附带长与设计流速的相关性分析[J].化工给排水设计,1998,3:14-16.
    [42]Tsai W T, Sang G Kim, et al. Effects of activated carbon types and service life on removal of endocrine disrupting chemicals:amitrol, nonylphenol, and bisphenol A[J]. Chemosphere,2005,58(11):1535-1545.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700