用户名: 密码: 验证码:
直杆的撞击屈曲及其应力波效应的实验和理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
结构经受撞击作用极为广泛地存在于许多工程技术领域,如航空器的着陆、交通车辆相撞、核电设施防护、导弹拦截、结构安全与耐撞性等都会遇到撞击加载问题。撞击加载以其历史短、强度高为特征,结构受到撞击加载,变形和运动极为迅速,惯性效应必须计及。工程上常用的细杆、薄板、薄壳等柔性结构元件,其膜刚度远大于侧向弯曲刚度,在撞击载荷作用下容易由于屈曲强度不足而引起灾变性的破坏。近年来由于结构耐撞性及各种能量吸收装置研制的需要,结构在撞击加载下的动态屈曲成为固体力学中一个十分活跃的前沿研究领域。在屈曲问题研究的各个发展阶段中,细长杆总是充当着首选对象,由其发展的力学模型可以揭示深刻的物理内函。细杆经受轴向撞击的屈曲,同样在结构动力屈曲研究中具有特殊重要的地位,从某种意义上讲,它比径向动压作用下薄壳的屈曲更复杂。因为杆撞击加载是轴向应力波加载,其屈曲的发生和发展是与应力波传播相关的复杂的动力学过程。为了揭示直杆撞击屈曲的机理及其应力波传播与动力屈曲之间的联系,建立各特征量之间的定量关系,本文从实验和理论方面开展了一系列的研究工作,取得了以下重要结果。
     1、借助空气动力枪,实现了杆—杆撞击加载,对两种支承条件,三种长度的理想直杆进行了轴向撞击屈曲的动力实验研究。记录了不同速度下试件特定截面两侧对称点的应变时程曲线,由时程曲线的应变幅值和分叉时间,得到了不同支承条件下撞击屈曲载荷与屈曲长度关系曲线。
     2、实验结果表明:在讨论轴向应力波传播(未发生反射时)导致的动力分叉时,波阵面处可视为固定约束,撞击端的约束条件却是非常重要的。在两种不同支承条件的实验中都只记录到最低屈曲模态,而对应的
Impact events occur in a wide variety of circumstance. Clearly, impact problems are often encountered in many technologies, such as landing of air craft, the collision of vehicle, the protection of nuclear power station, the interception of the missile, the design of structural safety and crashworthiness, etc. The impact loads are characterized by short duration and high intensity. The deformation and motion of a structure subjects to impact load is extremely rapid, hence the inertial effect has to be considered. The slender columns, thin plates and shells are the structural elements often used in practical engineering. The membrane rigidity of these elements is much bigger than lateral flexural rigidity. When they subject to impact load, the disaster failure easily caused due to the insufficiency of buckling strength. In recently years, the dynamic buckling of the structures under impact load is an active subject in solid mechanics because of the needs of the structural crashworthiness and manufacturing energy absorption facilities. In each developing period on the buckling investigation, the columns are always severed as first select object, and the mechanics model developed from columns can reveal profound connotation of physics. The dynamic buckling of the columns subjected to impact load has also special position in the structural dynamic buckling, and it is, in one respect, a more complex problem than buckling of shells under radial dynamic pressure. Axial impact load is, in fact, communicated to the columns by stress wave and the occurring and growing of buckling is a complex dynamic process related to the propagation of stress wave. In order to reveal the mechanism of the impact buckling of the columns and to determine the quantitative relation between
    the propagation of stress wave and the dynamic buckling, a series of studies have made experimentally and theoretically in present paper. The important results are summarized in the following several aspects:1. The bar-bar impact experiments were carried out by means of air driver. The dynamic experimental studies on the buckling of the perfect columns with two kinds of bearing conditions and with three kinds of length under axial impact were completed. The time-history curves of strain on two symmetric surfaces of columns were recorded under different velocity. The relation curves between impact buckling load and buckling length under different bearing conditions are obtained from the amplitude and bifurcation time of strain time-history.2. The experimental results show that the constraint of wave front can be regarded as fixed constraint, and the constraint conditions at the impact end is very important when the dynamic buckling induced by stress wave is discussed. The lowest buckling mode are only recorded in our experiment, corresponding buckling load is distinctly greater than the static one under the same boundary condition and same length. The dynamic critical load is about 2.23 and 2.49 times of the static one in condition of movable clamped and hinged, and the ratio of dynamic load to static one has increasing trend as the impact velocity increases.3. The constraint conditions of wave front and the equation of lateral domination on the columns subjected to axial step pressure load are derived by using Hamilton principle. The qualitative analyzing buckling dominating equation shows that the scope of dynamic parameter sets the characteristics of the solutions, and the solutions stand for buckling motion when X < 0. The dynamic buckling load and buckling mode that the impact end is clamp and movable hinge are obtained by solving twin-parameter equation with direct-spread method. The dynamic buckling load is basically consistent with the one obtained by the experiment.4. The whole traveling process of elastic and elastic-plastic wave under impact processing was analyzed by characteristics method. The regularity of stress changes at both column ends and the first separating time of the rigid body and the columns were obtained.
    5. Using the energy principles and taking into account of the propagation and reflection of stress wave, the lateral disturbance equation on elastic and elastic-plastic columns was derived and power series solution was given. The critical buckling condition can be obtained from stability analysis of the solution. By numerical computation and analysis, the relationship among critical velocity and impact mass, hardening modulus, buckling time was given.6. Considering axial inertia, lateral inertia and the non-linearity of axial strain, the dynamic post-buckling dominating equations are derived. The post-buckling behavior of semi-infinite columns is analyzed by using finite difference method integrating non-linear equations with post-buckling initial conditions, which are characteristics parameter of linear bifurcation, and the load forms and the constrains conditions at impact end and so on influencing on post-buckling are discussed. The results show that the initial buckling mode grows into a series of high-order modes with the increase of the time, and the wave number of mode increases and the amplitude of mode continuously become greater in post-buckling period.
引文
[1] Karman T V, Tsein Hsue-shen, The buckling of thin cylindrical shells under axial compression, J. Aero. Sci. 1941, 8
    [2] Koiter W T, On the stability of elastic equilibrium, (in Dutch) Thesis, Delft, H. J. Paris, Amsterdam, 1945
    [3] Koiter W T, Elastic stability and post-buckling behavior, Proc. Symp. Nonlinear Problem, Univ. Wisconsin Press, Madison 1963, 257-275
    [4] Hill R., ON the problem of uniqueness and stability in elastic plastic solids, J. Mech. Phys. Solids, 1956, 4, 247-255
    [5] Hill R., A general theory of uniqueness and stability in elastic plastic solids, J. Mech. Phys. Solids, 1958, 6, 236-249
    [6] Hill R., Uniqueness in general boundary value problem for elastic plastic solids, J. Mech. Phys. Solids, 1961, 9, 114-130
    [7] Tang Liqun, Zhu Zhaoxiang. Impact buckling and postbuckling of slender elstic bars, In: Zheng Zhemin cds, Proc of IUTAM Symposium on Impact Dynamics, Peking University Press, 1994
    [8] Kornev VM. On buckling forms of elastic-plastic beams under impact(in Russian), Prikl Mekh Tekh Fiz, 1968, 3, 6-63
    [9] 韩强,张善元,杨桂通。直杆动力屈问题研究进展,力学与实践,1997,Vol.19(2),6-11
    [10] D.O. Brush, B.O. Almroth. Buckling of Bars, Plates and Shells, McGraw-Hill, New York, 1975
    [11] 徐新生,刘书田等。弹性圆柱壳在轴向应力波传播过程中的非对称屈曲。爆炸与冲击,Vol.17,No.3,1997,249-253.
    [12] Han Qiang, Ma Hong-wei, Zhang Shan-yuan, et at. The dynamic buckling problem caused by propagation of stress wave in elastic cylindrical shells under impact torque, Appl. Math. Mech., 1996,17(1): 1-8.
    [13] Emil T. Dankov. Dynamic buckling of long thin elastic plate under rapidly applied shear loading, AIAA Journal, 1995, 34(8): 1752-1755.
    [14] 徐新生,苏先樾,王仁,轴向应波与弹塑性材料圆柱壳的动力屈曲,中国科学(A辑),1995,2:166-173
    [15] 王安稳,轴向压应力波下圆柱壳弹性动力失稳的判据与机理,固体力学学报,2001.2:171-185
    [16] 王仁,韩铭宝等,受轴向冲击的圆柱壳塑性动力屈曲的实验研究,力学学报,1983.15,509-515
    [17] 朱兆祥,应力波引起的弹性结构屈曲准则,塑性力学和地球动力学文集,余同希,王大钧主编,1990,北京大学出版社,56-70
    [18] 朱兆祥,弹性结构的动态屈曲,《材料和结构的不稳定性》,科学出版社,1993,158-173
    [19] Simitses G J, Instability of dynamic loaded structures, Appl. Mech. Rev., 1987, 40(10): 1403-1408
    [20] Holzer S, Dynamic stability of elastic imperfection sensitive shells, Shock & Vibration Digest, 1974, 8(4): 3-10.
    [21] Holzer S, Dynamic snap-through of shallow arches and spherical caps, Shock & Vibration Digest, 1979, 11(3): 3-6.
    [22] Svalbonas V and Kalnins A, Dynamic buckling of shells: evaluation of various methods, Nuclear Eng. Desi., 1977, 44: 331-356
    [23] 杨桂通,王德禹,结构的冲击屈曲问题,《冲击动力学进展》,王礼立、余同希、李永池编,中国科技大学出版社,1992,177-210
    [24] Jones N, Dynamic elastic and inelastic buckling of shells, In: Rhodes of J and Walker A C, ed. Developments in Thin Walled Structures, 1982: 49-91
    [25] 王仁,结构的塑性静动态稳定性,《非线性力学的新进展:稳定性分叉突变浑沌》,钱伟长主编,武汉:华中理工大学出版社,1988,4-35
    [26] 王仁,冲击载荷作用下结构塑性稳定性的研究,《冲击动力学进展》,王礼立、余同希、李永池编,中国科技大学出版社,1992,157-176
    [27] Herrmann G, Dynamic Stability of Structures, 1967
    [28] 张清杰,刘土光,郑际嘉,李世其。结构动力屈曲研究进展,力学进展,1993,23(4),530-538
    [29] 韩强,张善元,杨桂通,结构静动力屈曲问题研究进展,力学进展,1998,Vol.28,NO.3,349-360
    [30] Lindberg H E and Florence A L, Dynamic Pulse Buckling, Martinus Nijhoff Publishers, 1987
    [31] Simitses G J, Dynamic Stability of Suddenly Loaded Structures, Springer-Verlag New York Inc., 1990
    [32] 中国力学学会等,材料和结构的不稳定性,科学出版社,1993,151-173
    [33] Taub J and Koning C, Impact buckling of thin bars in the elastic range hinged at both ends, NACA TM-748, 1934
    [34] Taub J, Impact buckling of thin bars in the elastic range for any end condition, NACA TM-749, 1934
    [35] Meier J H, On the dynamics of elastic buckling, J. Aero. Sci. 1945, 12: 433-440
    [36] Davidson J F. Buckling of struts under dynamic loading, J. Mech. Phy. Solids, 1953, Vol.2, 54-66
    [37] Lavrentiev M A, Ishinsky A U. Dynamic forms of lose of stability of elastic systems, Doklady Akademiya Nauk, USSR., Vol.64, 1949, 779-782, English Translation by R. Cooper in STL-TR-61-5110-41, Space Tech. Lab., Los Angeles, Calif.
    [38] Hoff N J. The dynamics of the buckling of elastic columns, Journal of Appl. Mech., Vol. 18, No. 1, 1951, 68-74
    [39] Erickson B, Nardo S V, Patel S A and Hoff N J. An experimental investigation of the maximum load supported by elastic columns in rapid compression test, Proc. Soc. of Experim. Stress Anal., 1956, 14(1): 13-20
    [40] Sevin E. On the elastic bending of columns due to dynamic axial forces including effect of axial inertia, J. Appl. Mech., 1960, 27(1): 125-131
    [41] Housner G W, Tso W K. Dynamic behavior of super-critically loading struts, J. of the Eng. Mech. Divison, ASCE, 1962, 88(5): 41-65
    [42] Lindberg H E. Impact buckling of a thin bar, Journal of Applied Mechanics, 1965, 32(2): 315-322
    [43] Lindberg H E. Dynamic of a very thin cylindrical shell due to an impulsive pressure, Journal of Applied Mechanics, 1964, 31, 267-272
    [44] Abrahamson G A, Goodier J N. Dynamic flexural buckling of rods within an axial plastic compression wave, J. Appl. Mech., 1966, 33(2): 241-247
    [45] Elishakoff I. Axial impact buckling of a column with random initial imperfection, J. Appl. Mech., 1978, 45(2): 361-365
    [46] Elishakoff I. Impact buckling of thin bar via Monte Carlo method, Trans. ASME, 1978, 45(3): 586-590
    [47] Housner J M, Knight N K. The dynamic collapse of a column impaction a rigid surface, AIAA J., 1983, 2(8): 1187-1195
    [48] 李庆明。弹性杆的动态屈曲模态,应用数学和力学,1990,11(1):61-66
    [49] 揭敏。一定缺陷杆在轴向冲击下弹塑性动态屈曲有限元分析,爆炸与冲击,1991,11(2):153-160
    [50] 王德禹,辛国年,陈铁云。复合材料压杆的冲击屈曲,上海交通大学学报,1996,30(8):130—133
    [51] 王德禹。受静载作用的直杆在轴向冲击载荷下的屈曲,振动与冲击,1997,16(1):35-37
    [52] 翁徽赣,刘土光。轴向静预载杆在半正弦冲击载荷下的屈曲分析,船舶与海洋工程研究专集,2001,143,141—144
    [53] Hayashi T, Sano Y. Dynamic buckling of elastic bars, Bulletin of JAME, 1972, 15(88): 1167-1184
    [54] Hayashi T, Sano Y. Dynamic buckling of elastic bars, Bulletin of JAME, 1972, 15(89): 1333-1338
    [55] Ari-Gur J, Weller T, Singer J. Experimental and theoretical studies of columns under axial impact[J]. Int. J Solids Structures, 1982, 18(7): 619-641.
    [56] Ari-Gur J, Weller T, Singer J. Theoretical studies of columns under axial impact and experimental verification, TAE Rep. No.377, Dept. of Aeronautical Engineering, Technion-lnstitute of Technology, Haifa, Israel, 1979
    [57] Singer J, Weller T, Lebai A, Ari-Gur J. Preliminary dynamic stability studies using vibration techniques for definition of boundaries, Rep. ASL-95, Dept. of Aeronautical Engineering, Technion-Institute of Technology, Haifa, Israel, 1978
    [58] Ari-Gur J, Elishakoff I. Dynamic instability of a transversely isotropic column subjected to a compression pulse, Computers & Structures, 1997, 62(5), 811-815
    [59] Fukatsu K, Kawashima K, Oda M. The dynamic elastic-plastic buckling of bars with initial deflection(1st report), Trans. JSME, 1985, 51 (470): 2359-2369
    [60] Fukatsu K, Kawashima K, Oda M. The dynamic elastic-plastic buckling of bars with initial deflection(2nd report), Trans. JSME, 1986, 52(481): 2311-2318
    [61] D.KARAGIOZOVA, N. JONES. Dynamic elastic-plastic buckling phenomena in a rod due to axial impact. Int. J. Impact Engng, 1996, 18: 919-947
    [62] Bell J F. The dynamic buckling of rods at large plastic strain, Acta Mechanica, 1988, 74, 51-67
    [63] D.KARAGIOZOVA, N. JONES. Dynamic elastic-plastic buckling of circular cylindrical shells under axial impact, International Journal of Solids and Structures, 2000, 37, 2005-2034
    [64] V. KARAGIOZOV, D. DARAGIOZOVA. Chaotic phenomena in the dynamic buckling of an elastic-plastic column under an impact, Nonlinear Dynamics, 1996, 9, 265-280
    [65] Gerard G, Becker H. Column behavior under condition of impact, J. Aero. Sci., 1952, 19, 58-65
    [66] 魏勇,朱兆祥,李永池。轴向冲击载荷作用下直杆弹性动态屈曲的研究,实验力学,1988,3(3),258-263
    [67] 滕宁钧,苏先樾。半无限长弹性直杆受轴向冲击载荷作用的分叉问题,力学学报,1989,21(5),591-595
    [68] Jie Min, Han Minbao, Wang Ren. Effect of flexural wave on the dynamic buckling of a long column under axial impact, Proceedings of the International Symposium on Intense Dynamic Loading and Its Effects, CHENGDU, CHNIA, 1992, 511-515
    [69] 马宏伟,韩强,张善元,杨桂通。受轴向冲击有限长弹性直杆中应力波引起的分叉问题,爆炸与冲击,1995,15(4),300-305
    [70] 汤立群,朱兆祥。轴向应力波作用下完善弹性直杆的稳定性分析,华南理工大学学报(自然科学版),1997,25(9),84-90
    [71] 汤立群,朱兆祥。弹性直杆动态屈曲与后屈曲的实验研究,爆炸与冲击,1998,18(2),97-102
    [72] 韩强,张善元,杨桂通。理想直杆中轴向应力波的传播和反射导致的分叉问题,固体力学学报,1998,19(3),199-206
    [73] 韩强,武际可,张善元,杨桂通。直杆中应力波传播引起的分叉问题,力学学报,1998,30(4),414-422
    [74] 韩强,胡海岩,杨桂通。轴向弹塑性应力波作用下直杆中的分叉问题,应用数学和力学,1999,20(6),569-578
    [75] 韩强,杨桂通。直杆中弹塑性波导致的动力屈曲,固体力学的现代进展,徐秉业,张善元编,世界图书出版公司,万国学术出版社,2000,88-93
    [76] 韩强。弹塑性系统的动力屈曲和分叉,科学出版社,2000
    [77] U LO LEPIK, A contribution to bifurcation analysis of elastic-plastic beams, Int. J. Impact Engng, 1998, Vol 21, Nos. 1-2, 35-49
    [78] U LO LEPIK, Bifurcation analysis of elastic-plastic cylindrical shells, International Journal of Non-Linear Mechanics, 1999, 34, 299-311
    [79] U LO LEPIK, On dynamic buckling of elastic-plastic beams, International Journal of Non-Linear Mechanics, 2000, 35, 721-734
    [80] U LO LEPIK, Dynamic buckling of elastic-plastic beams including effects of axial stress waves, International Journal of Impact Engineering, 2001, 25, 537-552
    [81] 王安稳。弹性压应力波下直杆动力失稳的机理和判据,力学学报,2001,33(6),813-820
    [82] 王安稳。基于双特征参数解的直杆弹性动力后屈曲研究。
    [83] Wang Anwen, Tian Wenying. Characteristic-value analysis for plastic dynamic buckling of columns under elastic-plastic compression waves, International Journal of Non-Linear Mechanics, 2003, 38, 615-628
    [84] 王安稳。直杆塑性动力屈曲的双特征参数解,固体力学学报,2004,25(3),255-261
    [85] 宁建国,张晓晴,王刚,刘海燕,杨桂通。直杆冲击刚性靶的弹塑性屈曲问题,固体力学的现代进展,徐秉业,张善元编,世界图书出版公司,万国学术出版社,2000,88-93
    [86] 王刚,刘海燕,宁建国。冲击作用下有限长线性硬化杆的动态屈曲,北京理工大学学报,2003,23(2),158-161
    [87] 徐新生,刘书阳,郭杏林。弹性有限长度杆在轴向应力波传播和反射过程中的屈曲,黄淮学刊,1996,12(4),9-13
    [88] 刘书田,徐新生,高天广。轴向应力波作用下细长杆弹塑性动力屈曲,大连理工大学学报,2000,40(6),669-671
    [89] 韩强,张善元,杨桂通。弹性直杆中一类动屈曲问题的渐近解,应用数学和力学,1999,20(8),809-814
    [90] 龚良贵。冲击载荷作用下弹性直杆动力屈曲问题研究,南昌大学学报,2001,23(2),30-34
    [91] 揭敏。轴向冲击下理想塑性直杆动态屈曲的过应力简化分析模型,应用数学和力学,1995,16f6),569-572
    [92] M. Jie, T. X. Yu. Analytical modeling of dynamic plastic buckling of an axially loaded strain-rate sensitive bar, International Journal of Solids and Structure, 2000, 37, 1471-1481
    [93] 揭敏。非保守力作用下杆的塑性动态稳定性,应用数学和力学,1997,18(4),373-379
    [94] 崔世杰,舒文超,唐家祥。含阻尼杆的中速冲击屈曲性能研究,工程力学,1996,13(2),78-85
    [95] Shijie Cui, Hong Hao, Hee Kiat Cheong. Dynamic buckling and post-buckling of imperfect columns under fluid-solid interaction, International Journal of Solids and Structures, 2001, 38, 8879-8897
    [96] Hong Hao, Hee Kiat Cheong, Shijie Cui. Analysis of imperfect column buckling under intermediate velocity impact, International Journal of Solids and Structures, 2000, 37, 5297-5313
    [97] Shijie Cui, Hong Hao, Hee Kiat Cheong. Theoretical study of dynamic elastic buckling of columns subjected to intermediate velocity impact loads, International Journal of Mechanical Sciences, 2002, 44, 687-702
    [98] 张清杰,李世其,郑际嘉。轴向砰击杆的动力响应与屈曲,中国造船,1990,3,64-74
    [99] 陈立群,程昌钧。非线性粘弹性柱的稳定性和混沌运动,应用数学和力学,2000,21(9),890-896
    [100] 李根国,朱正佑,程昌钧。具有分数导数型本构关系的粘弹性柱的动力稳定性,应用数学和力学,2001,22(3),250-258
    [101] 卢沛鎏,弹性压杆的非线性动力屈曲,暨南大学学报,1996,17(3),1-6
    [102] Budiansky B, Roth R S. Axisymmetric dynamic buckling of clamped shallow spherical shells, NASA TN-1510, 1982, 597-609
    [103] Sugiura K, Mizuno E, Fukunmoto Y. Dynamic instability analysis of axial impacted columns, J. Engng. Mech., 1985, 111, 893-908
    [104] Holzer S M, Eubanks. Stability of columns subject to impulsive loading, J. Engng. Mech. Div. Proc. ASCE, 1969, 95(EM4), 897-919
    [105] Holzer S M. Stability of columns with transient loads, J. Engng. Mech. Div. Proc. ASCE, 1970, 96(EM6), 913-930
    [106] Holzer S M. Response bounds for column with transient loads, J. Appl. Mech., 1971, 157-161
    [107] Goodier J N. Dynamic plastic buckling, In: Dynamic Stability of Structure, ed by Herrmann G, 1967, 189-211
    [108] Grybos R. Impact stability of a bar, Int J Eng Sci, 1975, 13(5), 463-478
    [109] Lee L H N, Bifurcation and uniqueness in dynamics of elastic-plastic continua, Int. J Engng. Sci., 1975, 13, 69-76
    [110] Lee L H N. Quasi-bifurcation in dynamics of elastic-plastic continua. JAM, 1977, 44, 413-418
    [111] Lee L H N. Quasi-bifurcation of rods within an axial plastic compressive wave. Journal of Applied Mechanics, 1978, 45, 100-104
    [112] Lee L H N. Dynamic buckling of an inelastic column. Int J Solids Struct, 1981, 17, 271-279
    [113] Lee L H N. On dynamic stability and quasi-bifurcation. Int J Nonlinear Mech, 1981, 16(1), 79-87
    [114] 汤立群,应力纵波引起的直杆屈曲准则及纵波与弯曲波的相互作用,[博士论文],合肥,中国科学技术大学,1994
    [115] 王礼立。应力波基础,国防工业出版社,1985
    [116] 杨桂通,张善元,弹性动力学,北京,中国铁道出版社,1988

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700