用户名: 密码: 验证码:
谐振式电液高频疲劳试验机控制关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
疲劳试验机是测试试件材料力学性能和预测试件疲劳寿命极限的标准设备,随着工业生产的飞速发展,对构件材料的疲劳试验要求越来越高,如高速铁路机车组件,某些构件的疲劳寿命要求达到107周次,甚至要超过1010周次,这些都给疲劳试验机带来了新的挑战。疲劳试验机是一种高耗能试验机,性能好坏直接影响材料疲劳试验的周期,决定了疲劳试验的效率。采用2D高频转阀控制液压缸的液压疲劳试验方案,有效地突破了传统伺服阀对液压疲劳试验机造成的频宽“瓶颈”限制,大幅提高了电液疲劳试验机的工作频率,可以拓宽电液疲劳试验机的应用领域。
     2D高频转阀是利用单个阀芯的旋转和轴向滑动的双自由度设计而成的,阀芯的高速旋转可以实现阀口的高频“通断”,进而可以实现对液压缸实现高频控制,阀芯轴向滑动可以调节阀口面积波形的幅值,改变液压缸敏感腔流量的大小,进而控制活塞杆输出载荷力的幅值。但是,随着2D高频转阀控制液压缸疲劳试验系统工作频率的提高,存在活塞杆输出载荷力幅值严重衰减的问题。本文提出2D高频转阀控制液压缸的谐振式疲劳试验方案,研究疲劳试验机的变谐振频率控制理论和谐振工况下的变幅控制理论,及活塞杆输出载荷力的偏置控制理论。疲劳试验机谐振工况下,试件吸收的能量几乎完全释放,所以可以保证高频、高效疲劳试验。论文的主要工作和成果如下:
     1、对2D高频转阀控制液压缸疲劳试验系统的工作原理进行了研究。建立了三通2D高频转阀的数学模型;建立了三通2D高频转阀控制单出杆液压缸疲劳试验系统的数学模型;建立了四通2D高频转阀的数学模型;建立了四通2D高频转阀控制双出杆液压缸疲劳试验系统的数学模型;研究了液压动力机构谐振工况的工作过程。
     2、对2D高频转阀结构进行了优化研究。仿真模拟了2D高频转阀阀腔流场;研究了阀芯结构几何形状对阀芯轴向液动力的影响;研究了阀芯台肩沟槽数对阀芯受到的液动力矩及轴向液动力的影响;研究了2D高频转阀阀口的气穴现象。
     3、对2D高频转阀控制液压缸疲劳试验系统进行了仿真研究。建立了2D高频转阀控制单出杆液压缸疲劳试验系统仿真模型:建立了2D高频转阀控制双出杆液压缸疲劳试验系统仿真模型;研究了2D高频转阀控制液压缸疲劳试验系统的谐振工况,包括阻尼特性研究、偏置量控制研究、变幅控制研究和变频控制研究。
     4、对2D高频转阀控制液压缸疲劳试验系统的谐振机理进行了研究。研究了2D高频转阀控制单出杆液压缸和双出杆液压缸的谐振机理,并发现2D高频转阀与液压缸之间连接管路的容积对系统变谐振频率控制有较大影响,当管路体积系数超过50%时,活塞杆初始位置变化对系统固有频率变化的影响较小;另外,相同系统参数情况下,管路体积系数对双出杆液压缸疲劳试验系统固有频率影响较大。
     5、搭建了2D高频转阀控制单出杆液压缸疲劳试验机和2D高频转阀控制双出杆液压缸疲劳试验机。试验研究了单出杆液压缸试验机,选取活塞杆初始位置在5mm、10mm、40mm、45mm、95mm和145mm时进行载荷力扫频试验,测得谐振频率分别是922Hz、870Hz、845Hz、768Hz、742Hz和718Hz,并测取了初始位置在10mm、40mm、95mm和145mm时系统流量;通过2D高频转阀阀口轴向开度来控制载荷力幅值,并选取活塞杆初始位置为5mm、10mm、40mm、95mm和145mm时进行载荷力幅值扫频测试。试验研究了双出杆液压缸试验机,选取活塞杆初始位置在2mm、3mm、6.5mm、10mm、13.5mm、16mm和18mm时进行载荷力扫频试验,测得谐振频率分别是1011Hz、998Hz、979Hz、949Hz、973Hz、992Hz和1005Hz,并测取了活塞杆初始位置在2mm、3mm、16mm和18mm时系统流量;选取活塞杆初始位置为2mm、3mm、10mm、13.5mm和18mm,进行谐振工况载荷力变幅值控制测试;选取活塞杆初始位置为3mm时,对活塞杆输出载荷力进行偏置控制研究。
Fatigue testing machine is the standard equipment used to measure the mechanical properties of the specimen material and to detect the fatigue life limit. With the rapid development of industrial production, requirements for fatigue test of specimen material are continuously increased. In the cases of high-speed railway locomotive components and spacecraft parts, the requirements for fatigue life need to be as high as107cycles or even more than1010cycles, which poses new challenges for the fatigue testing. Fatigue testing machine is a kind of tester with high energy consumption, the performance of which largely determines the testing cycle and ultimately impact the testing efficiency. The solution of2D high-frequency rotary valve controlled hydraulic cylinder effectively overcomes the bandwidth bottleneck in traditional servo valves, significantly increases the working frequency of fatigue testing, thus broadening the application range of electro-hydraulic fatigue testing machines.
     2D high-frequency rotary valve is a kind of rotary valve which is designed by taking advantage of the dual freedom of spool movement, where the rotational movement of spool changes periodically the co-ordination relationship between spool notches and sleeve windows, thus achieving the periodic on-offs of valve ports and then ensuring the periodic vibration of piston rod in the valve-controlled cylinder. The axial sliding movement of the spool could adjust the waveform amplitude of valve ports area, control the flow rate to the chamber of the hydraulic cylinder and then adjust the waveform amplitude of the load force output. However, with the increase of operating frequency of the2D high-frequency rotary valve controlled hydraulic cylinder, waveform amplitude attenuation of load force output occurs. In this dissertation, the solution of2D high-frequency rotary valve controlled hydraulic cylinder in resonant fatigue testing is presented. The approaches to alter the resonant frequency of the system, to control the waveform amplitude of the load force output in resonant condition and to realize the bias-control load force output are studied. In resonant operating conditions, the specimen almost completely release the energy absorbed, which satisfies the requirements of high frequency and high efficiency in fatigue testing. The main work and findings of this study are as follows:
     1. The principle of2D high-frequency rotary valve controlled hydraulic cylinder is studied. The mathematical models, including three-port2D high-frequency rotary valve, three-port2D high-frequency rotary valve controlled asymmetric cylinder, four-port2D high-frequency rotary valve and four-port2D high-frequency rotary valve controlled symmetric cylinder are established. The operating process of hydraulic power mechanism is studied in resonant working conditions.
     2. The structure of2D high-frequency rotary valve is optimized. The flow field in the valve chamber is simulated. The impact of spool structural geometry on the axial flow force is examined. The relationship between the groove numbers on the spool shoulder and the flow moment and the axial flow force impacted on the spool is studied. Cavitation phenomena in valve ports of2D high-frequency rotary valve are studied.
     3. The investigation to the dynamic characteristics of2D high-frequency rotary valve controlled hydraulic cylinder in resonant working condition is simulated. Simulation model of2D high-frequency rotary valve controlled asymmetric cylinder is established. Simulation model of2D high-frequency rotary valve controlled symmetric cylinder is established. Resonant working conditions of2D high-frequency rotary valve controlled cylinder (including asymmetric cylinder and symmetric cylinder) are studied, such as damping characteristics, bias-control of the load force output, amplitude control of the load force waveform and alteration of the resonant frequency of the system.
     4. Resonant mechanism of the fatigue test rig is analyzed. The fatigue test rig is divided into2D high-frequency controlled asymmetric cylinder test rig and2D high-frequency controlled symmetric cylinder test rig. The investigation results show that the pipeline volume between2D high-frequency rotary valve and hydraulic cylinder has a greater impact on the alternation control of the test rig resonant frequency than other factors. When the pipeline volumetric coefficient is more than50%, the initial position of piston rod has little influence on the alternation of the natural frequency of the system. Moreover, the natural frequency alternation of the fatigue test rig composed of the symmetric cylinder is more sensitive to the value of the pipeline volumetric coefficient.
     5. Both2D high-frequency rotary valve controlled asymmetric cylinder fatigue test rig and2D high-frequency rotary valve controlled symmetric cylinder fatigue test rig are established. For the fatigue test rig constructed by asymmetric cylinder, sweep frequency tests of the load force output, respectively selecting the initial position of the piston rod at5mm,10mm,40mm,45mm,95mm and145mm, are carried out, and resonant frequencies measured respectively are922Hz,870Hz,845Hz,768Hz,742Hz and718Hz. Meanwhile, the flow rate of the system is measured when the initial position of the piston rod is at10mm,40mm,95mm and145mm. The load force amplitude alternation is achieved by changing the axial valve port opening of2D high-frequency rotary valve, and the sweep frequency of the waveform amplitude of the load force output is carried out when the initial position of the piston rod is respectively at5mm,10mm,40mm,95mm and145mm. For the fatigue test rig constructed by the symmetric cylinder, sweep frequency tests of the load force output, respectively selecting the initial position of the piston rod at2mm,3mm,6.5mm,10mm,13.5mm,16mm and18mm, are carried out, and resonant frequencies measured respectively are1011Hz,998Hz,979Hz,949Hz,973Hz,992Hz and1005Hz. Meanwhile, the flow rate of the system is measured when the initial position of the piston rod is at10mm,40mm,95mm and145mm. The sweep frequency of the waveform amplitude of the load force output is carried out when the initial position of the piston rod is respectively at2mm,3mm,10mm,13.5mm and18mm. The bias-control load force output of the piston rod is carried out when the initial position of the piston rod is at3mm.
引文
[1]姚卫星.结构疲劳寿命分析[M].北京:国防工业出版社,2003.
    [2]程育仁,缪龙秀,侯炳麟.疲劳强度[M].北京:中国铁道出版社,1990.
    [3]Stephens R I, Fatemi A. Metal Fatigue in Engineering [M],2nd edition. New York:John Wiley & Sons,2001.
    [4]Albert W A J. Uber Treibseile am Harz[J].Archive fur Mineralogie Geognosie Bergbau und Huttenkunde,1838, (10):215-234.
    [5]Bell E T. The Day of Glory:Poncelet [M]. New York:Simon and Schuster,1986.
    [6]Andrew Halfpenny. A practical discussion on Fatigue [EB/OL]. http://www.ncode.com/fileadmin/mediapool/nCode/downloads/Whitepaper_nCode_Practical_Discus sion_on_Fatigue_Paper-Halfpenny.pdf,2013-10.
    [7]Wohler Fatique Curves (S-N) for Shearing Stress [EB/OL]. http://www.brighthubengineering.coi'n/structural-engineering/122086-wohler-fatique-curves-s-n-for-s hearing-stress/,2013-10.
    [8]Mott, Robert L. Machine elements in mechanical design [M],4th edition. Upper Saddle River, N.J.: Pearson Prentice Hall,2004.
    [9]Hertzberg R W. Deformation and fracture mechanics of engineering materials[M]. New York:Wiley, 1996.
    [10]Goodman J. Mechanics Applied to Engineering [M]. Longman, Green & Company, London,1899.
    [11]R W Cahn, P Haasen. Physical metallurgy [M],4th edition.Elsevier ltd.,1996.
    [12]Stephen T. Strength of Materials Part I Elementary Theory and Problems [M]. PA:Lancaster Press, 1930.
    [13]http://heritage.imcche.org/historyimeche/pastpresidents/president/DrHJGough.htm,2013-10.
    [14]杨晓华,姚卫星,段成美.确定性疲劳累积损伤理论进展[J].中国工程科学,2003,5(4):81-87.
    [15]Haigh B P. Hysteresis in relation to cohesion and fatigue[J]. Transactions of the Faraday Society, 1928,24:125-137.
    [16]Wilkins E W C. Cumulative damage in fatigue [C]. Colloquium on Fatigue. Springer Berlin Heidelberg, 1956:321-332.
    [17]Hashin Z, Rotem A. A cumulative damage theory of fatigue failure [J]. Materials Science and Engineering,1978,34(2):147-160.
    [18]Manson S S. Behavior of materials under conditions of thermal stress [M]. TN 2933:NACA,1953.
    [19]Wcibull W. A statistical distribution function of wide applicability[J]. Journal of applied mechanics, 1951,18(3):293-297.
    [20]Marriott F H C, Pope J A. Bias in the estimation of autocorrelations [J]. Biomctrika,1954,41(3/4): 390-402.
    [21]Manual on statistical planning and analysis for fatigue experiments [M]. ASTM International,1975.
    [22]张巧寿.振动试验系统现状与发展[J].航天技术与民品,2000,(8):67-69.
    [23]骆涵秀.液压振动台的发展趋势[J].试验机与材料试验,1985,(6):1-7.
    [24]Reynolds O, Smith J H. On a Throw-Testing Machine for Reversals of Mean Stress[J]. Proceedings of the Royal Society of London,1902,70(459-466):44-46.
    [25]Kapp. The witton-kramer fatigue tests[J]. Engineering, London,94, Pt.2,1902:805-806.
    [26]Haigh B P.A new machine for alternating load tests[J]. Engineering, London,94, Pt.2,1912:721-723.
    [27]廉红珍,寇子明.振动机械液压激振方式的特点分析和发展综述[J].煤矿机械,2007,28(11):12-14.
    [28]Underwood A F. A machine for fatigue testing full size parts[J]. Proc. Soc. Exp. Stress Analysis, 1952,4(2):32-38.
    [29]米亦农.国外高频疲劳试验机的发展状况[J].材料试验机,1980,(3):1-13.
    [30]Arnold J C. The effects of physical aging on the brittle fracture behavior of polymers[J]. Polymer Engineering & Science,1995,35(2):165-169.
    [31]郑铭章.PLG系列高频疲劳试验机[J].试验技术与试验机,1996,2(3):39-43.
    [32]刘启元.疲劳试验机的发展[J].试验技术与试验机,1981,(1):61-71.
    [33]李跃光,姬战国.国内高频疲劳试验机的技术现状及其发展[J].试验技术与试验机,2006,46(1):1-4
    [34]骆涵秀.试验机的电液控制系统[M].北京:机械工业出版社,1991.
    [35]Moog Electrohydraulic Valves (Valves introduction) [EB/OL]. http://www.moog.com/literature/ICD/Valves-Introduction.pdf,2013-10.
    [36]鄂世举,曲兴田,杨志刚,等.电液伺服阀新型驱动器设计[J].压电与声光,2003,25(2):152-154.
    [37]程光明,李鹏,杨志刚,等.压电驱动式双喷嘴挡板电液伺服阀[J].光学精密工程,2005,13(3):276-282.
    [38]王传礼,丁凡,方平.基于超磁致伸缩转换器喷嘴挡板阀的控制压力特性[J].机械工程学报,2005,41(5):128-131.
    [39]王传礼,丁凡,崔剑,等.基于GMA喷嘴挡板伺服阀的动态特性[J].机械工程学报,2006,42(10):23-26,36.
    [40]周淼磊,杨志刚,田彦涛,等.压电型喷嘴挡板阀及其控制方法研究[J].光学精密工程,2007,15(3):372-377.
    [41]朱玉川,鲍和云,王传礼.超磁致伸缩伺服阀的参数设计与优化研究[J].中国机械工程,2008,19(20):2403-2406.
    [42]Moog Jet Pipe Servovalves (jet pipe servovalves overview) [EB/OL]. http://www.moog.com/literature/ICD/jetjpipe_servovalves_overview.pdf,2013-10.
    [43]MOOG servo and proportional control valves with integrated electronics D661 series [EB/OL]. http://www.moog.com/literature/ICD/d660seriesvalves.pdf,2013-10.
    [44]张继义.CSDY型射流管电液伺服阀[J].机电设备,1995,(2):29-32.
    [45]PARKER Hydraulic Valves Industrial Standard [EB/OL]. http://www.parker.com/parker/jsp/documentdisplay.jsp?mgmtid=96de9dd9c705321 OVgnVCM 10000 048021dacRCRD,2013-10.
    [46]Morgan J. M., Milligan W. W.. A 1 kHz servohydraulic fatigue testing system[C]. Proc. in Honor of Professor Paul C. Paris, TMS Fall Meeting. Indianapolis, IN,1997:305-312.
    [47]1000Hz High-Cycle Fatigue Test System [EB/OL]. http://www.mts.com/ucm/groups/public/documents/library/dev_002041.pdf,2013-10.
    [48]MTS servovalves [EB/OL]. http://www.mts.com/ucm/groups/public/documents/library/mts_006302.pdf,2013-10.
    [49]Development of High-Response Piezo-Servovalves for Improved Performance of Electrohydraulic Cylinder Drives[EB/OL]. http://darwin.bth.rwth-aachen.de/opus3/volltexte/2010/3344/pdf/3344.pdf,2013-10.
    [50]Report on evaluation of novel actuation systems for shaking table, pseudo-dynamic or field testing[EB/OL].http://www.series.upatras.gr/sites/default/files/Deliverable_D12.2.pdf,2013-10.
    [51]Direct Drive Servo-Proportional Valves Series D633 and D634[EB/OL]. http://www.moog.com/literature/ICD/Moog-Valves-D633_D634-Catalog-en.pdf,2013-10
    [52]4/3 directional control valve, directly controlled, with electrical position feedback and integrated electronics (OBE) [EB/OL]. http://www.boschrexroth-us.com/.../cn/products_ss/08_proportional_servo_valves/a_downloads/re29 041_2010-03.pdf,2013-10
    [53]黄增,金瑶兰,李博.伺服比例阀的发展[J].液压与气动,2009,(1):76-79.
    [54]姚建庚.直动式电液伺服阀的开发与应用[J].液压气动与密封,2004,(2):6-10.
    [55]张弓,张树忠,吴文海,等.超高速电液比例阀的设计与实验研究[J].机械科学与技术,2009,(6):768-772
    [56]EMG SV1-10 Servo Valve [EB/OL]. http://www.emg-automation.com/nc/automation/bandlaufregelungssysteme/hydraulik/servoventil-sv/ action/open-download/download/brochure-svl-10-gb/,2013-10.
    [57]David Griffin, Ed Walls, Chris Williamson.A rotary disc valve[P].UK patent:GB2,398,856 A.2004.
    [58]阮健,裴翔,姜伟.2D电液数字换向阀的实验研究[J].机床与液压,1999,(5):12-13,9.
    [59]阮健,裴翔,李胜.2D电液数字换向阀[J].机械工程学报,2000,(3):86-89.
    [60]阮健.伺服螺旋机构[P].中国专利:96113491.7,1997-12-3.
    [61]阮健,李胜,裴翔,等.数字阀的分级控制及非线性[J].机械工程学报,2005,(11):91-97.
    [62]阮健.一种步进电机输出角位移的连续跟踪控制技术[P].中国专利:98106841.3,1999-4-21.
    [63]丁凡,张策,方平,等.动铁式电磁铁[P].中国专利:200410066406.6,2004-9-13.
    [64]方平,丁凡,李其朋,等.高频动铁式电-机械转换器的研究[J].中国机械工程,2005,(23):2090-2092,2097.
    [65]张弓,于兰英,柯坚.高频动圈式电-机械转换器[J].电机与控制学报,2007,11(3):298-302,305.
    [66]SHINICHI YOKOTA, KENICHIROU HIRAMATO. An Ultra High-Speed Electro-Hydraulic Servo Valve by Making Use of A Multilayered Piezoelectric Device(PZT)[C].Proc. of the 1st International Symposium of Fluid Power Transmission and Control. Beijing,1991,10.
    [67]SHINICHI YOKOTA, KOTAROU AKUTU. A Fast-Acting Electro-Hydraulic Digital Transducer. JSME International Journal, Series I,1991,34(4):489-495.
    [68]张永杲.电液伺服技术的最新成果[J].中国机械工程,1992,(4):11-12.
    [69]吴根茂译.液压控制技术发展趋势[J].工程设计,1997,(3):20-29.
    [70]董云峰,曲兴田,沈传亮,等.压电直接驱动式伺服阀[J].吉林大学学报(工学版),2006,36(5):678-681.
    [71]Marek Novotny, Juha Kilpi. Shape Memory Alloys (SMA) [EB/OL]. http://www.ac.tut.fi/aci/courses/ACI-51106/pdf/SMA/SMA-introduction.pdf,2013-10.
    [72]Shinichi Y, Kazuhiro Y, Kenichi B, et al. A small-size proportional valve using a shape-memory-alloy array actuator[C].日本机械学会论文集(B编),2000:224-229.
    [73]米智楠,钱晋武,龚振邦,等.形状记忆合金微型阀的研制[J].机床与液压,2001,(1):20-21.
    [74]Urai T, Sugiyama T, Nakamura T, et al. Development of a direct drive servo valve using a giant magnetostrictive material[C]. Proceeding of the Second JHPS International Symposium on Fluid Power. Fluid Power.1993:2112-2115.
    [75]汪建晓,孟光.磁流变液研究进展[J].航空学报,2002,23(1):6-12.
    [76]李剑锋,龚兴龙,张先舟,等.硅橡胶基磁流变弹性体的研制[J].功能材料,2006,37(6):1003-1005.
    [77]汪建晓,孟光.磁流变液装置及其在机械工程中的应用[J].机械强度,2001,23(1):50-56.
    [78]Yokota S, Yoshida K, Kondoh Y. A pressure control valve using MR fluid [J]. Proc Forth JHPS-ISFP Tokyo,1999,99:377-380.
    [79]王庆辉,吴张永,王娴,等.磁流变数字阀研究[J].机床与液压,2013,41(9):62-64.
    [80]Willis M Winslow. Method and means for translating electrical impulses into mechanical force [P]. US Patent 2417850,1947-3-25.
    [81]Fees G. Study of the static and dynamic properties of a highly dynamic ER servo drive [J].O+P Olhydraulik und Pneumatik,2001,45.
    [82]覃爱明.电流变伺服阀的特性研究[J].湘潭大学自然科学学报,1998,20(4):54-57.
    [83]王旭东,赵建玉,程永全,等.电液伺服疲劳试验机的PC机控制器研究[J].试验技术与试验机,2001,41(3):8-9.
    [84]于少娟,段锁林,吴聚华.电液伺服力控系统的模糊学习控制[J].电机与控制学报,2004,8(1):56-59.
    [85]张志伟,王贵桥,刘光军.液压伺服疲劳试验机的H∞混合灵敏度控制研究[J].机床与液压,2005,50(8):130-132.
    [86]宝暄,李长春,刘晓东,等.电液伺服疲劳试验机的力跟随控制[J].液压气动与密封,2006,(6):1-3.
    [87]张福波,王贵桥,杜林秀,等.电液伺服疲劳试验机波形幅值的模糊补偿[J].振动,测试与诊断,2008,28(2):96-99.
    [88]任昌山,李长春,顾凯.数字式自适应动态电液疲劳试验机的摩擦力分析及补偿研究[J].液压气动与密封,2009,(1):12-15.
    [89]栾海英.电液伺服控制线性摩擦焊系统关键技术的研究[D].机械科学研究总院博士学位论文,2008.
    [90]郝建功,张耀成.新型电液激振装置的性能研究[J].太原理工大学学报,2003,34(6):706-709.
    [91]贾文昂,阮健,李胜,等.电液四轴高频结构强度疲劳试验系统[J].振动与冲击,2010,29(5):86-90,242.
    [92]S. Daley, G.P. Liu. Self-tuning predictive control of a hydraulic test rig[C]. IEEE Colloquium on Adaptive Controllers in Practice,1997,176:12-16.
    [93]A. Ohta, E. Sasaki. An Electric-power-saving hydraulic fatigue-testing machine[J]. Experimental mechanics,1977,17(1):37-40.
    [94]Poley R. DSP control of electro-hydraulic servo actuators [R]. Texas Instruments Application Report, 2005.
    [95]H. Merritt. Hydraulic Control Systems[M]. John Wiley & Sons, New York NY,1967.
    [96]骆涵秀,李世伦,朱捷,等.机电控制[M].杭州:浙江大学出版社,1994.
    [97]冀宏,傅新,杨华勇.内流道形状对溢流阀气穴噪声影响的研究[J].机械工程学报,2002,38(8):19-22.
    [98]陈青,许惠,权龙.三级同心液压溢流阀噪声特性的CFD分析[J].振动、测试与诊断,2009,(3):71-73.
    [99]Shigeru Oshima, T Leino, M Linjama. Experimental study on cavitation in water hydraulic poppet valve[C]. Transactions of the Japan Fluid Power System Society,2002,33(2): 29-35.
    [100]Hisanori UENO, Atsushi OKAJIMA, Hiroyoshi TAN ATA, et al. Noise measurement and numerical simulation of oil flow in pressure control valves[J]. JSME International Journal, series B,1994, 37(2):336-341.
    [101]周正贵.计算流体力学——基础理论与实际应用[M].南京:东南大学出版社,2008.
    [102]王福军.计算流体力学——CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [103]J H Ferziger and M Peric. Computational Methods for Fluid Dynamics [M],2nd ed., Springer-Verlag,2002.
    [104]Anderson J D. Computational fluid dynamics [M]. New York:McGraw-Hill,1995.
    [105]黄永安,马路,刘慧敏.MATLAB7.0/Simulink 6.0建模仿真开发与高级工程应用[M].北京:清华大学出版社,2005.
    [106]王正林,龚纯,何倩.精通MATLAB科学计算[M].北京:电子工业出版社,2007.
    [107]王济,胡晓.MATLAB在振动信号处理中的应用[M].北京:中国水利水电出版社,2006.
    [108]余成波,陶红艳,张莲,等.信号与系统[M].北京:清华大学出版社,2007.
    [109]Lofberg J. YALMIP:A toolbox for modeling and optimization in MATLAB[C].Computer Aided Control Systems Design,2004 IEEE International Symposium on. IEEE,2004:284-289.
    [110]Etter D M. Engineering problem solving with MATLAB[M]. New Jersey:Prentice Hall,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700