用户名: 密码: 验证码:
中温固体氧化物燃料电池电解质及相关材料和性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(Solid Oxide Fuel Cell,SOFC)是一种将化学能直接转化成电能的能量转换系统,具有高能量转换效率、全固态结构、无污染和多种燃料气体适应性强等优点。作为SOFC的核心部件,电解质材料一直研究的热点。本论文在第一章介绍了SOFC的基本原理,目前国内外的研发现状和发展趋势,着重综述了SOFC电解质材料的研究动态。第三章对BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb)这一新材料进行了优化,得到了迄今为止BZCYYb最高的电导率;并且首次测试并计算了其理论密度,首次研究了其烧结性能,增加了对这一新型材料的认识,为其在其他领域的应用提供了实验依据,填补了实验和理论空白(第四章)。本文在第五章又对新型电解质材料NASICON(Na+ Super Ionic Conductor)材料及其在燃料电池领域的应用进行了研究,另外还对橄榄石型和石榴石型锂离子导体材料进行了探讨。
     所取得的主要成果和创新点可归纳如下:
     (1)采用固相反应法成功合成了不同Y/Yb比的BZCYYb,X射线谱图显示,所有的粉末都具有与BaCeO_3相类似的钙钛矿结构;当Yb的量为10%,其电导率最高。以微米级CeO_2和纳米级ZrO_2为前驱体、焙烧两次、焙烧温度为1100oC时固相反应法制备的BZCYYb粉体晶体结构中无明显杂相,烧结出来的片体致密,且电导率为最高。
     (2)首次对BZCYYb材料的的理论密度进行了测试和计算,约为6.211g·cm~(-3)。
     (3)烧结性能方面,在高温固相合成法制备的BZCYYb粉体中加入少量(质量百分比1%,1wt%)NiO有助于其烧结过程中的晶粒长大和致密度增加,即提高烧结性能,优于LiF和Al_2O_3等其他烧结助剂。1wt%NiO的加入,可以有效降低BZCYYb的烧结温度约200oC,并且不会影响其电导率,另外,以其为电解质做成的电池在燃料电池测试条件下的开路电压高且能够满足燃料电池使用的需要。首次创新性的以1wt%NiO为烧结助剂,成功采用固相反应烧结法合成了BZCYYb片体,电导率与用普通固相反应法合成片体的电导率相接近。
     (4)采用高温固相法成功合成了Na_5GdSi_4O_(12)(NGS)粉体,其在1060oC下空气中烧结3小时烧结的片体致密,电导率与文献报道的相当。并首次将其用做燃料电池的电解质,实验表明,其开路电压较高,1.2mm厚的电解质片做成电池后,其功率密度在500oC下的达到0.5mW/cm~2。另外,将其进行锂离子交换后,其结构有所变化,并且有向非晶态转化的趋势。其电导率大幅降低,且活化能大幅增加。
     (5)采用高温固相法成功合成了橄榄石型结构LiInGeO_4和LiIn_(1-x)M_xGeO_4(M=Ti~(4+), Zr~(4+)和Nb~(5+),x=0.1~0.2)粉体,X射线衍射谱图表明,当不掺杂和掺杂元素为Zr~+,x=0.1时,可以得到纯相,而当掺杂元素为Ti~(4+)和Nb~(5+)时,均不能得到纯相。LiInGeO_4和Li_(0.9)In_(0.9)Zr_(0.1)GeO_4粉体烧结后的片体的电导率均较低。采用高温固相法合成了石榴石型结构Li_7La_3Zr_2O_(12)粉体,X射线衍射谱图表明,经过900oC和1125oC焙烧之后的Li_7La_3Zr_2O_(12)粉体具有四方晶型结构,而经过1230oC长时间烧结过后的片体,其结构主要为La_2Zr_2O_7,另外本文还就热重-差热分析数据,对可能的实验构造和反应机理进行了分析。
Solid oxide fuel cell (SOFC) is an efficient, green energy conversion device, which can directly convert the fossil energy into electrical power, which has many advantages, such as high energy conversion efficiency, solid-state structure, and a wide range of adaptability of fuel gases, etc. As the core component of SOFC, the electrolyte is always the hot-pot. The basic theory, the state-of-art of SOFC and the electrolyte were reviewed in the Chapter 1. The fabrication of BaZr_(0.1)Ce_(0.7)Y_(0.1)Yb_(0.1)O_(3-δ)(BZCYYb), a new electrolyte for SOFC, were optimized and the BZCYYb with highest conductivity was got in the Chapter 3; In the Chapter 4, the theoretical density of BZCYYb was measured and calculated for the first time and we systematically studied the sinterability of BZCYYb, which is favorable for its application in other field. In the Chapter 5, we discussed the new electrolyte systems, NASICON materials and its application as an electrolyte in the SOFC, and Olivine and Garnet type lithium ion conductors were also discussed.
     The main results and the creative points could be concluded as below:
     (1) The different Y/Yb ratio BZCYYb materials were successfully fabricated by solid state reaction (SSR) method, and the X-ray diffraction shows all the powder has perovskite structure. And the conductivity is the highest when the amount of Yb is 10% in BZCYYb. The powder, which was fabricated by the precursor made ofμm CeO_2 and nm ZrO_2 and two times calcinations and the calcinations temperature is 1100oC, has no obvious impurities in the X-ray diffraction test and the corresponding pellets have the highest conductivity,.
     (2) The theorectical density of BZCYYb materials was calculated for the first time, and its value is about 6.211g·cm~(-3).
     (3) The addition of a small amount (~1wt%) of NiO to BZCYYb, which was fabricated by SSR method, greatly promoted densification and grain growth, which is better than other sintering aids (LiF and Al_2O_3), achieving ~96% of the theoretical density (reducing the sintering temperature by ~200oC). Further, the sample showed high open circuit voltages (OCV) when used as the electrolyte membrane to separate the two electrodes under typical SOFC operating conditions, indicating that the electrical conductivity of the BZCYYb was not adversely affected by the addition of ~1 wt % NiO. The solid state reactive sintering method was conducted for the first time with NiO as sintering aid for the BZCYYb material, and the result showed that the conductivity is close to the BZCYYb pellets which are fabricated by the traditional solid state reaction method.
     (4) The Na_5GdSi_4O_(12) (NGS) powder was successfully fabricated through the SSR method, and the pellets made from the powder after sintering at 1060oC were dense, and its conductivity was close to the literature. The NGS pellets were used as the electrolyte for SOFC for the first time, and it has high open circuit voltage, and its powder density could reach 0.5mW/cm2 at 500oC with the electrolyte thickness of 1.2mm. Further more, the NGS structure changed a lot after lithium ion exchange. And after lithium ion exchange, the conductivity of the pellet became lower and the activation energy became higher. The LiInGeO4 and LiIn1-xMxGeO4(M=Ti~(4+), Zr~(4+) and Nb5+,x=0.1-0.2) material were successfully fabricated via SSR method. The X-ray diffraction showed that when no dopant and the dopant is Zr+, x=0.1, the pure phase could be got. But, when the dopant is Ti~(4+) or Nb~(5+), there is always some impurity in the powder. The conductivity of LiInGeO4 and Li0.9In0.9Zr0.1GeO4 were low. The Li_7La_3Zr_2O_(12) powder was successfully fabricated through SSR method. The X-ray diffraction shows that the Li_7La_3Zr_2O_(12) had tetragonal structure after calcinations at 900oC and 1125oC. But after 1230oC sintering for a long time, the main phase changed to La_2Zr_2O_7. Furthermore, the structure of the experiment and the mechanism of the reaction were also discussed.
引文
[1] L. Yang, S.Z. Wang, K. Blinn, M.F. Liu, Z. Liu, Z. Cheng, M.L. Liu, Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-delta, Science, 2009, 326 (5949), 126-129.
    [2] N.Q. Minh, CERAMIC FUEL-CELLS, J. Am. Ceram. Soc., 1993, 76 (3), 563-588.
    [3] S.P.S. Badwal, K. Foger, Solid oxide electrolyte fuel cell review, Ceram. Int., 1996, 22 (3), 257-265.
    [4] B.C.H. Steele, A. Heinzel, Materials for fuel-cell technologies, Nature, 2001, 414 (6861), 345-352.
    [5] S.C. Singhal, Solid oxide fuel cells for stationary, mobile, and military applications, Solid State Ion., 2002, 152 405-410.
    [6] H. Itoh, Y. Hiei, T. Yamamoto, M. Mori, T. Watanabe, Optimized mixture ratio in YSZ-supported Ni-YSZ anode material for SOFC, Electrochemical Society Inc, Pennington, 2001
    [7] P. Muralidharan, S.H. Jo, D.K. Kim, Electrical Conductivity of Submicrometer Gadolinia-Doped Ceria Sintered at 1000 degrees C Using Precipitation-Synthesized Nanocrystalline Powders, J. Am. Ceram. Soc., 2008, 91 (10), 3267-3274.
    [8] K.Q. Huang, M. Feng, J.B. Goodenough, Synthesis and electrical properties of dense Ce0.9Cd0.1O1.95 ceramics, J. Am. Ceram. Soc., 1998, 81 (2), 357-362.
    [9] S.C. Singhal, K. Kendall, High Temperature Solid Oxide Fuel Cells: Fundamentals, Design and Applications, Elsevier, Amsterdam, 2003
    [10]毛宗强,燃料电池,化学工业出版社, 2005
    [11] S.C. Singhal, Science and technology of solid-oxide fuel cells, MRS Bull., 2000, 25 (3), 16-21.
    [12] S.C. Singhal, Advances in solid oxide fuel cell technology, Solid State Ionics, 2000, 135 (1-4), 305-313.
    [13] K.D. Kreuer, Proton-conducting oxides, Ann. Rev. Mater. Res., 2003, 33 333-359.
    [14] K.D. Kreuer, S.J. Paddison, E. Spohr, M. Schuster, Transport in proton conductors for fuel-cell applications: Simulations, elementary reactions, and phenomenology, Chem. Rev., 2004, 104 (10), 4637-4678.
    [15] V.V. Kharton, F.M.B. Marques, A. Atkinson, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ion., 2004, 174 (1-4), 135-149.
    [16] S.P.S. Badwal, ZIRCONIA-BASED SOLID ELECTROLYTES - MICROSTRUCTURE, STABILITY AND IONIC-CONDUCTIVITY, Solid State Ion., 1992, 52 (1-3), 23-32.
    [17] S. deSouza, S.J. Visco, L.C. DeJonghe, Reduced-temperature solid oxide fuel cell based on YSZ thin-film electrolyte, J. Electrochem. Soc., 1997, 144 (3), L35-L37.
    [18] X.S. Xin, Z. Lu, X.Q. Huang, X.Q. Sha, Y.H. Zhang, K.F. Chen, N. Ai, R.B. Zhu, W.H. Su, Solid oxide fuel cells with dense yttria-stabilized zirconia electrolyte membranes fabricated by a dry pressing process, J. Power Sources, 2006, 160 (2), 1221-1224.
    [19] W.T. Bao, Q.B. Chang, R.Q. Yan, G.Y. Meng, The novel combination of electrostatic powder coating with suspension coating for fabricating the dense YSZ thin film on porous anode substrate, J. Membr. Sci., 2005, 252 (1-2), 175-181.
    [20] J.W. Fergus, Electrolytes for solid oxide fuel cells, J. Power Sources, 2006, 162 (1), 30-40.
    [21] K. Nomura, Y. Mizutani, M. Kawai, Y. Nakamura, O. Yamamoto, Aging and Raman scattering study of scandia and yttria doped zirconia, Solid State Ion., 2000, 132 (3-4), 235-239.
    [22] H. Inaba, H. Tagawa, Ceria-based solid electrolytes, Solid State Ionics, 1996, 83 (1-2), 1.
    [23] M. Mogensen, N.M. Sammes, G.A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria, Solid State Ion., 2000, 129 (1-4), 63-94.
    [24] O. Yamamoto, Y. Arati, Y. Takeda, N. Imanishi, Y. Mizutani, M. Kawai, Y. Nakamura, ELECTRICAL-CONDUCTIVITY OF STABILIZED ZIRCONIA WITH YTTERBIA AND SCANDIA, Solid State Ion., 1995, 79 137-142.
    [25] S.P.S. Badwal, F.T. Ciacchi, D. Milosevic, Scandia-zirconia electrolytes for intermediate temperature solid oxide fuel cell operation, Solid State Ion., 2000, 136 91-99.
    [26] J. Kondoh, H. Shiota, S. Kikuchi, Y. Tomii, Y. Ito, K. Kawachi, Changes in aging behavior and defect structure of Y2O3 fully stabilized ZrO2 by In2O3 doping, J. Electrochem. Soc., 2002, 149 (8), J59-J72.
    [27] K. Eguchi, T. Setoguchi, T. Inoue, H. Arai, ELECTRICAL-PROPERTIES OF CERIA-BASED OXIDES AND THEIR APPLICATION TO SOLID OXIDE FUEL-CELLS, Solid State Ion., 1992, 52 (1-3), 165-172.
    [28] H. Yahiro, K. Eguchi, H. Arai, ELECTRICAL-PROPERTIES AND REDUCIBILITIES OF CERIA RARE EARTH OXIDE SYSTEMS AND THEIR APPLICATION TO SOLID OXIDE FUEL-CELL, Solid State Ion., 1989, 36 (1-2), 71-75.
    [29] D.K. Hohnke, IONIC-CONDUCTION IN DOPED OXIDES WITH THE FLUORITE STRUCTURE, Solid State Ion., 1981, 5 (OCT), 531-534.
    [30] B.C.H. Steele, Appraisal of Ce1-yGdyO2-y/2 electrolytes for IT-SOFC operation at 500 degrees C, Solid State Ionics, 2000, 129 (1-4), 95-110.
    [31] S.W. Zha, C.R. Xia, G.Y. Meng, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, Journal of Power Sources, 2003, 115 (1), 44-48.
    [32] T.S. Zhang, J. Ma, H. Cheng, S.H. Chan, Ionic conductivity of high-purity Gd-doped ceria solid solutions, Mater. Res. Bull., 2006, 41 (3), 563-568.
    [33]丁冬,以碳氢化合物为燃料的中温固体氧化物燃料电池阳极和电解质的制备和性能表征,博士学位论文, 2008
    [34] B. Dalslet, P. Blennow, P.V. Hendriksen, N. Bonanos, D. Lybye, M. Mogensen, Assessment of doped ceria as electrolyte, J. Solid State Electrochem., 2006, 10 (8), 547-561.
    [35] S. Charojrochkul, K.L. Choy, B.C.H. Steele, Cathode electrolyte systems for solid oxide fuel cells fabricated using flame assisted vapour deposition technique, Solid State Ionics, 1999, 121 (1-4), 107-113.
    [36] C. Rossignol, J.M. Ralph, J.M. Bae, J.T. Vaughey, Ln(1-x)Sr(x)CoO(3) (Ln=Gd, Pr) as a cathode for intermediate-temperature solid oxide fuel cells, Solid State Ion., 2004, 175 (1-4), 59-61.
    [37] G.A. Tompsett, N.M. Sammes, O. Yamamoto, Ceria-yttria-stabilized zirconia composite ceramic systems for applications as low-temperature electrolytes, J. Am. Ceram. Soc., 1997, 80 (12), 3181-3186.
    [38] T. Ishihara, H. Matsuda, Y. Takita, DOPED LAGAO3 PEROVSKITE-TYPE OXIDE AS A NEW OXIDE IONIC CONDUCTOR, J. Am. Chem. Soc., 1994, 116 (9), 3801-3803.
    [39] M. Feng, J.B. Goodenough, A SUPERIOR OXIDE-ION ELECTROLYTE, Eur. J. Solid State Inorg. Chem., 1994, 31 (8-9), 663-672.
    [40] T. Ishihara, Development of new fast oxide ion conductor and application for intermediate temperature solid oxide fuel cells, Bull. Chem. Soc. Jpn., 2006, 79 (8), 1155-1166.
    [41] P. Majewski, M. Rozumek, F. Aldinger, Phase diagram studies in the systems La2O3-SrO-MgO-Ga2O3 at 1350-1400 degrees C in air with emphasis on Sr and Mg substituted LaGaO3, J. Alloy. Compd., 2001, 329 (1-2), 253-258.
    [42] K.Q. Huang, R. Tichy, J.B. Goodenough, Superior perovskite oxide-ion conductor; strontium- and magnesium-doped LaGaO3: III, Performance tests of single ceramic fuel cells, J. Am. Ceram. Soc., 1998, 81 (10), 2581-2585.
    [43] J.W. Stevenson, K. Hasinska, N.L. Canfield, T.R. Armstrong, Influence of cobalt and iron additions on the electrical and thermal properties of (La,Sr)(Ga,Mg)O3-delta, J. Electrochem. Soc., 2000, 147 (9), 3213-3218.
    [44] T. Ishihara, S. Ishikawa, K. Hosoi, H. Nishiguchi, Y. Takita, Oxide ionic and electronic conduction in Ni-doped LaGaO3-based oxide, Solid State Ion., 2004, 175 (1-4), 319-322.
    [45] B.A. Khorkounov, H. Nafe, F. Aldinger, Relationship between the ionic and electronic partial conductivities of co-doped LSGM ceramics from oxygen partial pressure dependence of the total conductivity, J. Solid State Electrochem., 2006, 10 (7), 479-487.
    [46] T. Ishihara, Y. Tsuruta, C.Y. Yu, T. Todaka, H. Nishiguchi, Y. Takita, La(Sr)Ga(Fe)O-3 perovskite oxide as a new mixed ionic-electronic conductor for oxygen permeating membrane, J. Electrochem. Soc., 2003, 150 (1), E17-E23.
    [47] T. Ishihara, M. Ando, M. Enoki, Y. Takita, Oxide ion conductivity in La(Sr)Ga(Fe,Mg)O-3 and its application for solid oxide fuel cells, J. Alloy. Compd., 2006, 408 507-511.
    [48] R. Maric, S. Ohara, T. Fukui, H. Yoshida, M. Nishimura, T. Inagaki, K. Miura, Solid oxide fuel cells with doped lanthanum gallate electrolyte and LaSrCoO(3) cathode, and Ni-samaria-doped ceria cermet anode, J. Electrochem. Soc., 1999, 146 (6), 2006-2010.
    [49] K.Q. Huang, J.H. Wan, J.B. Goodenough, Increasing power density of LSGM-based solid oxide fuel cells using new anode materials, J. Electrochem. Soc., 2001, 148 (7), A788-A794.
    [50] J.H. Wan, J.Q. Yan, J.B. Goodenough, LSGM-based solid oxide fuel cell with 1.4 W/cm(2) power density and 30 day long-term stability, J. Electrochem. Soc., 2005, 152 (8), A1511-A1515.
    [51] T. Inagaki, F. Nishiwaki, J. Kanou, S. Yamasaki, K. Hosoi, T. Miyazawa, M. Yamada, N. Komada, Demonstration of high efficiency intermediate-temperature solid oxide fuel cell based on lanthanum gallate electrolyte, J. Alloy. Compd., 2006, 408 512-517.
    [52] H. Ishikawa, M. Enoki, T. Ishihara, T. Akiyama, Self-propagating high-temperature synthesis of La(Sr)Ga(Mg)O3-delta for electrolyte of solid oxide fuel cells, J. Alloy. Compd., 2007, 430 (1-2), 246-251.
    [53] K. Choy, W. Bai, S. Clarojrochkul, B.C.H. Steele, The development of intermediate-temperature solid oxide fuel cells for the next millennium, Journal of Power Sources, 1998, 71 (1-2), 361-369.
    [54] T. Mathews, P. Manoravi, M.P. Antony, J.R. Sellar, B.C. Muddle, Fabrication of La1-xSrxGa1-yMgyO3-(x plus y)/2 thin films by pulsed laser ablation, Solid State Ion., 2000, 135 (1-4), 397-402.
    [55] H. Iwahara, T. Esaka, H. Uchida, N. Maeda, PROTON CONDUCTION IN SINTERED OXIDES AND ITS APPLICATION TO STEAM ELECTROLYSIS FOR HYDROGEN-PRODUCTION, Solid State Ion., 1981, 3-4 (AUG), 359-363.
    [56] N. Bonanos, B. Ellis, K.S. Knight, M.N. Mahmood, IONIC-CONDUCTIVITY OF GADOLINIUM-DOPED BARIUM CERATE PEROVSKITES, Solid State Ion., 1989, 35 (1-2), 179-188.
    [57] W.A. Meulenberg, J.M. Serra, T. Schober, Preparation of proton conducting BaCe0.8Gd0.2O3 thin films, Solid State Ionics, 2006, 177 (33-34), 2851-2856.
    [58] H. Matsumoto, Y. Kawasaki, N. Ito, M. Enoki, T. Ishihara, Relation between electrical conductivity and chemical stability of BaCeO3-based proton conductors with different trivalent dopants, Electrochem. Solid State Lett., 2007, 10 (4), B77-B80.
    [59] K.D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, J. Maier, Proton conducting alkaline earth zirconates and titanates for high drain electrochemical applications, Solid State Ion., 2001, 145 (1-4), 295-306.
    [60] K.H. Ryu, S.M. Haile, Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions, Solid State Ion., 1999, 125 (1-4), 355-367.
    [61] C.D. Zuo, S.W. Zha, M.L. Liu, M. Hatano, M. Uchiyama, Ba(Zr0.1Ce0.7Y0.2)O3-delta as an electrolyte for low-temperature solid-oxide fuel cells, Advanced Materials, 2006, 18 (24), 3318-3320.
    [62] E. Fabbri, A. D'Epifanio, E. Di Bartolomeo, S. Licoccia, E. Traversa, Tailoring the chemical stability of Ba(Ce(0.8-x)Zr(x))Y(0.2)O(3-delta) protonic conductors for Intermediate Temperature Solid Oxide Fuel Cells (IT-SOFCs), Solid State Ion., 2008, 179 (15-16), 558-564.
    [63] A. Atkinson, S. Barnett, R.J. Gorte, J.T.S. Irvine, A.J. McEvoy, M. Mogensen, S.C. Singhal, J. Vohs, Advanced anodes for high-temperature fuel cells, Nat. Mater., 2004, 3 (1), 17-27.
    [64] S. McIntosh, R.J. Gorte, Direct hydrocarbon solid oxide fuel cells, Chemical Reviews, 2004, 104 (10), 4845.
    [65] J.R. Rostrup-Nielsen, J. Sehested, J.K. Norskov, Hydrogen and synthesis gas by steam- and CO(2) reforming, in: B.C. Gates, H. Knozinger (Eds.) Advances in Catalysis, Vol 47, Elsevier Academic Press Inc, San Diego, 2002, pp. 65-139.
    [66] H.H. Mobius, On the history of solid electrolyte fuel cells, J. Solid State Electrochem., 1997, 1 (1), 2-16.
    [67] H.S. Spacil, US Patent, 1970
    [68] S. Majumdar, T. Claar, B. Flandermeyer, STRESS AND FRACTURE-BEHAVIOR OF MONOLITHIC FUEL-CELL TAPES, J. Am. Ceram. Soc., 1986, 69 (8), 628-633.
    [69] S.K. Pratihar, R.N. Basu, S. Mazumder, H.S. Maiti, Electrical conductivity and microstructure of Ni-YSZ anode prepared by liquid dispersion method, Electrochemical Society Inc, Pennington, 1999
    [70] H. Itoh, T. Yamamoto, M. Mori, T. Horita, N. Sakai, H. Yokokawa, M. Dokiya, Configurational and electrical behavior of Ni-YSZ cermet with novel microstructure for solid oxide fuel cell anodes, J. Electrochem. Soc., 1997, 144 (2), 641-646.
    [71] T. Iwata, Characterization of Ni-YSZ anode degradation for substrate-type solid oxide fuel cells, J. Electrochem. Soc., 1996, 143 (5), 1521-1525.
    [72] W. Huebner, D.M. Reed, H.U. Anderson, Structure <-> property relationships in solid oxide fuel cells, Electrochemical Society Inc, Yokohama, 1995
    [73] W. Zhu, D. Ding, C. Xia, Enhancement in three-phase boundary of SOFC electrodes by an ion impregnation method: A modeling comparison, Electrochem. Solid State Lett., 2008, 11 (6), B83-B86.
    [74] H. Itoh, T. yamamoto, M. Mori, N. Mori, T. Watanabe, Hydrogen and synthesis gas by steam- and CO(2) reforming, in: B. Thorstensen (Ed.) Proceeding of Second European Solid Oxide Fuel Cells Forum, Elsevier Academic Press Inc, Oslo, Norway, 1996, pp. 453.
    [75] J.H. Lee, H. Moon, H.W. Lee, J. Kim, J.D. Kim, K.H. Yoon, Quantitative analysis of microstructure and its related electrical property of SOFC anode, Ni-YSZ cermet, Solid State Ion., 2002, 148 (1-2), 15-26.
    [76] J.J. Haslam, A.Q. Pham, B.W. Chung, J.F. DiCarlo, R.S. Glass, Effects of the use of pore formers on performance of an anode supported solid oxide fuel cell, J. Am. Ceram. Soc., 2005, 88 (3), 513-518.
    [77] R.J. Gorte, J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons, J. Catal., 2003, 216 (1-2), 477-486.
    [78] E.P. Murray, T. Tsai, S.A. Barnett, A direct-methane fuel cell with a ceria-based anode, Nature, 1999, 400 (6745), 649.
    [79] J.A. Liu, S.A. Barnett, Operation of anode-supported solid oxide fuel cells on methane and natural gas, Solid State Ion., 2003, 158 (1-2), 11-16.
    [80] Y.B. Lin, Z.L. Zhan, J. Liu, S.A. Barnett, Direct operation of solid oxide fuel cells with methane fuel, Solid State Ion., 2005, 176 (23-24), 1827-1835.
    [81] M. Mogensen, K. Kammer, Conversion of hydrocarbons in solid oxide fuel cells, Ann. Rev. Mater. Res., 2003, 33 321-331.
    [82] Y. Matsuzaki, I. Yasuda, The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration, Solid State Ion., 2000, 132 (3-4), 261-269.
    [83] H. Koide, Y. Someya, T. Yoshida, T. Maruyama, Properties of Ni/YSZ cermet as anode for SOFC, Solid State Ion., 2000, 132 (3-4), 253-260.
    [84] H. Itoh, T. Yamamoto, M. Mori, T. Watanabe, T. Abe, Improved microstructure of Ni-YSZ cermet anode for SOFC with a long term stability, Denki Kagaku, 1996, 64 (6), 549-554.
    [85] D. Simwonis, F. Tietz, D. Stover, Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells - In memoriam to Professor H. Tagawa, Solid State Ion., 2000, 132 (3-4), 241-251.
    [86] A. Tsoga, A. Naoumidis, P. Nikolopoulos, Wettability and interfacial reactions in the systems Ni/YSZ and Ni/Ti-TiO2/YSZ, Acta Mater., 1996, 44 (9), 3679-3692.
    [87] S.W. Tao, J.T.S. Irvine, A redox-stable efficient anode for solid-oxide fuel cells, Nat. Mater., 2003, 2 (5), 320-323.
    [88] P. Vernoux, M. Guillodo, J. Fouletier, A. Hammou, Alternative anode material for gradual methane reforming in solid oxide fuel cells, Solid State Ion., 2000, 135 (1-4), 425-431.
    [89] J. Sfeir, P.A. Buffat, P. Mockli, N. Xanthopoulos, R. Vasquez, H.J. Mathieu, J. Van herle, K.R. Thampi, Lanthanum chromite based catalysts for oxidation of methane directly on SOFC anodes, J. Catal., 2001, 202 (2), 229-244.
    [90] J. Liu, B.D. Madsen, Z.Q. Ji, S.A. Barnett, A fuel-flexible ceramic-based anode for solid oxide fuel cells, Electrochem. Solid State Lett., 2002, 5 (6), A122-A124.
    [91] R. Mukundan, E.L. Brosha, F.H. Garzon, Sulfur tolerant anodes for SOFCs, Electrochem. Solid State Lett., 2004, 7 (1), A5-A7.
    [92] L. Aguilar, S. Zha, Z. Cheng, J. Winnick, M. Liu, A solid oxide fuel cell operating on hydrogen sulfide (H2S) and sulfur-containing fuels, Journal of Power Sources, 2004, 135 (1-2), 17-24.
    [93] L. Aguilar, S. Zha, S. Li, J. Winnick, M. Liu, Sulfur-Tolerant Materials for the Hydrogen Sulfide SOFC, Electrochem. Solid-State Lett., 2004, 7 (10), A324-A326.
    [94] Y.H. Huang, R.I. Dass, Z.L. Xing, J.B. Goodenough, Double perovskites as anode materials for solid-oxide fuel cells, Science, 2006, 312 (5771), 254-257.
    [95] N.V. Skorodumova, S.I. Simak, B.I. Lundqvist, I.A. Abrikosov, B. Johansson, Quantum origin of the oxygen storage capability of ceria, Phys. Rev. Lett., 2002, 89 (16).
    [96] B.C.H. Steele, P.H. Middleton, R.A. Rudkin, MATERIAL SCIENCE ASPECTS OF SOFC TECHNOLOGY WITH SPECIAL REFERENCE TO ANODE DEVELOPMENT, Solid State Ion., 1990, 40-1 388-393.
    [97] I.S. Metcalfe, P.H. Middleton, P. Petrolekas, B.C.H. Steele, Hydrocarbon activation in solid state electrochemical cells, Solid State Ionics, 1992, 57 (3-4), 259.
    [98] M. Mogensen, T. Lindegaard, U.R. Hansen, G. Mogensen, PHYSICAL-PROPERTIES OF MIXED CONDUCTOR SOLID OXIDE FUEL-CELL ANODES OF DOPED CEO2, J. Electrochem. Soc., 1994, 141 (8), 2122-2128.
    [99] O.A. Marina, C. Bagger, S. Primdahl, M. Mogensen, A solid oxide fuel cell with a gadolinia-doped ceria anode: preparation and performance, Solid State Ion., 1999, 123 (1-4), 199-208.
    [100] R.J. Gorte, S. Park, J.M. Vohs, C.H. Wang, Anodes for direct oxidation of dry hydrocarbons in a solid-oxide fuel cell, Advanced Materials, 2000, 12 (19), 1465-1469.
    [101] R.J. Gorte, J.M. Vohs, S. McIntosh, Recent developments on anodes for direct fuel utilization in SOFC, Solid State Ion., 2004, 175 (1-4), 1-6.
    [102] S.D. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of hydrocarbons in a solid-oxide fuel cell, Nature, 2000, 404 (6775), 265-267.
    [103] H. Kim, S. Park, J.M. Vohs, R.J. Gorte, Direct oxidation of liquid fuels in a solid oxide fuel cell, J. Electrochem. Soc., 2001, 148 (7), A693-A695.
    [104] S. McIntosh, J.M. Vohs, R.J. Gorte, An examination of lanthanide additives on the performance of Cu-YSZ cermet anodes, Electrochim. Acta, 2002, 47 (22-23), 3815.
    [105] S. Zhao, R.J. Gorte, A comparison of ceria and Sm-doped ceria for hydrocarbon oxidation reactions, Appl. Catal. A-Gen., 2004, 277 (1-2), 129-136.
    [106] S. McIntosh, J.M. Vohs, R.J. Gorte, Role of hydrocarbon deposits in the enhanced performance of direct-oxidation SOFCs, J. Electrochem. Soc., 2003, 150 (4), A470-A476.
    [107] A. Lashtabeg, S.J. Skinner, Solid oxide fuel cells - a challenge for materials chemists?, J. Mater. Chem., 2006, 16 (31), 3161-3170.
    [108] H. Kim, C. Lu, W.L. Worrell, J.M. Vohs, R.J. Gorte, Cu-Ni cermet anodes for direct oxidation of methane in solid-oxide fuel cells, J. Electrochem. Soc, 2002, 149 (3), A247-A250.
    [109] S.-I. Lee, J.M. Vohs, R.J. Gorte, A study of SOFC anodes based on Cu-Ni and Cu-Co bimetallics in CeO 2-YSZ, J. Electrochem. Soc, 2004, 151 (9), A1319-A1323.
    [110] Z. Xie, W. Zhu, B.C. Zhu, C.R. Xia, FexCo0.5-xNi0.5-SDC anodes for low-temperature solid oxide fuel cells, Electrochim. Acta, 2006, 51 (15), 3052-3057.
    [111] B.C.H. Steele, Materials for IT-SOFC stacks 35 years R&D: the inevitability of gradualness?, Solid State Ion., 2000, 134 (1-2), 3-20.
    [112] F. Zhao, R.R. Peng, C.R. Xia, A La0.6Sr0.4CoO3-delta-based electrode wit high durability for intermediate temperature solid oxide fuel cells, Materials Research Bulletin, 2008, 43 (2), 370-376.
    [113] L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, STRUCTURE AND ELECTRICAL-PROPERTIES OF LA1-XSRXCO1-YFEYO3 .1. THE SYSTEM LA0.8SR0.2CO1-YFEYO3, Solid State Ion., 1995, 76 (3-4), 259-271.
    [114] L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, STRUCTURE AND ELECTRICAL-PROPERTIES OF LA1-XSRXCO1-YFEYO3 .2. THE SYSTEM LA1-XSRXCO0.2FE0.8O3, Solid State Ion., 1995, 76 (3-4), 273-283.
    [115] M.J.L. Ostergard, C. Clausen, C. Bagger, M. Mogensen, MANGANITE-ZIRCONIA COMPOSITE CATHODES FOR SOFC - INFLUENCE OF STRUCTURE AND COMPOSITION, Electrochim. Acta, 1995, 40 (12), 1971-1981.
    [116] V. Dusastre, J.A. Kilner, Optimisation of composite cathodes for intermediate temperature SOFC applications, Solid State Ion., 1999, 126 (1-2), 163-174.
    [117] H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada, Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode, Solid State Ion., 2000, 132 (3-4), 279-285.
    [118] T. Ishihara, M. Honda, T. Shibayama, H. Minami, H. Nishiguchi, Y. Takita, Intermediate temperature solid oxide fuel cells using a new LaGaO3 based oxide ion conductor - I. Doped SmCoO3 as a new cathode material, J. Electrochem. Soc., 1998, 145 (9), 3177-3183.
    [119] C.R. Xia, W. Rauch, F.L. Chen, M.L. Liu, Sm0.5Sr0.5CoO3 cathodes for low-temperature SOFCs, Solid State Ion., 2002, 149 (1-2), 11-19.
    [120] C.R. Xia, M.L. Liu, Novel cathodes for low-temperature solid oxide fuel cells, Advanced Materials, 2002, 14 (7), 521-+.
    [121] Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid-oxide fuel cells, Nature, 2004, 431 (7005), 170-173.
    [122] R. Doshi, V.L. Richards, J.D. Carter, X.P. Wang, M. Krumpelt, Development of solid-oxide fuel cells that operate at 500 degrees C, J. Electrochem. Soc., 1999, 146 (4), 1273-1278.
    [123] T. Takeda, R. Kanno, K. Tsubosaka, Y. Takeda, Low temperature SOFCs with the ruthenium pyrochlore cathode, Electrochemistry, 2002, 70 (12), 969-971.
    [124] J.M. Bae, B.C.H. Steele, Properties of pyrochlore ruthenate cathodes for intermediate temperature solid oxide fuel cells, J. Electroceram., 1999, 3 (1), 37-46.
    [125] I. Yasuda, T. Hikita, ELECTRICAL-CONDUCTIVITY AND DEFECT STRUCTURE OF CALCIUM-DOPED LANTHANUM CHROMITES, J. Electrochem. Soc., 1993, 140 (6), 1699-1704.
    [126] W.J. Quadakkers, J. Piron-Abellan, V. Shemet, L. Singheiser, Metallic interconnectors for solid oxide fuel cells - a review, Mater. High Temp., 2003, 20 (2), 115-127.
    [127] M.I. Mendelson, AVERAGE GRAIN SIZE IN POLYCRYSTALLINE CERAMICS, J. Am. Ceram. Soc., 1969, 52 (8), 443.
    [128] D. Ding, B.B. Liu, M.Y. Gong, X.B. Liu, C.R. Xia, Electrical properties of samaria-doped ceria electrolytes from highly active powders, Electrochim. Acta, 2010, 55 (15), 4529-4535.
    [129] X.G. Zhang, C. Deces-Petit, S. Yick, M. Robertson, O. Kesler, R. Maric, D. Ghosh, A study on sintering aids for Sm0.2Ce0.8O1.9 electrolyte, J. Power Sources, 2006, 162 (1), 480-485.
    [130] S. deSouza, S.J. Visco, L.C. DeJonghe, Thin-film solid oxide fuel cell with high performance at low-temperature, Solid State Ion., 1997, 98 (1-2), 57-61.
    [131] S.C. Singhal, K. Kendall, in,科学出版社, 2006.
    [132] Y.D. Zhen, A.I.Y. Tok, S.P. Jiang, F.Y.C. Boey, Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells, J. Power Sources, 2008, 178 (1), 69-74.
    [133] T. Hibino, A. Hashimoto, T. Inoue, J. Tokuno, S. Yoshida, M. Sano, A low-operating-temperature solid oxide fuel cell in hydrocarbon-air mixtures, Science, 2000, 288 (5473), 2031-2033.
    [134] S.M. Haile, G. Staneff, K.H. Ryu, Non-stoichiometry, grain boundary transport and chemical stability of proton conducting perovskites, J. Mater. Sci., 2001, 36 (5), 1149-1160.
    [135] L. Yang, Y. Choi, W. Qin, H. Chen, K. Blinn, M. Liu, P. Liu, J. Bai, T.A. Tyson, M. Liu, Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells, Nature Communications, 2011, 2 (357).
    [136] S.M. Haile, Fuel cell materials and components, Acta Mater., 2003, 51 (19), 5981-6000.
    [137] K.D. Kreuer, Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides, Solid State Ion., 1999, 125 (1-4), 285-302.
    [138] K.D. Kreuer, On the development of proton conducting materials for technological applications, Solid State Ion., 1997, 97 (1-4), 1-15.
    [139] C.D. Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, M.L. Liu, Composite Ni-Ba(Zr0.1Ce0.7Y0.2)O-3 membrane for hydrogen separation, J. Power Sources, 2006, 159 (2), 1291-1295.
    [140] C.D. Zuo, T.H. Lee, S.J. Song, L. Chen, S.E. Dorris, U. Balachandran, M.L. Liu, Hydrogen permeation and chemical stability of cermet Ni-Ba(Zr0.8-xCexY0.2)O-3 membranes, Electrochem. Solid State Lett., 2005, 8 (12), J35-J37.
    [141] C.D. Zuo, S.E. Dorris, U. Balachandran, M.L. Liu, Effect of Zr-doping on the chemical stability and hydrogen permeation of the Ni-BaCe0.8Y0.2O3-alpha mixed protonic-electronic conductor, Chem. Mat., 2006, 18 (19), 4647-4650.
    [142] N. Bonanos, K.S. Knight, B. Ellis, PEROVSKITE SOLID ELECTROLYTES - STRUCTURE, TRANSPORT-PROPERTIES AND FUEL-CELL APPLICATIONS, Solid State Ion., 1995, 79 161-170.
    [143] S. Gopalan, A.V. Virkar, THERMODYNAMIC STABILITIES OF SRCEO3 AND BACEO3 USING A MOLTEN-SALT METHOD AND GALVANIC CELLS, J. Electrochem. Soc., 1993, 140 (4), 1060-1065.
    [144] R. Costa, N. Grunbaum, M.H. Berger, L. Dessemond, A. Thorel, On the use of NiO as sintering additive for BaCe0.9Y0.1O3-alpha, Solid State Ion., 2009, 180 (11-13), 891-895.
    [145] P. Babilo, S.M. Haile, Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO, J. Am. Ceram. Soc., 2005, 88 (9), 2362-2368.
    [146] A.M. Azad, S. Subramaniam, T.W. Dung, On the development of high density barium metazirconate (BaZrO3) ceramics, J. Alloy. Compd., 2002, 334 118-130.
    [147] C.L. Tsai, M. Kopczyk, R.J. Smith, V.H. Schmidt, Low temperature sintering of Ba(Zr0.8-xCexY0.2)O-3 (-) (delta) using lithium fluoride additive, Solid State Ion., 2010, 181 (23-24), 1083-1090.
    [148] R. Marder, R. Chaim, G. Chevallier, C. Estournes, Effect of 1 wt% LiF additive on the densification of nanocrystalline Y2O3 ceramics by spark plasma sintering, J. European Ceram. Soc., 2011, 31 (6), 1057-1066.
    [149] W. Borchardt-Ott, Crystallography, Berlin; New York; Springer-Verlag, 1993
    [150] J.H. Tong, D. Clark, M. Hoban, R. O'Hayre, Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics, Solid State Ion., 2010, 181 (11-12), 496-503.
    [151] J.H. Tong, D. Clark, L. Bernau, M. Sanders, R. O'Hayre, Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics, J. Mater. Chem., 2010, 20 (30), 6333-6341.
    [152] Takahash.T, K. Ito, H. Iwahara, EFFICIENCY OF SOLID-ELECTROLYTE FUEL CELLS, Electrochim. Acta, 1967, 12 (1), 21-30.
    [153] M. Winter, R.J. Brodd, What are batteries, fuel cells, and supercapacitors?, Chem. Rev., 2004, 104 (10), 4245-4269.
    [154] W. Zhou, Z.P. Shao, R. Ran, W.Q. Jin, N.P. Xu, A novel efficient oxide electrode for electrocatalytic oxygen reduction at 400-600 degrees C, Chem. Commun., 2008, (44), 5791-5793.
    [155] T. Suzuki, Z. Hasan, Y. Funahashi, T. Yamaguchi, Y. Fujishiro, M. Awano, Impact of Anode Microstructure on Solid Oxide Fuel Cells, Science, 2009, 325 (5942), 852-855.
    [156] L. Bi, S.Q. Zhang, S.M. Fang, Z.T. Tao, R.R. Peng, W. Liu, A novel anode supported BaCe0.7Ta0.1Y0.2O3-delta electrolyte membrane for proton-conducting solid oxide fuel cell, Electrochem. Commun., 2008, 10 (10), 1598-1601.
    [157] D.J.D. Corcoran, D.P. Tunstall, J.T.S. Irvine, Hydrogen titanates as potential proton conducting fuel cell electrolytes, Solid State Ion., 2000, 136 297-303.
    [158] S. Feng, M. Greenblatt, Proton conductivity and humidity-sensing properties at high temperature of the NASICON-based composite material hydrogen zirconium phosphate-zirconium pyrophosphate ceramic (HZr2P3O12.ZrP2O7), Chem. Mater., 1993, 5 (9), 1277-1282.
    [159] M. Zafar, A. Munshi, P.S. Nicholson, A. Stockman, Hydronium-ion conductors based onβ/β″-alumina and rare-earth silicates, Solid State Ion., 1990, 42 (1-2), 69-74.
    [160] M. Zafar, A. Munshi, P.S. Nicholson, Polycrystalline H3O+-yttrium silicate: Synthesis characterization and utilization in steam electrolysis cells, Solid State Ion., 1990, 42 (1-2), 47-52.
    [161] P. Knauth, Inorganic solid Li ion conductors: An overview, Solid State Ion., 2009, 180 (14-16), 911-916.
    [162]吴宇平,万春荣,姜长印,方世璧,锂离子二次电池,化学工业出版社,北京, 2002
    [163] Y. Nishi, Something about Lithium Ion Batteries, Shokabo Press, Tokyo, 1997
    [164] B. Scrosati, J. Garche, Lithium batteries: Status, prospects and future, J. Power Sources, 2010, 195 (9), 2419-2430.
    [165] J.B. Goodenough, Y. Kim, Challenges for Rechargeable Li Batteries, Chem. Mat., 2010, 22 (3), 587-603.
    [166] V. Thangadurai, W. Weppner, Li(6)ALa(2)Ta(2)O(12) (A=Sr, Ba): Novel garnet-like oxides for fast lithium ion conduction, Adv. Funct. Mater., 2005, 15 (1), 107-112.
    [167] A.S. Arico, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 2005, 4 (5), 366-377.
    [168] P.G. Bruce, Energy storage beyond the horizon: Rechargeable lithium batteries, Solid State Ion., 2008, 179 (21-26), 752-760.
    [169] M. Armand, J.M. Tarascon, Building better batteries, Nature, 2008, 451 (7179), 652-657.
    [170] V. Thangadurai, W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes research, Ionics, 2006, 12 (1), 81-92.
    [171] V. Thangadurai, W. Weppner, Solid State Lithium Ion Conductors: Design Considerations by Thermodynamic Approach, Ionics, 2002, 8 (3-4), 281-292.
    [172] N.A. Anurova, V.A. Blatov, G.D. Ilyushin, O.A. Blatova, A.K. Ivanov-Schitz, L.N. Dem'yanets, Migration maps of Li(+) cations in oxygen-containing compounds, Solid State Ion., 2008, 179 (39), 2248-2254.
    [173] A.K. Ivanov-Shitz, Computer simulation of superionic conductors: II. Cationic conductors. Review, Crystallogr. Rep., 2007, 52 (2), 302-315.
    [174] R.D. Shannon, B.E. Taylor, T.E. Gier, H.Y. Chen, T. Berzins, IONIC-CONDUCTIVITY IN NA5YSI4O12-TYPE SILICATES, Inorg. Chem., 1978, 17 (4), 958-964.
    [175] H.U. Beyeler, T. Hibma, SODIUM CONDUCTIVITY PATHS IN SUPERIONIC CONDUCTORS NA5RESI4O12, Solid State Commun., 1978, 27 (6), 641-643.
    [176] R.D. Shannon, H.Y. Chen, T. Berzins, IONIC-CONDUCTIVITY IN NA5GDSI4O12, Mater. Res. Bull., 1977, 12 (10), 969-973.
    [177] M. Nyman, T.M. Alam, S.K. McIntyre, G.C. Bleier, D. Ingersoll, Alternative Approach to Increasing Li Mobility in Li-La-Nb/Ta Garnet Electrolytes, Chem. Mat., 2010, 22 (19), 5401-5410.
    [178] K. Yamashita, P.S. Nicholson, PROTON CONDUCTING (NA,H)5GDSI4O12 CERAMICS AND THEIR USE IN STEAM ELECTROLYTES, Solid State Ion., 1986, 20 (2), 147-151.
    [179] J.Z. Sun, Property of Novel Sodium Ion Exchanger Li1.4Cr0.2Al0.2Ti1.6(PO4)(3), J. Chem. Soc. Pak., 2010, 32 (4), 476-480.
    [180] B.L. Ellis, W.R.M. Makahnouk, W.N. Rowan-Weetaluktuk, D.H. Ryan, L.F. Nazar, Crystal Structure and Electrochemical Properties of A(2)MPO(4)F Fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni), Chem. Mat., 2010, 22 (3), 1059-1070.
    [181] J.J. Bentzen, P.S. Nicholson, THE PREPARATION AND CHARACTERIZATION OF DENSE, HIGHLY CONDUCTIVE NA5GDSI4O12 NASICON (NGS), Materials Research Bulletin, 1980, 15 (12), 1737-1745.
    [182] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., 1997, 144 (4), 1188-1194.
    [183] J.M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, Nature, 2001, 414 (6861), 359-367.
    [184] M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 2004, 104 (10), 4271-4301.
    [185] B. Kang, G. Ceder, Battery materials for ultrafast charging and discharging, Nature, 2009, 458 (7235), 190-193.
    [186] T. Rajkumar, M. Nakayama, M. Nogami, Ab initio prediction for the ionic conduction of lithium in LiInSiO4 and LiInGeO4 olivine materials, Solid State Commun., 2010, 150 (15-16), 693-696.
    [187] V. Thangadurai, W. Weppner, Li(6)ALa(2)Nb(2)O(12) (A = Ca, Sr, Ba): A new class of fast lithium ion conductors with garnet-like structure, J. Am. Ceram. Soc., 2005, 88 (2), 411-418.
    [188] V. Thangadurai, W. Weppner, Effect of sintering on the ionic conductivity of garnet-related structure Li5La3Nb2O12 and In- and K-doped Li5La3Nb2O12, J. Solid State Chem., 2006, 179 (4), 974-984.
    [189] J. Percival, E. Kendrick, P.R. Slater, Synthesis and conductivities of the gamet-related Li ion conductors, Li(5)Ln(3)Sb(2)O(12) (Ln=La, Pr, Nd, Sm, Eu), Solid State Ion., 2008, 179 (27-32), 1666-1669.
    [190] R. Murugan, W. Weppner, P. Schmid-Beurmann, V. Thangadurai, Structure and lithium ion conductivity of garnet-like Li5La3Sb2O12 and Li6SrLa2Sb2O12, Mater. Res. Bull., 2008, 43 (10), 2579-2591.
    [191] E.J. Cussen, The structure of lithium garnets: cation disorder and clustering in a new family of fast Li+ conductors, Chem. Commun., 2006, (4), 412-413.
    [192] L. van Wullen, T. Echelmeyer, H.W. Meyer, D. Wilmer, The mechanism of Li-ion transport in the garnet Li5La3Nb2O12, Phys. Chem. Chem. Phys., 2007, 9 (25), 3298-3303.
    [193] R. Murugan, V. Thangadurai, W. Weppner, Fast lithium ion conduction in garnet-type Li7La3Zr2O12, Angew. Chem.-Int. Edit., 2007, 46 (41), 7778-7781.
    [194] J. Awaka, N. Kijima, K. Kataoka, H. Hayakawa, K. Ohshima, J. Akimoto, Neutron powder diffraction study of tetragonal Li7La3Hf2O12 with the garnet-related type structure, J. Solid State Chem., 2010, 183 (1), 180-185.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700