用户名: 密码: 验证码:
硅基亲水作用液相色谱固定相的制备及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着蛋白质组学、代谢组学、中药现代化、环境保护等研究领域的迅速发展,强极性和亲水性的小分子物质迅速成为分析化学和生物化学领域的重要研究对象,但这类物质往往较难在传统的液相色谱柱上得到有效分离,因此限制了它们的应用。亲水作用色谱(HILIC)作为一种新型的色谱分离模式应运而生,已经被证明是一种适用于强极性和亲水性样品定性定量分析的可靠手段。目前,亲水色谱固定相的种类十分有限,因此,亲水作用色谱固定相的制备和应用研究具有重要的意义。本论文在文献调研的基础上,制备了四种新型硅基HILIC固定相,并对它们的色谱分离性能及分离机理进行了研究。
     本论文主要包括以下研究内容:
     1.采用“无溶剂微波辅助有机合成”法合成了一种咪唑啉分子,通过聚合反应将其固定于多孔硅胶表面。所制备的固定相由憎水的烷基酯链和亲水的咪唑啉环构成,因此赋予其亲水作用色谱和反相色谱的特征。滴定曲线表明该材料在9-4的pH范围内具有缓冲能力,并且随着pH增加,材料捕获的正电荷越多,而且只有在高pH时,该材料才是两性的。在高有机溶剂流动相中,通过研究柱温、流动相中水含量、pH值和离子强度对极性化合物保留时间的影响,发现该分离材料可以用作亲水作用色谱固定相,并且显示出复合的保留机理,主要包括分配、吸附和静电作用。此外,还研究了芳香化合物在不同流动相条件下的保留行为,结果表明:在反相色谱模式下,该固定相的保留基于分配机理。在此新固定相上,六种水溶性维他命和五种芳香化合物分别在亲水和反相色谱模式下实现了高效分离。
     2.制备了一种磺化/甲基丙烯酰化的多糖衍生物,并且通过聚合反应成功的键合于多孔硅胶表面。此多糖衍生物在所制备的材料上的固定量为10.33%。新固定相具有亲水作用色谱和富水作用色谱的特征。为了考察该多糖固定相在富水流动相中的特点,研究了柱温、流动相中水含量、pH值和离子强度对测试化合物保留时间的影响。当流速为1.0mL/min,流动相中water/ACN (v/v)为97/3时,苯甲酸在该固定相上的柱效可达31000plates/m。与C18柱相比,该新固定相相对弱极性和非极性化合物有更弱的保留,而对强极性化合物有更强的保留。结果表明,富水作用色谱可以作为亲水作用色谱的替代和反相色谱的补充,应用于极性和亲水性物质的分离。
     3.通过在硝酸中回流玉米杆灰制备了粒径为6-18m的碳纳米颗粒。由于羧基和羟基的存在,所获得的经过酸氧化的碳纳米颗粒在水中是可溶的。C13NMR显示,该碳纳米颗粒不同于从蜡烛灰和天然气灰制备的碳纳米颗粒,它主要由sp2和sp3的碳结构构成,而且显示出荧光性质。令人感兴趣的是,可以将CNPs有效地固载于硅胶表面作色谱固定相。所得到的材料可以在亲水作用色谱和富水作用色谱模式下,分离在传统的反相柱上保留困难的极性和亲水性化合物。五种核苷、四种磺胺化合物和红花注射液在亲水和富水色谱条件下实现了高效分离。
     4.采用固相合成法,制备了一种环肽(环[-Ala-Ala-Ala-Glu-])固定相。通过茚三酮和紫外/可见光谱测试监测每个氨基酸反应进行的程度。所得到的材料通过紫外光谱、红外光谱、元素分析和热重分析进行了表征,证明环[-Ala-Ala-Ala-Glu-]成功的键合于硅胶表面。该固定相对葸这类多环芳烃显示出立体选择性。同时,分别研究了在水富集流动相和乙腈富集流动相,水含量、柱温、pH值和离子强度变化对极性化合物保留的影响。此外,五种核苷、四种磺胺化合物以及苯酚和苯胺类化合物分别在该环肽固定相上得到相应分离。
With the rapid development of various fields of study in proteomics, metabonomics, the modernization of Chinese traditonal medicine, environmental protection and so on, strong polar and hydrophilic small molecules are rapidly becoming the important objects of study in analytical chemistry and biochemistry fields. However, the separation of polar compounds and highly hydrophilic compounds is difficult on conventional columns. This greatly limits their application. Hydrophilic interaction chromatography (HILIC), as a new type of chromatographic separation mode, came into being and has been proved as a powerful technique in qualitative and quantitive analysis of various kinds of polar and hydrophilic samples. So far, type of HILIC stationary phase is very limited. Therefore, the research for preparation and application of HILIC stationary phase has very important significance. Based on these considerations, four novel silica-based HILIC stationary phases were prepared in this paper. Moreover, their separation performance and mechanism were studied.
     The contents are as follows:
     1. An imidazoline was prepared by solvent-free microwave-assisted organic synthesis and immobilized on porous silica particles by polymerization. The resulting material was composed of both hydrophobic alkyl ester chains and hydrophilic imidazoline rings, which gave it both hydrophilic interaction and reversed-phase characteristics. The titration curve suggests that the new material has buffering capacity and acquires increasing positive charge over the pH range9-4and is "zwitterionic" in the upper part of this pH range. Through investigating the effect of column temperature, the water content, pH and ion strength of mobile phase on the retention time of polar compounds in highly organic eluents, it was found that the new material could be used as a hydrophilic interaction liquid chromatography stationary phase which involved a complex retention process consisting of partitioning, surface adsorption and electrostatic interactions. In addition, the retention behavior of aromatic compounds in different mobile phase conditions was also studied, which showed the new material mainly exhibited a partitioning mechanism in the reversed-phase liquid chromatography (RPLC) mode. The separation of six water-soluble vitamins and five aromatic compounds were achieved by using the new material in the HILIC and RPLC modes, respectively.
     2. The mixed sulfated/methacryloyl polysaccharide derivative was prepared and successfully immobilized onto the surface of porous silica particles by polymerization. Polysaccharide derivative was calculated as10.33%in the stationary phase prepared. The new stationary phase (PMSP) showed both HILIC and per aqueous liquid chromatography (PALC) characteristics. The effects of column temperature, the water content, pH and ion strength of mobile phase on the retention time of test compounds in highly aqueous eluents were investigated to evaluate the PALC features of PMSP. The column efficiency is about31000plates/m for benzoic acid in water/ACN (97/3, v/v) mobile phase at a flow rate of1.0mL/min. Compared with C18column, the PMSP had shorter retention time for weak polar and non-polar compounds, but also showed stronger retention for strong polar compounds. It indicated that PALC was a suitable mode of chromatography as replacement of HILIC and complementarity of reversed-phase liquid chromatography (RPLC).
     3. Carbon nanoparticles (CNPs)(6~18nm in size) were prepared by refluxing corn stalk soot in nitric acid. The obtained acid-oxidized CNPs are soluble in water due to the existence of carboxylic and hydroxyl groups. C13NMR measurement shows the CNPs are mainly of sp2and sp3carbon structure different from CNPs obtained from candle soot and natural gas soot. Furthermore, these CNPs exhibit unique photoluminescence properties. Interestingly, the CNPs might be exploited to immobilize on the surface of porous silica particles as chromatographic stationary phase. The resultant packing material was evaluated by high-performance liquid chromatography, indicating that the new stationary phase could be used in HILIC and PALC modes to separate polar compounds and highly hydrophilic compounds lack of retention on conventional reversed-phase columns. The separation of five nucleosides, four sulfa compounds and safflower injection was achieved by using the new column in the HILIC and PALC modes, respectively.
     4. Cyclopeptide stationary phase, cyclo[-Ala-Ala-Ala-Glu-], was synthesized by solid-phase synthesis method. Each amino acid coupling step was monitored by the ninhydrin test using UV/Visible spectrophotometry. The proposed material was characterized by UV spectra, FT-IR spectra, elemental analysis and thermogravimetric analysis, which proved the successful immobilization of cyclo[-Ala-Ala-Ala-Glu-] on the silica support. The obtained stationary phase had the stereoselectivity for polycyclic aromatic hydrocarbon such as athracene. Retention behavior of polar compounds was studied through varying the water content, column temperature, pH and ion strength in corresponding acetonitrile-rich and water-rich mobile phases. The separation of five nucleosides, five sulfa compounds and phenol compounds were investigated by using the new column in acetonitrile-rich and water-rich mobile phases, respectively.
引文
[1]刘国诠,余兆楼.色谱柱技术[M].北京:化学工业出版社.2005.
    [2]Randon, J., Huguet, S., Demesmay, C., Berthod, A. Zirconia based monoliths used in hydrophilic-interaction chromatography for original selectivity of xanthines[J]. Journal of Chromatography A.2010,217:1496-1500.
    [3]Ikegami, T., Tomomatsu, K., Takubo, H., Horie, K., Tanaka, N. Separation efficiencies in hydrophilic interaction chromatography[J]. Journal of Chromatography A.2008,1184:474-503.
    [4]Guo, Y., Gaiki, S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography [J]. Journal of Chromatography A.2005,1074:71-80.
    [5]Liu, M., Chen, E.X., Ji, R., Semin, D. Stability-indicating hydrophilic interaction liquid chromatography method for highly polar and basic compounds[J]. Journal of Chromatography A. 2008,1188:255-263.
    [6]Bard, B., Carrupt, P.A., Martel, S. Lipophilicity of basic drugs measured by hydrophilic interaction chromatography [J]. Journal of Medicinal Chemistry.2009,52:3416-3419.
    [7]McCalley, D.V. The challenges of the analysis of basic compounds by high performance liquid chromatography:Some possible approaches for improved separations[J]. Journal of Chromatography A.2010,1217:858-880.
    [8]Alpert A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of Chromatography A.1990,499:177-196.
    [9]Linden, J.C., Lawhead, C.L. Liquid chromatography of saccharides[J]. Journal of Chromatography A.1975,105:125-133.
    [10]Palmer, J.K. A versatile system for sugar analysis via liquid chromatography[J]. Analytical Letters.1975,8:215-224.
    [11]Rabel, F.M., Caputo, A.G., Butts, E.T. Separation of carbohydrates on a new polar bonded phase material[J]. Journal of Chromatography A.1976,126:731-740.
    [12]Gregor, H.P., Collins, F.C., Pope, M. Diffusion of neutral molecules in a sulfonic acid cation-exchange resin[J]. Journal of Colloid Science.1951,6:304-322.
    [13]Hearn, M.T.W. High-performance liquid chromatography of amino acids, peptides and proteins:XXXVI. Organic solvent modifier effects in the separation of unprotected peptides by reversed-phase liquid chromatography [J]. Journal of Chromatography A.1981,218:497-507.
    [14]Bij, K.E., Horvath, C., Melander, W.R., Nahum, A. Surface silanols in silica-bonded hydrocarbonaceous stationary phases:Ⅱ. Irregular retention behavior and effect of silanol masking[J]. Journal of Chromatography A.1981,203:65-84.
    [15]Orth, P. Engelhardt, H. Separation of sugars on chemically modified silica gel[J]. Chromatographia.1982,15:91-96.
    [16]McCalley, D.V., Neue, U.D. Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography[J]. Journal of Chromatography A. 2008,1192:225-229.
    [17]Hemstrom, P., Irgum, K. Hydrophilic interaction chromatography[J]. Journal of Separation Science.2006,29:1784-1821.
    [18]McCalley D.V. Study of the selectivity, retention mechanisms and performance of alternative silica-based stationary phases for separation of ionised solutes in hydrophilic interaction chromatography[J]. Journal of Chromatography A.2010,1217:3408-3417.
    [19]Jin, G., Guo, Z., Zhang, F., Xue, X., Jin, Y., Liang, X. Study on the retention equation in hydrophilic interaction liquid chromatography[J]. Talanta.2008,76:522-527.
    [20]Karatapanis, A.E., Fiamegos, Y.C., Stalikas, C.D. Study of the behavior of water-soluble vitamins in HILIC on a diol column[J]. Chromatographia.2010,71:751-759.
    [21]Alpert, A.J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides[J]. Analytical Chemistry. 2008,80:62-76.
    [22]Chauve, B., Guillarme, D., Cleon, P., Veuthey, J.-L. Evaluation of various HILIC materials for the fast separation of polar compounds[J]. Journal of Separation Science.2010,33:752-764.
    [23]Pack, B.W., Risley, D.S. Evaluation of a monolithic silica column operated in the hydrophilic interaction chromatography mode with evaporative light scattering detection for the separation and detection of counter-ions[J]. Journal of Chromatography A.2005,1073:269-275.
    [24]Li, R.P., Huang, J.X. Chromatographic behavior of epirubicin and its analogues on high-purity silica in hydrophilic interaction chromatography [J]. Journal of Chromatography A. 2004,1041:163-169.
    [25]Jandera, P. Stationary and mobile phases in hydrophilic interaction chromatography:a review[J].Analytica Chimica Acta.2011,692:1-25.
    [26]Sandoval, J.E., Pesek, J.J. Synthesis and characterization of a hydride-modified porous silica material as an intermediate in the preparation of chemically bonded chromatographic stationary phases[J]. Analytical Chemistry.1989,61:2067-2075.
    [27]Pesek, J.J., Matyska, M.T. Our favorite materials:Silica hydride stationary phases[J]. Journal of Separation Science.2009,32:3999-4011.
    [28]Pesek, J.J., Matyska, M.T. HPLC retention behavior on hydride-based stationary phases[J]. Journal of Separation Science.2007,30:637-647.
    [29]Molikova, M., Jandera, P., Characterization of stationary phases for reversed-phase chromatography[J]. Journal of Separation Science.2010,33:453-463.
    [30]Olsen, B.A. Hydrophilic interaction chromatography using amino and silica columns for the determination of polar pharmaceuticals and impurities[J]. Journal of Chromatography A.2001, 913:113-122.
    [31]Oyler, A.R., Armstrong, B.L., Cha, J.Y., Zhou, M.X., Yang, Q., Robinson, R.I., Dunphy, R., Burinsky, D.J. Hydrophilic interaction chromatography on amino-silica phases complements reversed-phase high-performance liquid chromatography and capillary electrophoresis for peptide analysis[J]. Journal of Chromatography A.1996,724:378-383.
    [32]Yoshida, T., Peptide separation in normal phase liquid chromatography[J]. Analytical Chemistry.1997,69:3038-3043.
    [33]Karlsson, G., Winge, S., Sandberg, H. Separation of monosaccharides by hydrophilic interaction chromatography with evaporative light scattering detection[J]. Journal of Chromatography A.2005,1092:246-249.
    [34]Novakova, L., Kaufinannova, I., Janska, R. Evaluation of hybrid hydrophilic interaction chromatography stationary phases for ultra-HPLC in analysis of polar pteridines[J]. Journal of Separation Science.2010,33:765-772.
    [35]Xu, M.C., Peterson, D.S., Rohr, T., Svec, F., Frechet, J.M.J. Polar polymeric stationary phases for normal-phase HPLC based on monodisperse macroporous poly(2,3-dihydroxypropyl methacrylate-co-ethylene dimethacrylate) beads[J]. Analytical Chemistry.2003,75:1011-1021.
    [36]Siouffi A.M., Silica gel-based monoliths prepared by the sol-gel method:facts and figures[J]. Journal of Chromatography A.2003,1000:801-818.
    [37]Vicklund, C., Sjorgen, A., Irgum, K., Nes, I. Chromatographic interactions between proteins and sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-salt buffers[J]. Analytical Chemistry.2001,73:444-452.
    [38]Pazourek, J. Monitoring of mutarotation of monosaccharides by hydrophilic interaction chromatography[J]. Journal of Separation Science.2010,33:974-981.
    [39]Regnier, F.E., Noel, R. Glycerolpropylsilane bonded phases in the steric exclusion chromatography of biological macromolecules[J]. Journal of Chromatographic Science.1976,14: 316-320.
    [40]Jandera, P., Hajek, T. Utilization of dual retention mechanism on columns with bonded PEG and diol stationary phases for adjusting the separation selectivity of phenolic and flavone natural antioxidants[J]. Journal of Separation Science.2009,32:3603-3619.
    [41]Liu, X., Pohl, C. New hydrophilic interaction/reversed-phase mixed-mode stationary phase and its application for analysis of nonionic ethoxylated surfactants[J]. Journal of Chromatography A.2008,1191:83-89.
    [42]Jandera, P., Hajek, T., Skerikova, V., Soukup, J., Dual hydrophilic interaction-RP retention mechanism on polar columns:Structural correlations and implementation for 2-D separations on a single column[J]. Journal of Separation Science.2010,33:841-852.
    [43]Blahova, E., Jandera, P., Cacciola, F., Mondello, L. Two-dimensional and serial column reversed-phase separation of phenolic antioxidants on octadecyl-, polyethyleneglycol-, and pentafluorophenylpropyl-silica columns[J]. Journal of Separation Science.2006,29:555-566.
    [44]Jandera, P., Vynuchalova, K., Hajek, T., Cesla, P., Vohralik G. Characterization of HPLC columns for two-dimensional LCxLC separations of phenolic acids and flavonoids[J]. Journal of Chemometrics.2008,22:203-217.
    [45]Wang, X., Li, W., Rasmussen, H.T. Orthogonal method development using hydrophilic interaction chromatography and reversed-phase high-performance liquid chromatography for the determination of Pharmaceuticals and impurities[J]. Journal of Chromatography A.2005,1083: 58-62.
    [46]Alpert, A.J. Cation-exchange high-performance liquid chromatography of proteins on poly(aspartic acid)-silica[J]. Journal of Chromatography A.1983,266:23-37.
    [47]Mant, C.T., Kondejewski, L.H., Hodges, R.S. Hydrophilic interaction/cation-exchange chromatography for separation of cyclic peptides[J]. Journal of Chromatography A.1998,816: 79-88.
    [48]Strege, M.A., Stevenson, S., Lawrence, S.M. Mixed-mode anion-cation exchange/ hydrophilic interaction liquid chromatography-electrospray mass spectrometry as an alternative to reversed phase for small molecule drug discovery[J]. Analytical Chemistry.2000,72:4629-4633.
    [49]Hartmann, E. Chen, Y., Mant, C.T. Jungbauer, A., Hodges, R..S. Comparison of reversed-phase liquid chromatography and hydrophilic interaction/cation-exchange chromatography for the separation of amphipathic a-helical peptides with L-and D-amino acid substitutions in the hydrophilic face[J]. Journal of Chromatography A.2003,1009:61-71.
    [50]Alpert, A.J., Andrews, P.C. Cation-exchange chromatography of peptides on poly(2-sulfoethyl aspartamide)-silica[J]. Journal of Chromatography A.1988,443:85-96.
    [51]Zhu, B.Y., Mant, C.T., Hodges, R.S., Hydrophilic-interaction chromatography of peptides on hydrophilic and strong cation-exchange columns[J]. Journal of Chromatography A.1991,548: 13-24.
    [52]Tolstikov, V.V., Fiehn, O. Analysis of highly polar compounds of plant origin:combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry[J]. Analytical Biochemistry.2002,301:298-307.
    [53]Curren, M.S.S., King, J.W. New sample preparation technique for the determination of avoparcin in pressurized hot water extracts from kidney samples[J]. Journal of Chromatography A. 2002,954:41-49.
    [54]Tolstikov, V.V., Fiehn, O., Tanaka, N. Application of liquid chromatography-mass spectrometry analysis in metabolomics:reversed-phase monolithic capillary chromatography and hydrophilic chromatography coupled to electrospray ionization-mass spectrometry [J]. Methods in Molecular Biology.2007,358:141-155.
    [55]Alpert, A.J., Shukla, M., Shukla, A.K., Zieske, L.R., Yuen, S.W., Ferguson, M.A.J., Mehlert, A., Pauly, M., Orlando, R. Hydrophilic-interaction chromatography of complex carbohydrates[J]. Journal of Chromatography A.1994,676:191-202.
    [56]Mitchell, C.R., Armstrong, D.W. Cyclodextrin-based chiral stationary phases for liquid chromatography:a twenty-year overview[J]. Methods in Molecular Biology.2004,243:61-112.
    [57]Wang, C., Jiang, C., Armstrong, D.W. Consideration on HILIC and polar organic solvent-based separations:Use of cyclodextrin and macrocyclic glycopetide stationary phases[J]. Journal of Separation Science.2008,31:1980-1990.
    [58]Armstrong, D.W., Jin, H.L. Evaluation of the liquid chromatographic separation of monosaccharides, disaccharides, trisaccharides, tetrasaccharides, deoxysaccharides and sugar alcohols with stable cyclodextrin bonded phase columns[J]. Journal of Chromatography A.1989, 462:219-224.
    [59]Liu, Y, Urgaonkar, S., Verkade, J.G., Armstrong, D.W. Separation and characterization of underivatized oligosaccharides using liquid chromatography and liquid chromatography-electrospray ionization mass spectrometry[J]. Journal of Chromatography A.2005,1079:146-152.
    [60]Berthod, A., Chang, S.S.C., Kullman, J.P.S., Armstrong, D.W. Practice and mechanism of HPLC oligosaccharide separation with a cyclodextrin bonded phase[J]. Talanta.1998,47: 1001-1012.
    [61]Risley, D.S., Strege, M.A., Chiral separations of polar compounds by hydrophilic interaction chromatography with evaporative light scattering detection[J]. Analytical Chemistry.2000,72: 1736-1739.
    [62]Guo, Z., Jin, Y., Liang, T., Liu, Y, Xua, Q., Liang, X., Lei, A. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click P-cyclodextrin" stationary phase[J]. Journal of Chromatography A.2009,1216:257-263.
    [63]Zhang, H., Guo, Z., Zhang F., Xu, Q., Liang, X. HILIC for separation of co-eluted flavonoids under RP-HPLC mode[J]. Journal of Separation Science.2008,31:1623-1627.
    [64]Kane, R.S., Deschatelets, P., Whitesides, G.M. Kosmotropes form the basis of protein-resistant surfaces[J]. Langmuir.2003,19:2388-2391.
    [65]Takegawa, Y., Deguchi, K., Ito, H., Keira, T., Nakagawa, Nishimura, H.S. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography[J]. Journal of Separation Science.2006,29:2533-2540.
    [66]Appelblad, P., Abrahamsson, P. MS detection of homocysteine, methyl-malonic acid, and succinic acid using HILIC separation on a covalently bonded zwitterionic stationary phase[J]. LC GC North America Suppl. S.2005,9:24-25.
    [67]Idborg, H., Zamani, L., Edlund, P.O., Schuppe-Koistinen, I., Jacobsson, S.P. Metabolic fingerprinting of rat urine by LC/MS:Part 1. Analysis by hydrophilic interaction liquid chromatography-electrospray ionization mass spectrometry[J]. Journal of Chromatography B. 2005,828:9-13.
    [68]Wade, K.L., Garard, I.J., Fahey, J.W. Improved hydrophilic interaction chromatography method for the identification and quantification of glucosinolates[J]. Journal of Chromatography A. 2007,1154:469-472.
    [69]Oertel, R., Renner, U., Kirch, W. Hydrophilic interaction chromatography combined with tandem-mass spectrometry to determine six aminoglycosides in serum[J]. Journal of Chromatography A.2004,1058:197-201.
    [70]Boersema, P.J., Divecha, N., Heck, A.J.R., Mohammed S evaluation and optimization of ZIC-HILIC-RP as an alternative MudPIT strategy [J]. Journal of Proteome Research.2007,6: 937-946.
    [71]Takegawa, Y., Deguchi, K., Keira, T., Ito, H., Nakagawa, H., Nishimura, S. Separation of isomeric 2-aminopyridine derivatized N-glycans and N-glycopeptides of human serum immunoglobulin G by using a zwitterionic type of hydrophilic-interaction chromatography[J]. Journal of Chromatography A.2006,1113:177-181.
    [72]Marrubini, G., Castillo-Mendoza, B.E., Massolini, G. Separation of purine and pyrimidine bases and nucleosides by hydrophilic interaction chromatography[J]. Journal of Separation Science.2010,33:803-816.
    [73]Jiang, W., Fischer, G., Girmay, Y, Irgum, K. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode[J]. Journal of Chromatography A.2006,1127: 82-91.
    [74]Weber, G., Wiren, N., Hayen, H. Hydrophilic interaction chromatography of small metal species in plants using sulfobetaine- and phosphorylcholine-type zwitterionic stationary phases[J]. Journal of Separation Science.2008,31:1615-1622.
    [75]Chirita, R., West, C., Finaru, A., Elfakir, C. Approach to hydrophilic interaction chromatography column selection: Application to neurotransmitters analysis[J]. Journal of Chromatography A.2010,1217:3091-3104.
    [76]Wu, J.Y., Bicker, W., Lindner, W. Separation properties of novel and commercial polar stationary phases in hydrophilic interaction and reversed-phase liquid chromatography mode[J]. Journal of Separation Science.2008,31:1492-1503.
    [77]Bicker, W., Wu, J.Y., Lammerhofer, M., Lindner, W. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings[J]. Journal of Separation Science.2008,31:2971-2987.
    [78]Yu, L., Li, X., Guo, Z., Zhang, X., Liang, X. Hydrophilic Interaction Chromatography based enrichment of glycopeptides by using click maltose: a matrix with high selectivity and glycosylation heterogeneity coverage[J]. Chemistry-A European Journal.2009,15:12618-12626.
    [79]Santoyo-Gonzalez, F., Hernandez-Mateo, F. Silica-based clicked hybrid glyco materials[J]. Chemical Society Reviews.2009,38:3449-3462.
    [80]Moni, L., Ciogli, A., Acquarica, I.D., Dondoni, A., Gasparrini, F., Marra, A. Synthesis of sugar-based silica gels by copper-catalysed azide-alkyne cycloaddition via a single-step azido-activated silica intermediate and the use of the gels in hydrophilic interaction chromatography[J]. Chemistry-A European Journal.2010,16:5712-5722.
    [81]Persson, J., Hemstrom, P., Irgum, K. Preparation of a sorbitol methacrylate grafted silica as stationary phase for hydrophilic interaction chromatography[J]. Journal of Separation Science. 2008,31:1504-1510.
    [82]Jandera, P., Churacek, J. Ion-exchange chromatography of aldehydes, ketones, ethers, alcohols, polyols and saccharides[J]. Journal of Chromatography A.1974,98:55-104.
    [83]Chambers, K., Fritz, J.S. Effect of polystyrene-divinylbenzene resin sulfonation on solute retention in high-performance liquid chromatography[J]. Journal of Chromatography A.1998,797: 139-147.
    [84]Samuelson, T.O., Swenson, B. Partition chromatography on ion-exchange resins separation of sugars[J]. Analytica Chimica Acta.1963,28:426-432.
    [85]Samuelson, O., Swenson, B. Partition chromatography on ion Exchange resins:separation of sugars[J]. Acta Chemica Scandinavica.1962,16:2056-2058.
    [86]Makino, Y., Omichi, K., Hase, S. Analysis of oligosaccharide structures from the reducing end terminal by combining partial acid hydrolysis and a two-dimensional sugar map[J]. Analytical Biochemistry.1998,264:172-179.
    [87]Pisano, R., Breda, M., Grassi, S., James, C.A. Hydrophilic interaction liquid chromatography-APCI-mass spectrometry determination of 5-fluorouracil in plasma and tissues[J]. Journal of Pharmaceutical and Biomedical Analysis.2005,38:738-745.
    [88]Person, M., Hazotte, A., Elfakir, C., Lafosse, M. Development and validation of a hydrophilic interaction chromatography-mass spectrometry assay for taurine and methionine in matrices rich in carbohydrates[J]. Journal of Chromatography A.2005,1081:174-181.
    [89]Ikegami, T., Fujita, H., Horie, K., Hosoya, K., Tanaka, N. HILIC mode separation of polar compounds by monolithic silica capillary columns coated with polyacrylamide[J]. Analytical and Bioanalytical Chemistry.2006,386:578-585.
    [90]Horie, K., Ikegami, T., Hosoya, K., Saad, N., Fiehn, O., Tanaka, N. Highly efficient monolithic silica capillary columns modified with poly(acrylic acid) for hydrophilic interaction chromatography[J]. Journal of Chromatography A.2007,1164:198-205.
    [91]Ikegami, T., Ichimaru, J., Kajiwara, W., Nagasawa, N., Hosoya, K., Tanaka, N. Anion- and cation-exchange microHPLC utilizing poly(methacrylates)-coated monolithic silica capillary columns[J]. Analytical Sciences.2007,23:109-113.
    [92]Puy, G., Demesmay, C., Rocca, J.-L., Iapichella, J., Galarneau, A., Brunel, D. Electrochromatographic behavior of silica monolithic capillaries of different skeleton sizes synthesized with a simplified and shortened sol-gel procedure[J]. Electrophoresis.2006,27: 3971-3980.
    [93]Ikegami, T., Horie, K., Jaafar, J., Hosoya, K., Tanaka, N. Preparation of highly efficient monolithic silica capillary columns for the separations in weak cation-exchange and HILIC modes[J]. Journal of Biochemical and Biophysical Methods.2007,70:31-37.
    [94]Nischang, I., Bruggemann, O. On the separation of small molecules by means of nano-liquid chromatography with methacrylate-based macroporous polymer monoliths[J]. J Journal of Chromatography A.2010,1217:5389-5397.
    [95]Courtois, J., Bystrom, E., Irgum, K. Novel monolithic materials using poly(ethylene glycol) as porogen for protein separation[J]. Polymer.2006,47:2603-2611.
    [96]Jiang, Z., Smith, N.W., Ferguson, P.D., Taylor, M.R. Hydrophilic interaction chromatography using methacrylate-based monolithic capillary column for the separation of polar analytes[J]. Analytical Chemistry.2007,79:1243-1250.
    [97]Wohlgemuth, J., Karas, M., Jiang, W., Hendriks, R., Andrecht, S. Enhanced glyco-profiling by specific glycopeptide enrichment and complementary monolithic nano-LC (ZIC-HILIC/ RP18e)/ESI-MS analysis[J]. Journal of Separation Science.2010,33:880-890.
    [98]Urban, J., Skerikova, V., Jandera, P., Kubickova, R., Pospisilova, M. Preparation and characterization of polymethacrylate monolithic capillary columns with dual hydrophilic interaction reversed-phase retention mechanism for polar compounds[J]. Journal of Separation Science.2009,32:2530-2543.
    [99]Que, A.H., Konse, T., Baker, A.G., Novotny, M.V. Analysis of bile acids and their conjugates by capillary electrochromatography/electrospray ion trap mass spectrometry[J]. Analytical Chemistry.2000,72:2703-2710.
    [100]Que, A.H., Novotny, M.V. Separation of neutral saccharide mixtures with capillary electrochromatography using hydrophilic monolithic columns[J]. Analytical Chemistry.2002,74: 5184-5191.
    [101]Guerrouache, M., Pantazaki, M.-C.Millot, A., Carbonnier, B. Zwitterionic polymeric monoliths for HILIC/RP mixed mode for CEC separation applications[J]. Journal of Separation Science.2010,33:787-792.
    [102]Gritti, F., dos Santos Pereira, A., Sandra, P. Guiochon, G. Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography[J]. Journal of Chromatography A.2010,1217:683-688.
    [103]Van Dorpe, S., Vergote, V., Pezeshki, A., Burvenich, C., Peremans, K., De Spiegeleer, B. Hydrophilic interaction LC of peptides:Columns comparison and clustering[J]. Journal of Separation Science.2010,33:728-739.
    [104]Qin, F., Zhao, Y.Y., Sawyer, M.B., Li, X.F. Column-switching reversed phase-hydrophilic interaction liquid chromatography/tandem mass spectrometry method for determination of free estrogens and their conjugates in river water[J]. Analytica Chimica Acta.2008,627:91-98.
    [105]Kovalova, L., McArdell, C., Hollender, J. Challenge of high polarity and low concentrations in analysis of cytostatics and metabolites in wastewater by hydrophilic interaction chromatography/tandem mass spectrometry[J]. Journal of Chromatography A.2009,1216: 1100-1108.
    [106]Peru, K.M., Kuchta, S.L., Headley, J.V., Cessna, A.J. Development of a hydrophilic interaction chromatography-mass spectrometry assay for spectinomycin and lincomycin in liquid hog manure supernatant and run-off from cropland[J]. Journal of Chromatography A.2006,1107: 152-158.
    [107]Scheurer, M., Sacher, F., Brauch, H. Occurrence of the antidiabetic drug metformin in sewage and surface waters in Germany[J]. Journal of Environmental Monitoring.2009,11: 1608-1613.
    [108]Van Nuijs, A.L.N., Tarcomnicu, I., Simons, W., Bervoets, L., Blust, R., Jorens, P.G., Neels, H., Covaci, A. Optimization and validation of a hydrophilic interaction liquid chromatography-tandem mass spectrometry method for the determination of 13 top-prescribed Pharmaceuticals in influent wastewater[J]. Analytical and Bioanalytical Chemistry.2010.398: 2211-2222.
    [109]Kunnemeyer, J., Terborg, L., Meermann, B., Brauckmann, C., Moller, I., Scheffer, A., Karst, U. Speciation analysis of gadolinium chelates in hospital effluents and wastewater treatment plant sewage by a novel HILIC/ICP-MS method[J]. Environmental Science & Technology.2009,43:2884-2890.
    [110]Gheorghe, A., Van Nuijs, A., Pecceu, B., Bervoets, L., Jorens, P.G., Blust, R., Neels, H., Covaci, A. Analysis of cocaine and its principal metabolites in waste and surface water using solid-phase extraction and liquid chromatography-ion trap tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry,2008,391:1309-1319.
    [111]Van Nuijs, A.L.N., Tarcomnicu, I., Bervoets, L., Blust, R., Jorens, P.G., Neels, H., Covaci, A. Analysis of drugs of abuse in wastewater by hydrophilic interaction liquid chromatography-tandem mass spectrometry[J]. Analytical and Bioanalytical Chemistry.2009,395: 819-828.
    [112]Hayama, T., Yoshida, H., Todoroki, K., Nohta, H., Yamaguchi, M. Determination of polar organophosphorus pesticides in water samples by hydrophilic interaction liquid chromatography with tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry.2008,22: 2203-2210.
    [113]Makihata, N., Yamasaki, T., Eiho, J. Determination of diquat in water samples by hydrophilic interaction chromatography/electrospray ionization/mass spectrometry coupled with solid-phase extraction using a stable isotope labeled compound[J]. Bunseki Kagaku.2007,56: 579-585.
    [114]Ishii, R., Horie, M., Chan, W., MacNeil, J. Multi-residue quantitation of aminoglycoside antibiotics in kidney and meat by liquid chromatography with tandem mass spectrometry[J]. Food additives & contaminants:Part A.2008,25:1509-1519.
    [115]Inoue, K., Yamada, E., Hino, T., Oka, H. Hydrophilic interaction liquid chromatography tandem mass spectrometry method for the determination of bicozamycin in milk[J]. Journal of Liquid Chromatography & Related Technologies.2009,32:1914-1926.
    [116]Valette, J.C., Demesmay, C., Rocca, J.L., Verdon, E. Separation of tetracycline antibiotics by hydrophilic interaction chromatography using an aminopropyl stationary phase[J]. Chromatographia.2004,59:55-60.
    [117]De Alwis, H., Heller, D.N. Multiclass, multiresidue method for the detection of antibiotic residues in distillers grains by liquid chromatography and ion trap tandem mass spectrometry[J]. Journal of Chromatography A.2010,1217:3076-3084.
    [118]Kesiunaite, G.E., Naujalis, A. Padarauskas, Matrix solid-phase dispersion extraction of carbadox and olaquindox in feed followed by hydrophilic interaction ultra-high-pressure liquid chromatographic analysis[J]. Journal of Chromatography A.2008,1209:83-87.
    [119]Crnogorac, G, Schwack, W. Determination of dithiocarbamate fungicide residues by liquid chromatography/mass spectrometry and stable isotope dilution assay[J]. Rapid Communications in Mass Spectrometry.2007,21:4009-4016.
    [120]Crnogorac, G., Schwack, W., Schmauder, S. Trace analysis of dithiocarbamate fungicide residues on fruits and vegetables by hydrophilic interaction liquid chromatography/tandem mass spectrometr[J]. Rapid Communications in Mass Spectrometry.2008,22:2539-2546.
    [121]Esparza, X., Moyano, E., Galceran, M.T. Analysis of chlormequat and mepiquat by hydrophilic interaction chromatography coupled to tandem mass spectrometry in food samples[J]. Journal of Chromatography A.2009,1216:4402-4406.
    [122]Dixon, A.M., Delinsky, D.C., Bruckner, V.J., Fisher, J.W., Bartlett, M.G Analysis of DichloroaceticAcid in Drinking Water by Ion Exchange HILIC-LC/MS/MS[J]. Journal of Liquid Chromatography & Related Technologies.2004,27:2343-2355.
    [123]Li, R., Zhang, Y., Lee, C.C., Lu, R., Huang, Y. Development and validation of a hydrophilic interaction liquid chromatographic method for determination of aromatic amines in environmental water[J]. Journal of Chromatography A.2010,1217:1799-1805.
    [124]Sφrensen, J.L., Nielsen, K.F., Thrane, U. Analysis of moniliformin in maize plants using hydrophilic interaction chromatography[J]. Journal of Agricultural and Food Chemistry.2007,55: 9764-9768.
    [125]Andersen, W.C., Tumipseed, S.B., Karbiwnyk, C.M., Clark, S.B., Madson, M.R., Gieseker, C.M., Miller, R.A., Rummel, N.G., Reimschuessel, R. Determination and confirmation of melamine residues in catfish, trout, tilapia, salmon, and shrimp by liquid chromatography with tandem mass spectrometry[J]. Journal of Agricultural and Food Chemistry.2008,56:4340-4347.
    [126]Varelis, P., Jeskelis, R. Preparation of [13C3]-melamine and [13C3]-cyanuric acid and their application to the analysis of melamine and cyanuric acid in meat and pet food using liquid chromatography-tandem mass spectrometry [J]. Food additives & contaminants: Part A.2008,25: 1208-1215.
    [127]Heller, D.N., Nochetto, C.B. Simultaneous determination and confirmation of melamine and cyanuric acid in animal feed by zwitterionic hydrophilic interaction chromatography and tandem mass spectrometry[J]. Rapid Communications in Mass Spectrometry.2008,22:3624-3632.
    [128]Chang, E., Ji, D., Arora, R. Hydrophilic interaction chromatography (HILIC) for simultaneous and fast analysis of melamine, cyanuric acid, ammeline, and ammelide in milk and infant formula[J]. LC GC North America (Suppl. S),2009:46-47.
    [129]Tan, J., Li, R., Jiang, Z.T. Determination of melamine in liquid milk and milk powder by titania-based ligand-exchange hydrophilic interaction liquid chromatography[J]. Food Analytical Methods. DOI 10.1007/s12161-011-9350-x.
    [130]Qin, Y., Lv, X., Li, J., Qi, G., Diao, Q., Liu, G., Xue, M., Wang, J., Tong, J., Zhang, L. Zhang, K. Assessment of melamine contamination in crop, soil and water in China and risks of melamine accumulation in animal tissues and products[J]. Environment International.2010,36: 446-452.
    [131]Gilar M, Olivova P, Daly A.E, Gebler J.C. Orthogonality of separation in two-dimensional liquid chromatography[J]. Analytical Chemistry.2005,77:6426-6434.
    [132]Hagglund, P., Bunkenborg, J., Elortza, F., Jensen, O. N., Roepstorff, P. A New Strategy for Identification of N-Glycosylated Proteins and Unambiguous Assignment of Their Glycosylation Sites Using HILIC Enrichment and Partial Deglycosylation[J]. Journal of proteome research.2004, 3,556-566.
    [133]Hagglund, P., Matthiesen, R., Elortza, F., Hojrup, P., Roepstorff, P., Jensen, O.N., Bunkenborg, J. An enzymatic deglycosylation scheme enabling identification of core fucosylated N-glycans and O-glycosylation site mapping of human plasma proteins[J]. Journal of proteome research.2007,6:3021-3031.
    [134]Kaji, H., Yamauchi, Y., Takahashi, N., Isobe, T. Mass spectrometric identification of N-linked glycopeptides using lectin-mediated affinity capture and glycosylation site-specific stable isotope tagging[J]. Nature Protocols.2006,1:3019-3027.
    [135]Thaysen-Andersen, M., Thogersen, I.B., Nielsen, H.J., Lademann, U., Brunner, N., Enghild, J.J., Hojrup, P., Rapid and individual-specific glycoprofiling of the low abundance N-glycosylated protein tissue inhibitor of metalloproteinases-1 [J]. Molecular & Cellular Proteomics.2007,6: 638-647.
    [136]Omaetxebarria, M.J., Hagglund, P., Elortza, F., Hooper, N.M., Arizmendi, J.M., Jensen, O.N., Isolation and characterization of glycosylphosphatidylinositol-anchored peptides by hydrophilic interaction chromatography and MALDI tandem mass spectrometry[J]. Analytical Chemistry.2006,78:3335-3341.
    [137]Kaji, H., Kamiie, J-i., Kawakami, H., Kido, K., Yamauchi, Y, Shinkawa, T., Taoka, M., Takahashi, N., Isobe, T. Proteomics reveals N-linked glycoprotein diversity in caenorhabditis elegans and suggests an typical translocation mechanism for integral membrane proteins[J]. Molecular & Cellular Proteomics.2007,6:2100-2109.
    [138]McNulty, D.E., Annan, R.S. Hydrophilic Interaction Chromatography Reduces the Complexity of the Phosphoproteome and Improves Global Phosphopeptide Isolation and Detection[J]. Molecular & Cellular Proteomics,2008,7:971-980.
    [139]Dunn, W.B., Bailey, N.J.C., Johnson, H.E. Measuring the metabolome: current analytical technologies[J]. Analyst.2005,130:606-625.
    [140]Lafaye, A., Junot, C., Pereira, Y., Lagniel, G., Tabet, J-C.,Ezan, E., Labarre, J. Combined proteome and metabolite-profiling analyses reveal surprising insights into yeast sulfur metabolism[J]. The Journal of Biological Chemistry,2005,280:24723-24730.
    [141]Panagiotopoulos, C., Sempere, R. Analytical methods for the determination of sugars in marine samples:A historical perspective and future directions[J]. Limnology and Oceanography Methods.2005.3:419-454.
    [142]Zheng, Y. F., Xu, GW, Yang, J., Zhao, X.J., Pang T., Kong, H.W. Determination of urinary nucleosides by direct injection and coupled-column high-performance liquid chromatography [J]. Journal of Chromatography B.2005,819:85-90.
    [143]Mischnick, P., Heinrich, J., Gohdes, M., Wilke, O., Rog-mann, N. Structure Analysis of 1, 4-glucan derivatives[J]. Macromolecular Chemistry and Physics.2000,201:1985-1995..
    [144]Ladmiral, V, Melia, E., Haddleton, D.M. Synthetic glycopolymers: an overview[J]. European Polymer Journal.2004,40:431-449.
    [145]Lee, R.T., Lauc, G., Lee, Y.C. Glycoproteomics: protein modifications for versatile function[J]. EMBO Reports.2005,6:1018-1022.
    [146]Raman, R., Raguram, S., Venkataraman, G., Paulson, J.C., Sasisekharan, R. Glycomics:an integrated systems approach to structure-function relationships of glycans[J]. Nature Methods. 2005,2:817-824.
    [147]Churms, S.C. Recent progress in carbohydrate separation by high-performance liquid chromatography based on hydrophilic interaction[J]. Journal of Chromatography A.1996,720: 75-91.
    [148]Montero, C.M., Dodero, M.C.R., Sanchez, D.A.G., Barroso, C.G. Analysis of low molecular weight carbohydrates in food and beverages: a review[J]. Chromatographia.2004,59:15-30.
    [149]Wang, Q.J., Fang, Y.Z. Analysis of sugars in traditional Chinese drugs[J]. Journal of Chromatography B.2004,812:309-324.
    [150]Friedman, M. Analysis of biologically active compounds in potatoes (Solanum tuberosum), tomatoes (Lycopersicon esculentum), and jimson weed (Datura stramonium) seeds[J]. Journal of Chromatography A.2004,1054:143-155.
    [151]Vynios, D.H., Karamanos, N.K., Tsiganos, C.P. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues[J]. Journal of Chromatography B.2002,781:21-38.
    [152]Novotny, M.V., Mechref, Y. New hyphenated methodologies in high sensitivity glycoprotein analysis [J]. Journal of Separation Science.2005,28:1956-1968.
    [153]Wuhrer, M., Deelder, A.M., Hoke, C.H. Protein glycosylation analysis by liquid chromatography-mass spectrometry[J]. Journal of Chromatography B.2005,825:124-133.
    [154]Anumula, K.R., Advances in fluorescence derivatization methods for high-performance liquid chromatographic analysis of glycoprotein carbohydrates[J]. Analytical biochemistry.2006, 350:1-23.
    [155]Zhu, B.Y., Mant, C.T., Hodges, R.S. Mixed-mode hydrophilic and ionic interaction chromatography rivals reversed-phase liquid chromatography for the separation of peptides[J]. Journal of Chromatography A.1992,594:75-86.
    [156]Mant, C.T., Litowski, J.R., Hodges, R.S., Hydrophilic interaction/cation-exchange chromatography for separation of amphipathic a-helical peptides[J]. Journal of Chromatography A. 1998,816:65-78.
    [157]Litowski, J.R., Semchuk, P.D., Mant, C.T., Hodges, R.S. Hydrophilic interaction /cation-exchange chromatography for the purification of synthetic peptides from closely related impurities:serine side-chain acetylated peptides[J]. The Journal of Peptide Research.1999,54: 1-11.
    [158]Hodges, R.S., Chen, Y., Kopecky, E., Mant, C.T. Monitoring the hydrophilicity/ hydrophobicity of amino acid side-chains in the non-polar and polar faces of amphipathic a-helices by reversed-phase and hydrophilic interaction/cation-exchange chromatography[J]. Journal of Chromatography A.2004,1053:161-172.
    [159]Yoshida, T. Calculation of peptide retention coefficients in normal-phase liquid chromatography[J]. Journal of Chromatography A.1998,808:105-112.
    [160]Boutin, J.A., Ernould, A.P., Ferry, G., Genton, A., Alpert, A.J. Use of hydrophilic interaction chromatography for the study of tyrosine protein kinase specificity [J]. Journal of Chromatography B:Biomedical Sciences and Applications.1992,583:137-143.
    [161]Hyun, M.H., Whangbo, S.H., Cho, Y.J. Effect of analyte lipophilicity on the resolution of a-and β-amino acids on liquid chromatographic ligand exchange chiral stationary phases[J]. Journal of Separation Science.2003,26:1615-1622.
    [162]Jeno, P., Scherer, P.E., Manningkrieg, U., Horst, M. Desalting electroeluted proteins with hydrophilic interaction chromatography [J]. Analytical Biochemistry.1993,215:292-298.
    [163]Yu, Y. Q., Gilar, M., Kaska, J., Gebler, J.C. A rapid sample preparation method for mass spectrometric characterization of N-linked glycans[J]. Rapid Communications in Mass Spectrometry.2005,19:2331-2336.
    [164]Lindegardh, N., Singtoroj, T., Annerberg, A., White, N.J., Day, N.P.J. Development and validation of a solid-phase extraction-liquid chromatographic method for determination of amoxicillin in plasma[J]. Therapeutic Drug Monitoring.2005,27:503-508.
    [1]Nawrocki, J., Dunlap, C., Mccormick, A., Carr, P.W. Part Ⅰ. Chromatography using ultra-stable metal oxide-based stationary phase for HPLC[J]. Journal of Chromatography A.2004,1028:1-30.
    [2]Ma, Q., Chen, M., Yin, H., Shi, Z., Feng, Y. Preparation of pH-responsive stationary phase for reversed-phase liquid chromatography and hydrophilic interaction chromatography [J]. Journal of Chromatography A.2008,1212:61-67.
    [3]Lin, J., Lin, J., Lin, X., Xie, Z. Capillary liquid chromatography using a hydrophilic/cation-exchange monolithic column with a dynamically modified cationic surfactant[J]. Journal of Chromatography A.2009,1216:7728-7731.
    [4]Apfelthaler, E., Bicker, W., Lammerhofer, M., Sulyok, M., Krska, R., Lindner, W., Schuhmacher, R. Retention pattern profiling of fungal metabolites on mixed-mode reversed-phase/weak anion exchange stationary phases in comparison to reversed-phase and weak anion exchange separation materials by liquid chromatography-electrospray ionisation-tandem mass spectrometry[J]. Journal of Chromatography A.2008,1191:171-181.
    [5]Zuo, Y.M., Zhu, B.R., Liao, Y, Gui, M.D., Pang, Z.L., Qi, J.X. Polymer encapsulated packing material f,or reversed phase liquid chromatography[J]. Chromatographia.1994,38:756-760.
    [6]Engelhardt, H., Low, H., Eberhardt, W., Mau, M. Polymer encapsulated stationary phases: advantages, properties and selectivities[J]. Chromatographia.1989,27:535-543.
    [7]Lathed, M., Hallberg, A. Microwave-assisted high speed chemistry. A new technique in drug discovery[J]. Drug Discovery Today.2001,6:406-416.
    [8]王卫国,李佩华,沈树宝,应汉杰.微波辅助固相合成胸腺五肽的研究[J].有机化学.2006,26:826-830.
    [9]Martinez-Palou, R., Paz, G., Marin-Cruz, J., Zepeda, L.G. Synthesis of long chain 2-alkyl-1-(2-hydroxyethyl)-2-imidazolines under microwave in solvent-free conditions[J]. Synlett. 2003,12:1847-1849.
    [10]Bajpai, D., Tyagi, V.K. Synthesis and characterization of imidazolinium surfactants derived from tallow fatty acids and diethylenetriamine[J]. European Journal of Lipid Science and Technology.2008,110:935-940.
    [11]Frank, P.V., Girish, K.S., Kalluraya, B. Solvent-free microwave-assisted synthesis of oxadiazoles containing imidazole moiety[J]. Journal of Chemical Sciences.2007,119:41-46.
    [12]Alpert A.J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds[J]. Journal of Chromatography A.1990,499:177-196.
    [13]McCalley D.V., Neue, U.D. Estimation of the extent of the water-rich layer associated with the silica surface in hydrophilic interaction chromatography[J]. Journal of Chromatography A. 2008,1192:225-229.
    [14]Guo, Y, Srinivasan, S., Gaiki, S. Investigating the effect of chromatographic conditions on retention of organic acids in hydrophilic interaction chromatography using a design of experiment[J]. Chromatographia.2007,66:223-229.
    [15]Alpert, A.J. Electrostatic repulsion hydrophilic interaction chromatography for isocratic separation of charged solutes and selective isolation of phosphopeptides[J]. Analytical Chemistry. 2008,80:62-76.
    [16]Takegawa, Y., Deguchi, K., Ito, H., Keira, T., Nakagawa, H., Nishimura, H. S. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography[J]. Journal of Separation Science.2006,29:2533-2540.
    [17]Guo, Z., Jin, Y., Liang, T., Liu, Y., Xua, Q., Liang, X., Lei, A. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a "Click β-cyclodextrin" stationary phase[J]. Journal of Chromatography A.2009,1216:257-263.
    [1]Pereira, A.S., David, F., Vanhoenacker, G., Sandra, P. The acetonitrile shortage: is reversed HILIC with water an alternative for the analysis of highly polar ionizable solutes?[J]. Journal of Separation Science.2009,32:2001-2007.
    [2]Gritti, F., Pereira, A.S., Sandra, P., Guiochon. G. Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography [J]. Journal of Chromatography A.2010,1217:683-688.
    [3]Bicker, W., Wu, J., Riekkola, M.L., Lindner, W. Hydrophilic interaction chromatography in nonaqueous elution mode for separation of hydrophilic analytes on silica-based packings with noncharged polar bondings[J]. Journal of Separation Science.2008.31:2971-2987.
    [4]Hartonen, K., Riekkola, M.J. Liquid chromatography at elevated temperatures with pure water as the mobile phase[J]. Trends in Analytical Chemistry.2008,27:1-14.
    [5]Smith, R. Superheated water:the ultimate green solvent for separation science[J]. Analytical and Bioanalytical Chemistry.2006,385:419-421.
    [6]Bidlingmeyer, B.A., Del Rios, J.K., Korpi, J. Separation of organic amine compounds on silica gel with reversed-phase eluents[J]. Analytical Chemistry.1982,54:442-447.
    [7]Gritti, F., Pereira, A.S., Sandra, P., Guiochon, G. Comparison of the adsorption mechanisms of pyridine in hydrophilic interaction chromatography and in reversed-phase aqueous liquid chromatography[J]. Journal of Chromatography A.2009,1216:8496-8505.
    [8]Hu, L.H., Chen, Z.L., Xie, Y.Y. New triterpenoid sapo-nins from Gynostemnma pentophyllum[J]. Journal of Natural Products.1996,59:1143-1145.
    [9]Song, S.L., Ji, L.G., Liang, H., Wang, W.L. The separation, purification and configuration research of Gynostemma pentaphyllum polysaccharides[J]. Journal of Chinese Medicinal Materials.2008,31(3):454-456.
    [10]Chen, T., Wang, J., Li, Y., Shen, J., Zhao, T., Zhang, H. Sulfated modification and cytotoxicity of Portulaca oleracea L[J]. Glycoconjugate Journal.2010,27:635-642.
    [11]Chen, T., Li, B., Li, Y, Zhao, C., Shen, J., Zhang, H. Catalytic synthesis and antitumor activities of sulfated polysaccharide from Gynostemma pentaphyllum Makino[J]. Carbohydrate Polymers,2011,83:554-560.
    [12]Zhou, T., Charles, A.L. Hydrophilic interaction chromatography of nucleotides and their pathway intermediates on titania[J]. Journal of Chromatography A.2008,1187:87-93.
    [13]Guo, Y., Gaiki, S. Retention behavior of small polar compounds on polar stationary phases in hydrophilic interaction chromatography[J]. Journal of Chromatography A.2005,1074:71-80.
    [14]Hemstrom, P., Irgum, K. Hydrophilic interaction chromatography[J]. Journal of Separation Science.2006,29:1784-1821.
    [1]Saito, R., Fujita, M., Dresselhaus, G., Dresselhaus, M.S. Electronic structure of chiral grapheme tubules[J]. Applied Physics Letters.1993,60:2204-2206.
    [2]Ruoff, R.S., Lorents, D.C. Mechanical and thermal properties of carbon nanotubes[J].Carbon 1995,33:925-930.
    [3]Mauter, M.S., Elimelech, M. Environmental Applications of Carbon-Based Nanomaterials[J]. Environmental Science & Technology.2008,42:5843-5859.
    [4]Chen, R.J., Bangsaruntip, S., Drouvalakis, K.A., Kam, N.W.S., Shim, M., Li, Y.M., Kim, W., Utz, P.J., Dai, H. Noncovalent functionalization of carbon nanotubes for highly specific biosensors[J]. Proceedings of the National Academy Science of the United State of America.2003, 100:4984-4989.
    [5]Wang, H.B., Thoss, M. Multilayer formulation of the multiconfiguration time-dependent Hartree theory[J]. Journal of Chemical Physics.2003,119:1289-1299.
    [6]Mitchell, D.T., Lee, S.B., Trofin, L., Li, N.C., Nevanen, T.K., Soderlund, H., Martin, C.R. Smart Nanotubes for Bioseparations and Biocatalysis[J] Journal of American Chemical Society. 2002,124:11864-11865.
    [7]Park, K.H., Chhowalla, M., Iqbal, Z., Sesti, F. Single-walled carbon nanotubes are a new class of ion channel blockers[J]. Journal of Biological Chemistry.2003,278:50212-50216.
    [8]Allen-King, R.M., Grathwohl, P., Ball, W.P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J].Advances in Water Resources.2002,25:985-1016.
    [9]Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D. A review of potentially low-cost sorbents for heavy metals[J].Water Research.1999,33:2469-2479.
    [10]Mauter, M. S., Elimelech, M. Environmental applications of carbon-based nanomaterials[J]. Environmental Science & Technology.2008,42:5843-5859.
    [11]Carrette, L., Friedrich, K.A., Stimming, U. Fuel Cells:Principles, Types, Fuels, and Applications[J]. A European Journal of Chemical Physics Chemistry.2000,1:162-193.
    [12]Kamat, P.V., Haria, M., Hotchandani, S. C60 Cluster as an Electron Shuttle in a Ru(II)-Polypyridyl Sensitizer-Based Photochemical Solar Cell[J]. The Journal of Physical Chemistry B.2004,108:5166-5170.
    [13]Kamat, P.V. Meeting the clean energy demand:nanostructure architectures for solar energy conversion[J]. The Journal of Physical Chemistry C.2007,111:2834-2860.
    [14]Valentini, F., Biagiotti, V., Lete, C., Palleschi, G. The electrochemical detection of ammonia in drinking water based on multi-walled carbon nanotube/copper nanoparticle composite paste electrodes[J]. Sensors and Actuators B:Chemical.2007,128:326-333.
    [15]Kim, S.N., Rusling, J.F., Papadimitrakopoulos, F. Carbon nanotubes for electronic and electrochemical detection of biomolecules[J]. Advanced Materials.2007,19:3214-3228.
    [16]Dugan, L.L., Turetsky, D.M., Du, C., Lobner, D., Wheeler, M., Almli, C.R., Shen, C.K.F., Luh, T.Y., Choi, D.W., Lin, T.S. Carboxyfullerenes as neuroprotective agents[J]. Proceedings of the National Academy Science of the United State of America.1997,94:9434-9439.
    [17]Sijbesma, R., Srdanov, G., Wudl, F., Castoro, J.A., Wilkins, C., Friedman, S.H., Decamp, D. L., Kenyon, G.L. Synthesis of a fullerene derivative for the inhibition of HIV enzymes[J]. Journal of American Chemical Society.1993,115:6510-6512.
    [18]Wharton, T., Wilson, L. Toward fullerene-based X-ray contrast agents:design and synthesis of non-ionic, highly-iodinated derivatives of C60[J]-Tetrahedron Letters.2002,43:561-564.
    [19]Ashcroft, J.M., Tsyboulski, D.A., Hartman, K.B., Zakharian, T.Y., Marks, J.W., Weisman, R.B., Rosenblum, M.G., Wilson, L. Fullerene(C60) immunoconjugates:interaction of water-soluble C60 derivatives with the murine anti-gp240 melanoma antibody[J]. Chemical Communications.2006:3004-3006.
    [20]Karwa, M., Mitra, S. Gas chromatography on self-assembled, single-walled carbon nanotubes[J]. Analytical Chemistry.2006,78:2064-2070.
    [21]Hussain, C.M., Saridara, C., Mitra, S. Self-assembly of carbon nanotubes via ethanol chemical vapor deposition for the synthesis of gas chromatography columns[J]. Analytical Chemistry.2010,82:5184-5188.
    [22]Stadermann, M., McBrady, A.D., Dick, B., Reid, V.R., Noy, A., Synovec, R.E., Bakajin, O. Ultrafast gas chromatography on single-wall carbon nanotube stationary phases in microfabricated channels[J]. Analytical Chemistry.2006,78:5639-5644.
    [23]Yuan, L.M., Ren, C.X., Li, L., Ai, P., Yan, Z.H., Min, Z., Li, Z.Y. Single-walled carbon nanotubes used as stationary phase in GC[J]. Analytical Chemistry.2006,78:6384-6390.
    [24]Li, Y., Chen, Y., Xiang, R., Cinparu, D., Pfefferle, L.D., Horvath, C., Wilkins, J.A. Incorporation of single-wall carbon nanotubes into an organic polymer monolithic stationary phase for μ-HPLC and capillary electrochromatography[J]. Analytical Chemistry.2005,77: 1398-1406.
    [25]Kwon, S.H., Park, J.H. Intermolecular interactions on multiwalled carbon nanotubes in reversed-phase liquid chromatography[J]. Journal of Separation Science.2006,29:945-952.
    [26]Chang, Y.X., Zhou, L.L., Li, GX., Wang, J.Y., Yuan, L.M. Single-wall carbon nanotubes used as stationary phase in HPLC[J]. Journal of Liquid Chromatography & Related Technologies. 2007,30:2953-2958.
    [27]Regnier, F.E. Microfabricated monolith columns for liquid chromatography. sculpting supports for liquid chromatography [J]. Journal of High Resolution Chromatography.2000,23: 19-26.
    [28]Andre, C., Gharbi, T., Guillaume, Y.C. A novel stationary phase based on amino derivatized nanotubes for HPLC separations: Theoretical and practical aspects[J]. Journal of Separation Science.2009,32:1757-1764.
    [29]Luong, J.H.T., Bouvrette, P., Liu, Y., Yang, D.-Q., Sacher, E. Electrophoretic separation of aniline derivatives using fused silica capillaries coated with acid treated single-walled carbon nanotubes[J]. Journal of Chromatography A.2005,1074:187-194.
    [30]Chen, J.L. Multi-wall carbon nanotubes bonding on silica-hydride surfaces for open-tubular capillary electrochromatography[J]. Journal of Chromatography A.2010,1217:715-721.
    [31]Liu, H.P., Ye, T., Mao, C.D. Fluorescent carbon nanoparticles derived from candle soot[J]. Angewandte Chemie International Edition[J].2007,46:6473-6475.
    [32]Ray, S.C., Saha, A., Jana, N.R., Sarkar, R. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application[J]. Journal of Physical Chemisty C.2009,113: 18546-18551.
    [33]John C.V., Luis A.C. Fractionation of carbon-based nanomaterials by anion-exchange[J]. Analytical Chemistry.2012,84 (2):1178-1183.
    [34]Tian, L., Ghosh, D., Chen, W., Pradhan, S., Chang, X.J., Chen S.W. Nanosized carbon particles from natural gas soot[J].Chemistry of Materials.2009,21:2803-2809.
    [35]Kwon, S.H., Park, J.H. Intermolecular interactions on multiwalled carbon nanotubes in reversed-phase liquid chromatography[J]. Journal of Separation Science.2006,29:945-952.
    [36]Chang, Y.X., Ren, C.X., Ruan, Q., Yuan, L. Effect of single-walled carbon nanotubes on cellulose phenylcarbamate chiral stationary phases[J]. Chemical Research in Chinese University. 2007,23:646-649.
    [37]尹宏斌,何直升,叶阳.红花化学成分的研究[J].中草药.2001,32(9):776-778.
    [38]张戈,郭美丽,张汉民等.红花化学成分研究(I)[J].第二军医大学学报.2002,23(1):109-110.
    [39]张戈,郭美丽,李颖等.红花化学成分研究(II)[J].第二军医大学学报.2005,26(2):220-221.
    [40]刘玉明,杨峻山,刘庆华.红花化学成分研究[J].中药材.2005,28(4):288-289.
    [1]李燕,吴然然,于佰华,王俊德.红外光谱在中药定性定量分析中的应用[J].光谱学与光谱分析.2006,26:1846-1849
    [2]国家药典委员会编.中华人民共和国药典[S].北京:化学工业出版社,2005:16.
    [3]苗爱东,巴林,彭燕,王本富,胡辉.RP-HPLC测定板蓝根颗粒中腺苷的含量[J].2005,20:434-436.
    [4]谢宗明,周灵芝,李卫红,孔晓华,周泽平.HPLC法测定板蓝根药材及其颗粒剂中的腺[J].中医药导报.2009,15:53-54.
    [5]王钢力,张铮,聂黎行,林瑞超.三种板蓝根制剂质量标准的研究[J].中成药.2009,31:1531-1535.
    [6]丁越,张彤,陶建生.板蓝根药材中有效成分的含量测定研究[J].中成药.2008,30:1697-1701.
    [7]刘云海,秦国伟,丁水平等.板蓝根化学成分研究(1)[J].中草药,2001,32(12):1057.
    [8]丁水平,刘云海,秦国伟等.板蓝根化学成分研究(II)[J].医药导报.2001,20(8):475.
    [9]罗巍伟,贺英菊HPLC测定板蓝根提取物中靛蓝和靛玉红的含量[J].华西药学杂志,2004,19(6):48-49.
    [1]Lunn, J.D., Shantz, D.F. Peptide brush-ordered mesoporous silica nanocomposite materials[J]. Chemistry of Materials.2009,21:3638-3648.
    [2]Valls, J., Millan, S., Marti, M.P., Borras, E., Arola, L. Advanced separation methods of food anthocyanins, isoflavones and flavanols[J]. Journal of Chromatography A,2009,1216: 7143-7172.
    [3]Guo, Z., Lei, A, Liang, X., Xu, Q. Click chemistry:A new facile and efficient strategy for preparat ion offunctionalized HPLC packings[J]. Chemical Communication.2006,43:4512-4514.
    [4]Liu, Y., Guo Z., Jin Yu, Xue, X., Xu, Q., Zhang, F., Liang, X. Click oligo(ethylene glycol):An excellent orthogonal stationary phase to C18 for two dimensional reversed phase/reversed phase liquid chromatography[J]. Journal of Chromatography A.2008,1206(2):153-159.
    [5]Xue, M., Huang, H., Ke, Y., Chu, C., Jin, Y., Liang, X. Click dipeptide: A novel stationary phase applied in two dimensional liquid ch romatography[J]. Journal of Chromatography A.2009, 1216(49):8623-8629.
    [6]Pereira, A.S., David, F., Vanhoenacker, G., Sandra, P. The acetonitrile shortage:Is reversed HILIC with water an alternative for the analysis of highly polar ionizable solutes? [J]. Journal of Separation Science.2009,32:2001-2007.
    [7]Gritti, F., Pereira, A.S., Sandra, P., Guiochon, G Efficiency of the same neat silica column in hydrophilic interaction chromatography and per aqueous liquid chromatography [J]. Journal of Chromatography A.2010,1217:683-688.
    [8]Edward, J., Kikta, J., Grushka, E. Bonded peptide stationary phases for the separation of amino acids and peptides using liquid chromatography[J]. Journal of Chromatography A.1977,135: 367-376.
    [9]Ayad, S.R. Fractionation of Bucillus subtilis DNA by use of poly-L-lysine kieselguhr columns[J]. Journal of Biochemical and biophysical research.1968,30(3):207-212.
    [10]Shundo, A., Mallik, A.K., Sakurai, T., Takafuji, M., Nagaoka, S., Ihara, H. Controllable shape selectivity based on highly ordered carbonyl and methyl groups in simple β-structural polypeptide on silica[J]. Journal of Chromatography A.2009,1216:6170-6176.
    [11]Ohyama, K., Oyamada, K., Kishikawa, N., Ohba, Y., Wada, M., Maki, T., Nakashima, K., Kuroda, N. Preparation and characterization of poly(L-phenylalanine) chiral stationary phases with varying peptide length[J]. Journal of Chromatography A.2008,1208:242-245.
    [12]Auler, L., Silva, C., Collins, K., Collins, C. New stationary phase for anion-exchange chromatography[J]. Journal of Chromatography A.2005,1073:147-153.
    [13]Dong, L., Huang, J. Effect of Temperature on the Chromatographic Behavior of Epirubicin and its Analogues on High Purity Silica Using Reversed-Phase Solvents[J]. Chromatographia. 2007,65:519-526.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700