用户名: 密码: 验证码:
富氧燃烧方式下煤粉燃烧特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全球变暖、温室效应是由于CO_2为代表的温室气体的大量排放导致的温室效应的加剧而造成的。在降低CO_2排放所带来的影响的策略上,不外乎控制CO_2的产生和回收处理。富氧燃烧技术就是在这一背景下提出来的。富氧燃烧技术也称为O_2/CO_2燃烧技术,或空气分离/烟气再循环技术。富氧燃烧技术不仅能使分离收集CO_2和处理SO_2容易进行,还能减少NOx排放,是一种能够综合控制燃煤污染物排放的新型洁净燃烧技术。
     本文首先综合概述该技术的发展状况和研究现状,以及煤粉燃烧特性的主要研究进展,分析了其中的成果和不足,从而明确了自己的研究思路。继而针对四种不同煤粉,利用热天平研究了其在不同条件下的燃烧状况,观察了O_2/CO_2气氛下煤粉的着火与燃尽。在此基础上,针对滴管炉制得的不同温度下的神华、大同煤焦,在热天平上用非等温热重法分析了O_2/CO_2气氛下的燃烧特性,观察了热解温度对焦活性的影响,以及氧分压对燃烧的影响,得到了各自的表观反应动力学参数,发现大同煤焦的反应处于两个不同的反应阶段,神华煤焦的活性明显高于大同煤焦,且低温焦的反应性比高温焦要好;考虑到CO_2气化反应的存在,本文进而用等温热重法研究了两种煤焦的气化反应动力学,发现低温焦气化活性高于高温焦,随着气化温度的升高,神华、大同两种煤焦的气化反应性均增强。
World warming is due to the worse of Greenhouse effect mainly by massive CO_2 emission. Among many Greenhouse gases, CO_2 contributes the biggest to Greenhouse Effect due to its long lifetime and massive emission. CO_2 mainly comes from the combustion of fossil fuels. The amount of CO_2 emission becomes larger, as the development of economics and the demand for energy. In the case of controlling CO_2 emission, various advanced methods should be combined together to fit different cases. The effect of CO_2 could be debated by way of controlling CO_2 production or disposing recovered CO_2.
     Up to now, many methods have been developed to controlling CO_2 production. The oxygen-enriched combustion technology has been proposed to increase CO_2 concentration. Part of flue gas will be circulated and mixed with oxygen to be loaded into furnace. Oxygen-enriched combustion is also called as O_2/CO_2 combustion, or air separation and flue gas recycle. CO_2 separation and SO_2 treatment become easier, NOx emission is reduced in oxygen-enriched combustion technology. Oxygen-enriched combustion is one of the new clean coal combustion technology that can control pollutant emission.
     An overview of the main progress of oxygen-enriched combustion technology was given, followed with the comment and criticism of these research achievements and some development of combustion characteristics of pulverized coal. Then, Non-isothermal thermo-gravimetry experiment on four different pulverized coal was conducted in order to research the combustion characteristics of pulverized coal in CO_2 atmosphere with different conditions, especially the igniting and burnout.
     Secondly, other TG experiments on coal char made in drop tube furnace with different temperature were conducted. We can analysis the reactivity kinetics of char by the results of these experiments. And the results show that the larger of the oxygen content is, the lower of the igniting temperature and the burnout temperature are. Meanwhile we can see that the reactivity of char made in lower temperature is superior than that of char made in higher temperature. In the end, we conducted the gasification experiment of char with different reactivity temperature. And the results show that the higher of gasification temperature is, the higher of the char gasification activity and the gasification activity of shenhua char is higher than that of datong char.
引文
[1] Benarde.M A, Global Warming, New York ,John Wiley&Sons,1992-4
    [2] Hansen.J E .Johnson and A.Lacis, Climate Impact of Increasing.Atmospheric Carbon Dioxide.Sience,1981.213:937-966
    [3] Genthon.C, Climatic Response to CO2 and Orbital forcing Changes over the lase climatic cycle, The Nature ,1987.329:411-418
    [4] Herzog.E and Drake.E, Long Term Advanced CO2 Capture Options, IEA Greenhouse gas R&D Prog, Cheltenham,UK,1993
    [5] Walsh.J.H, Progress in the Field of Mitigation of Emissions of Greenhouse Gases From the Fuels.Report,1995
    [6] Grace J.R. High-velocity fluidized bed reactors. Chem. Eng. Sci,1990, 45 (8):1966-1990
    [7]邱宽嵘,金保异,蓝计香等.飞灰循环流化床脱硫试验及模型.东南大学学报,1990, 20 (2):56-62
    [8]金保异,范新宽,阮证等.燃烧飞灰循环流化床燃烧数学模型.工程热物理学报, 1990 ,11(2):219-222
    [9] Breault R.W. Theoretical modeling of multi-solids fluidized bed combustion: hydrodynamics combustion and desulphurization. Proc. of 9 Int. Conf. on Fluidized bed combustion,1987,770-775
    [10] Gidispow D, Arastoopour H. Analysis of IGT pneumatic conveying data and fast fluidized using a thermodynamic model. Powder Technology,1972,22(12):77
    [11]骆仲泱.燃煤循环流化床的燃烧技术.浙江大学博士学位论文.浙江大学图书馆.1990
    [12] Basu P.Sett A. Simplified model for combustion of carbon in a CFB combustor. Proc.of 9 Int. Conf .On Fluidized Bed Combustion,1987,738-744
    [13] Zhang R, Chen D, Yang G. Study on press drop of fast fluidized bed. FluidizedScience and Technology Conference. Second China-Japan Symposium, Science Press ,Beijing,China,1985,148-157
    [14] Walker.P.L, Catalysis of Gasification on the Coal-derived Coke and Char, Fuel, 1983
    [15] Okazaki.K, Takano.S and Kiga.T, Analysis of the Flame Formed during Oxidation of Pulverized Coal by an O2-CO2 Mixture, Energy Convers Mgmt, 1992, (23):459-466
    [16] Okazaki.K and Ando.T, NOx Reducing Mechanism in Coal Combustion With Recycled CO2,Energy,1997,(22):207-215
    [17] Kimura.N,Omata.K, Kiga.K,The Characteristics of Pulverized Coal Combustion in O2/CO2 Mixtures for CO2 Recovery, Energy Convers , Mgmt, 1995, 36:805-808
    [18] Kagajo.T, Akai.D, Process Evaluation of CO2 Recovery From Thermal Power Plant, International Conference on Power Engineering-93,JAPAN,1993
    [19]周英彪,郑瑛,张礼知等.空气与O2/CO2气氛下钙基脱硫固硫规律的实验研究,热能动力工程,2001
    [20]毛玉如.循环流化床富氧燃烧技术的实验与理论研究.浙江大学博士论文.2003
    [21]刘彦丰.煤粉在高浓度CO2下的燃烧与气化.华北电力大学博士论文.华北电力大学图书馆.2001
    [22] Hu.Y,Natio.H, Kobayashi.N, NOx and SO2 emission from the combustion of coal with high oxygen concentration ases,Fuel,2000,79:1925-1932;
    [23] Schouten.J.C,Van.C.M, The influence of oxygen-stoichtometry on desulphurization during FBC: A Simple sure modeling approach, Chem.Eng. Sci.,1988,43(8):2051-2059;
    [24] Edward J.Danies,Bassam J.Jody,Recoverying CO2 from large and medium-size stationary combustion, Alan M.Wolsky,J.Air Waste Manage.Assoc,1991, (41): 449-454
    [25]顾恒祥.燃料与燃烧.西北工业大学出版社.1993.(112-115)
    [26]岑可法,姚强,骆仲泱等.高等燃烧学.浙江大学出版社.2002
    [27]陈建原.煤粉着火过程模型的研究.华中科技大学博士学位论文.华中科技大学图书馆.1989
    [28] Balek V and Koranyi A. Study of the formation of perovskite type lanthanum ruthenates by heating their hydrous precursor .Fuel,1998,77(15):1841-1844
    [29]陈鸿.煤粉孔隙结构及燃烬动力学的研究,华中科技大学博士学位论文,华中科技大学图书馆.1994
    [30] Mingle J O and Smith J M, Pore size distribution functions for porous catalysts AICHEJ,1967,7:243
    [31] Morgan M E, Jenkins R J,Walker P L, Solar radiation acceleration effects on Mercury sodium emission . Fuel,1981,60(2):189
    [32] Morgan M E and Jenkins R J, A method to characterise the volatile release of solid recovered fuels (SRF) . Fuel ,1986,65(6):757-763
    [33] Howard J B and Essen high R H, Proceedings of the 11th Symposium (International) Combustion, the Combustion Institute,1967,399-408
    [34] Annamalai K and Durbetaiki P, Int, J, Heat Mass Transfer,1974,17
    [35] Nikss S,Russel W B and Savilke D A.Time Resolved Weight Loss Kinetics for the Rapid Devolatilization of A Bituminous Coal.19th Symposium(In) on combustion,1982,1151-1157
    [36]朱廷钰,王洋.粒径对煤温和气化特性的影响.煤炭转化,1999,7,22(3)39-43
    [37] Lexis P F and Simons G A. Influence of carbon content and particle dispersion on radiation properties of coal chars. Sci. and Tech.1979.20:117-124
    [38] Krzton A, Caginant D, Assessment of the effect of high ash content in pulverized coal combustion . Fuel,1995,74(2):217
    [39] Field M.A, The release and behavior of mercury, selenium, and boron in coal combustion . Combustion of Pulverized Coal.BCURA,1967
    [40]陈鸿,曾羽健,陈建原等.粉煤热解过程的温度相关模型.华中理工大学学报,1994,3 22(3),42-46
    [41]盛昌栋,徐明厚,袁建伟等.高浓度煤粉着火阶段燃烧特性的试验研究.华中理工大学学报,1995,7,23(7),64-68
    [42]向银花,王洋,张健民等.煤焦气化过程中比表面积和孔容积变化规律及其影响因素研究.燃料化学学报,2002,4,30(2),108-112
    [43] Walker P L, Manahan O P. Analytical Methods for Coal Products. London; Academic Press,1978
    [44]陈彩霞张小可等.煤的结构与煤焦反应性关系的研究及其发展.煤气与热力1994 14(2)
    [45] Tseng H P, Edgar T E,Combustion Behavior of Bituminous and Anthracite Coal Between 425 and 900 Fuel,1985,64(3):373
    [46] Scaroni A,Morgan B A. Reactivity in Air of chars Produced from a Lignite Containing Various Cations Am Chem. Soc Div Fuel Chem,1985,(30):27
    [47] PatelM M,Grow D F,Young B C, Combustion Rates of Lignite Char by TGA.Fuel,1988,(67):165
    [48] Vbhayakar S K,Williams F A. Burning and Extinction of a Laser-Ignited Carbon Particle in Quiescent Mixtures of Oxygen and Nitrogen J Electro Chem. Soc: Solid-State Science and Technology,1976,(5):747-755
    [49] Megaridis C M.Morphological Description of Flame-Generated Materials Combustion Sci and Tech ,1990,(71):95-99
    [50] Marvasti M A,Strahle W C、Burning Rate Prediction of Composite Solid Propellants Using Fractal Geometry. Combustion Sci and Tech,1992 (83):291-297
    [51]任有中,符建.煤多相燃烧分形增长模型的初步研究.工程热物理学报,1997,18(1):130-107
    [52]任有中,陈智波,张玲.多相燃烧分形模型及实验研究.工程热物理学报,1998,19(3):372-376
    [53]陈鸿,孙学信,张小可等.煤粉燃烧模糊孔模型.热能动力工程,1994,9(6):329-335
    [54]朱群益,赵广播,秦裕琨等.采用热天平研究煤粉燃烧特性时的零维燃烧模型.动力工程,1996,16(5):34-38
    [55]马秀国,孙昭星.高灰分碳颗粒燃烧的数学求解.工程热物理学报,1991,12(3):372-376
    [56]章明川,徐旭常. CO气相反应对碳颗粒燃烧的影响―连续膜理论一种简化模拟方法.工程热物理学报,1990,11(4):438-443
    [57]孙学信.燃煤锅炉燃烧试验技术与方法.中国电力出版社,2002.(110-123)
    [58]陈镜泓,李传儒.热分析及其应用.科学出版社,1987.(45-50)
    [59]徐朝芬,孙学信,郭欣.热重分析试验中影响热重曲线的主要因素分析.热力发电2005(6)
    [60]许晋源,徐通模.燃烧学[M],第二版.北京:机械工业出版社,1990(174)
    [61] Kiga.T, Takano.S, Kimura.N. Characteristics of pulverized-coal combustion in the system of oxygen recycled flue gas combustion [J]. Energy conversmgmt, 1997, (38):129-134
    [62] Kimura.N, Omata.K, Kiga.T. The characteristics of pulverized coal combustion in O2/CO2 mixtures for CO2 recovery [J]. Energy Converts Mgmt, 1995, 36(6/9):805-808
    [63] Nozaki .T, Takano.S, Kiga.T. Analysis of the flame formed during oxidation of pulverized coal by an O2/CO2 mixture [J]. Energy, 1997, 22 (2/3):199-205
    [64]刘彦,周俊虎,方磊等. O2/CO2气氛下煤粉燃烧及固硫特性研究.中国电机工程学报, 24(8): 224-228
    [65] Alonso M J G, Borrego A G, Alvarez D et al . A Reactivity Study of Chars Obtained at Different Temperatures in Relation to Their Petrography Characteristics. Fuel Processing Technology , 2001 , (69) : 257-272
    [66] Alonso. M J ,Borrego A G,álvarez D et al . Pyrolysis Behavior of Pulverized Coalsat Different Temperatures. Fuel , 1999 ,(78 ): 1501-1513
    [67] Lu L M , Kong C , Sahajwalla V et al . Char Structural Ordering During Pyrolysis and Combustion and it s Influence on Char Reactivity. Fuel , 2002 , (81) : 1215-1225
    [68] Senneca O, Salatino P , Masi S. Micros rupture Changes and Loss of Gasification Reactivity of Chars upon Heat Treatment . Fuel , 1998 , (77) : 1483-1493
    [69] John.W C. Reactivity assessment of coals via a weighted mean activation energy.Fuel,1984,(63)
    [70]唐黎华,吴勇强,朱学栋等.高温下制焦温度对煤焦气化活性的影响.燃料化学学报, 2002 , (30) : 16-20
    [71] Liu H , Luo C H , Toyota M et al . Mineral Reaction and Morphology Change During Gasification of Coal in CO2 at Elevated Temperature. Fuel , 2003 , (82) : 523-530
    [72] Alvarez T , Antonio B F , Pis J J et al . Influence of Coal Oxidation Upon Char Gasification Reactivity. Fuel , 1995 , (74): 729-735
    [73]张佳丽,谌伦建,张如意等.热解温度与煤焦微结构及分形特征关系研究.煤炭转化, 2004 , 27 (1) : 26-29
    [74]崔永君,张彩荣,张科选等.不同热解条件下神府煤焦的CO2反应活性分析.陕西煤炭技术, 1999 (1) : 20-23

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700