用户名: 密码: 验证码:
高超声速飞行器中圆柱类贮箱固耦合动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固耦合问题广泛存在于工程实际中,研究这类问题具有广泛的现实意义;而近空间范畴内的高超声速飞行器也一直是人们研究的热点问题。研究飞行器中体燃料贮箱内的固耦合问题可以有效地控制飞行器的稳定性并有利于采取更好的制导措施。本文主要是对高超声速飞行器中的体燃料贮箱类固耦合问题进行了研究,由四部分组成。
     第一部分介绍了高超声速飞行器(高超声速技术)的相关内容,着重对X-43A高超声速飞行器进行了描述,并介绍了固耦合的相关理论、问题的研究方法及其发展情况。
     第二部分首先对一般柱形体贮箱模型进行研究,分析系统的动力学方程及其耦合边界条件,然后依据X-43A高超声速飞行器中具体的体燃料贮箱外形,将模型贮箱的形状近似为圆柱形,根据动力学方程及耦合的边界条件等建立了Lagrange函数,并根据Lagrange方程建立了非线性耦合系统的动力学方程组。
     第三部分是对第二部分建立的非线性方程组简化处理,得到两个自由度的耦合系统,在只考虑横向激振力的作用下,对系统内分别为不存在内共振和存在内共振两种情况下的为主共振、非共振、2倍超谐共振和组合共振等情况运用多尺度方法进行了解析分析。
     第四部分是对第二部分建立的非线性耦合动力学方程组进行了数值求解,画出了各自由度相应的时间历程图、对应的频谱图及其稳态时的相图,并就有关图形与解析解的情况进行了对照。然后对改变阻尼因子进行了数值分析。
     通过对高超声速飞行器中体燃料贮箱的建模以及动力学分析,深入地研究了受横向外激励后贮箱及其内部燃料体的运动情况,通过将得到的解析解和数值解的对比可以确知这两种方法的解的情况是基本吻合的。由解的情况可知,高超声速飞行器中体燃料贮箱内部的晃动是比较大的,相应地对贮箱及其固联系统(或整个飞行器)的稳定性会造成很大的影响,选择适当的防晃挡板等装置来抑制体的运动。这对于高超声速飞行器中固耦合问题的研究具有一定的实际意义。
It is of great value to deal with liquid-solid coupling problems, which lie in engineering problems widely. The research on liquid-solid coupling problems has important significance. And hypersonic vehicle of near-space has been a hot issue. The research is of benefit to control the stability of flight vehicle and controlling the guidance effective. The paper primary researched the liquid-solid coupling problems in fuel container in flight vehicle of near space. There are four parts in the paper.
     As the first part, the relate contents of hypersonic vehicles and the technology of hypersonic are introduced, especially the X-43A hypersonic vehicle. And then introduced the relevant theory and development of the liquid-solid coupling The second part, of the cylindrical fuel tank in the general study on the basis of the analysis system and the coupled dynamic equations of boundary conditions, and then based on X-43A hypersonic vehicle fuel container in a specific shape, the shape of the model similar to tank for the cylindrical, according to dynamic equations and boundary conditions, such as coupling the establishment of a Lagrange function, Lagrange equation based on the establishment of a nonlinear coupled system of dynamics equations.
     The third part is based on the establishment of simplified nonlinear equations for the coupled system of two degrees of freedom in the second part, only to consider the role of lateral excitation, for the absence or the existence of internal resonance and internal resonance respectively of two mainly in case of resonance, non-resonant, 2 times the super-harmonic resonance and combination resonance such as the use of multi-scale analysis methods to resolve.
     And the last part is also based on the establishment of the nonlinear coupling dynamics equations in the second part. For the corresponding analytic solution of the numerical solution, draw the corresponding degree of freedom of the time history diagram, the corresponding amplitude-frequency curve and the steady state phase maps, and graphics on the analysis carried out with the control.
     By founding the liquid fuel tank in the modeling and dynamic analysis for hypersonic vehicle, the paper studies the movement of internal fuel tank due to cross-cutting incentives outside in-depth. By comparing the analytical solution and the numerical solution, we can see the results of the two ways are of the basic within the tank is relatively larger in the hypersonic vehicle, and the stability of the tank and its joint system (or the entire aircraft) will be greatly affected. We should join suited devices such as anti-Huang partition to curb the movement of liquid. The research of hypersonic vehicle for liquid-solid coupling problems has some practical significance.
引文
[1]黄文虎,陈滨,王照林,一般力学(动力学、振动与控制)最新进展,北京:科学出版社,1994.
    [2]Michael A. Dornheim, A Breath of Fast Air, Aviation Week &Space Technology, 2004: 28-29.
    [3]沈剑,美国近期的超然冲压发动机飞行试验,飞航导弹,2004(9): 54-59.
    [4]刘桐林.美国高超声速技术的发展与展望,航天控制,2004,22(4): 36-41.
    [5]汤一华,陈士槽,徐敏,高超声速技术发展及其相关的动弹性发展,飞行力学与飞行试验学术交流会议论文,2004: 15-20.
    [6]黄志澄,高超音速飞行器及其发展趋势分析,国际航空,1998,(3): 17-20.
    [7]解发瑜,李刚,徐忠昌,高超声速飞行器概念及发展动态,航导弹,2004,(5): 27-31.
    [8]沙长安,刘选民,梁相文等,今世界试飞技术现状及未来发展,19届飞行力学与飞行试验(2003)年学术交流会论文集,西安:飞行力学杂志社,2003.
    [9]李怡勇,沈怀荣,发展近空间飞行器系统的关键技术,装备指挥技术学院学报,2006(10): 52-55.
    [10]李文正,龚波,美国对临近空间概念的研究,863航空航天技术,2005.
    [11]熊海泉,飞机飞行动力学,北京:航空工业出版社,1990.
    [12]张晋平,NASA未来航空技术展望,国际航空,2004(2): 20-27.
    [13]王彦广,李健全,李勇等,近空间飞行器的特点及其应用背景,航天器工程,2007(16): 50-57.
    [14]尹志忠,李强,近空间飞行器及其军事应用分析,装备指挥技术学院学报,2006(17): 64-68.
    [15]李焱,才满瑞,佟艳春,临近空间飞行器的种类及军事应用,中国航天,2007(10): 39-44.
    [16]黄荣辉,大科学概述,北京:象出版社,2005.
    [17]黄伟,陈狄,罗世彬等,近空间飞行器研究现状分析,飞航导弹,2007(10): 28-31.
    [18]曹秀云,近空间飞行器成为各国近期研究的热点(上),中国航天,2006(6): 32-35.
    [19]曹秀云,近空间飞行器成为各国近期研究的热点(下),中国航天,2006(7): 30-32.
    [20]Planeboy,X档案:从X-1到X-50——美国X系列实验飞行器简史,较量,11,part 2: 62-65.
    [21]Graham Warwick, X-43A Success Revives Optimism,Flight International, 6-12April, 2004:26.
    [22]刘桐林,美国超-X计划与X-43试飞器,飞行导弹,2005(5): 8-14.
    [23]恽舒齐,美国航宇局的X系列试验飞行器,国际太空,1999(7): 1-3.
    [24]崔立峰,从X-43A高超声速研究机看我国第五代机的发展方向,飞行力学杂志社,飞行力学与飞行试验(2004)学术交流年会论文.
    [25]V.Sriram,S.A.Sannasiraj,V.Sundar, Numerical Simulation of 2D Sloshing Waves Due to Horizontal and Vertical Random Excitation, Applied Ocean Research, 2006, 28: 19-32.
    [26]J.Gerrits. Dynamics of Liquid-Filled Spacecraft:Numerical Simulation of Coupled Solid-Liquid Dynamics.Ph.D. thesis, University of Groningen, the Netherlands, 2001.
    [27] DGA orders Exocet Block 3 for Frence Navy, Jane’s International Defense Riview,2003(1): 77-85.
    [28]S.Papaspyrou,S.A.Karamanos,D, Valougeorgis.Response of Half-Full Horizontal Cylinders under Transverse Excitation.Journal of Fluids and Structures, 2004,19: 985-1003.
    [29]G.W.Housner, Dynamic pressure on accelerated fluid containers. Bulletin of the seismological society of America 47, 1957(1): 15-35.
    [30]R.A. Ibrahim, Liquid Sloshing Dynamics: Theory and Applications, Cambridge University Press, 2005.
    [31]H.N.Abramson, The Dynamic Behavior of Liquids in Moving Containers, NASA-SP-106, 1966.
    [32]L.M.Hoskin, L.S, Jacobeen,Water pressure in a tank caused by a simulated earthquake, Bulletin of the seismological society of America 24 (January 1934): 1-32.
    [33]G.W.Housner,Bending vibration of a pipe line containing flowing fluid, J.App1, 1952, Nech.l9: 205-208 .
    [34]K.Komatsu, Non-Linear Slosh Analysis of Liquid in Tank with Arbitrary Geometries, International Journal of Non-Linear Mechanics, 1987, 22(3): 193-207.
    [35]N.N.Moiseev, Introduction to the theory of oscillations of 1iquid-containing bodies, Advances in Applied Mechanics, 1964(8): 233-289.
    [36]N.A.Moiseev. A. Petrov, The calculation of free oscillation of a liquid in a motionless container, Advances in Applied Mechanics, 1964(9): 91-154.
    [37]邢景棠,周盛,崔杰尔,流固耦合力学概数,力学进展,1997, 27(1): 20-38. 71
    [38]尹立中,王本利,邹经湘,航天器体晃动与固耦合动力学研究概述,哈尔滨工业大学学报,1999,31(2): 118-122.
    [39]包光伟,平放柱形贮箱内体晃动的等效力学模型,上海交通大学学报, 2003, 37(12): 1961-1968.
    [40]王照林,邓重平,失重时球腔内体晃动特性的研究,1985,5(4): 294-302.
    [41]岳宝增,李俊峰,三维体非线性晃动及其复杂现象,力学学报,2002, 34(6): 949-955.
    [42]陈科,李俊峰,王天舒,矩形贮箱内体非线性晃动动力学建模与分析,力学学报,2005, 37(3): 339-345.
    [43]戴大农,王成,杜庆华,流固耦合系统动态响应的模态分析理论,固体力学学报,1990, 11(4): 305-312.
    [44]郑治国,孙大成,刘宪亮,用湿模态进行流固耦合分析时一个问题的探讨,华北水利水电学院学报,1988, 19(2): 22-28.
    [45]雷新海,钱勤,黄玉盈,流固耦合系统湿模态正交性的统一证明,应用力学学报,1993, 10(4): 77-81.
    [46]S.M.Soedel, W.Soedel, on The Free and Forced Vibration of Plate Supporting a Freely Sloshing Surface Liquid, Journal of Sound and Vibration, 1994, 171(2): 159-171.
    [47]Y.K.Cheung, D.Zhou, Coupled Vibration Characteristic of a Rectangular Cantainer Bottom Plate, Journal of Fluid and Structure, 2000(14): 339-357.
    [48]T.Ikeda, N. Nakagawa, Non-linear Vibration of a Structure Caused by Water Sloshing in a Rectangular Tank, Journal of Sound and Vibration, 1997, 201(1): 23-41.
    [49]Y.Yamamoto, A Vibration Principle for a Solid-Water Interaction System, Int. J. of Engineering Science, 1981(12): 1757-1763.
    [50]邹时智,黄忠霖,黄玉盈,金涛,非线性液固耦合系统的一个广义变分原理,华中理工大学学报,1997, 25(2): 88-90.
    [51]王照林,邓重平,失重时方形容器内体自由晃动问题,清华大学学报,1996, 26(3): 1-9.
    [52]尹立中,邹经湘,王本利,俯仰运动圆柱贮箱中体的非线性晃动,力学学报,2000, 32(3): 280-290.
    [53]尹立中,刘敏,王本利,邹经湘,矩形贮箱类液固耦合系统的平动响应研究,振动工程学报,2000, 13(13): 433-437.
    [54]Hsieh DY, Standing water waves in a circular basin, In;Proc.Int.ConL Hydrodynamics,Beijing:China Ocean Press, 1994(21): 74 -79.
    [55]Shen M C.Yeh NS, Exact solution for forced capillary-gravity waves in a circular basin under hocking’s edge condition, Wave Motion, 1997(26): 117-l26.
    [56]Sun S.M ,Shen M C,Hsieh D.Y.Nonlinear theory of forced surface waves in a circular basin, Wave Motion,1995(21): 33l-341.
    [57]M.C.Shen, S.M.Sun, D.Y.Hsieh, Forced capillary-gravity waves in a circular basin, Wave Motion, 1993(18): 401-412.
    [58]Miles John W,Resonantly forced surface waves in a circular cylinder, J Fluid Mech, 1984(149): 15-31.
    [59]Nayfeh Ali H, Surface waves in closed basins under parameteric and internal resonances, Phys. Fluids, 1987, 30(10): 2976- 2983.
    [60]BENJAMIN T B & URSELL F, The stability of the plane free surface of a liquid in vertical periodic motion, Proc R Soc Lond.A, 1954(255): 505-515.
    [61]勇军,鄂学全,垂直激励圆柱形容器中的表面波结构,水动力学研究与进展,2003, 18(2): 12-18.
    [62]Ian.Huntley, Observations on a spatial-resonance phenomenon, Fluid Mech, 1972, 53(2): 209-216.
    [63]J.Mahony,cross-waves,Part1.Theory,J.FludMech, 1972, 55(2): 229-244.
    [64]Amabili M, Eigenvalue problems for vibrating structures coupled with quiescent fluids with free surfaces, J Sound Vib, 2000, 231(1): 79-97.
    [65]Yu Ying Huang, Orthogonality of wet modes in coupled vibrations of cylindrical shells containing liquids, Journal of sound and vibraqtion, 1991, 145(1): 51-60.
    [66]F.Pellicano,M.Amabili,M.P.Paidoussis, Effect of geometry on the nonlinear vibration of circular cylin drical shells, International Journal of NonLinear Mechanics, 2002(37):1181-1198.
    [67]Barron R, Chng S W R, Dynamic analysis and measurement of sloshing of liquid in containers, Transactions of the ASME, of Dynamic Systems, Measurement, and Control, 1989,111(1): 83-90.
    [68]Miles J.M, Nonliner Surface-Wave in Closed Basins, Fluid Meth, 1976, Vol.75, Part3: 419-448.
    [69]J.C.Luke, A Variational Principle for a Fluid with a Free Surface, Fluid Mech, 1976, Vol.27, part2: 395-397.
    [70]R.L.Seliger and G.B.Whitham, Variational Principles in Continuum Mechanics,Proc.Roy. Soc.A., 1968, Vol.305: 1-25.
    [71]贺元军,马兴瑞,王本利,微重环境下平移圆柱储箱液固耦合系统的动力响应研究,西安交通大学学报,2006, 40(9): 1083-1087.
    [72]杜颖,壳耦合系统的组合共振研究:硕士学位论文,天津:天津大学,2003.12.
    [73]张素侠,矩形弹性壳耦合系统中重力波现象研究:硕士学位论文,天津:天津大学,2006.1.
    [74]苟兴宇,航天工程中的贮箱类固耦合动力学研究:博士学位论文,哈尔滨:哈尔滨工业大学,1998.2.
    [75]余延生,航天器贮箱体非线性晃动动力学的多维模态分析方法:博士学位论文,哈尔滨:哈尔滨工业大学,2007.9.
    [76]梅凤翔,刘端,罗勇,高等分析力学,北京:北京理工大学出版社,1991.
    [77]陈卓如,金朝铭,王洪杰等,工程流体力学,北京:高等教育出版社,2004.
    [78]王照林,刘延住,充系统动力学,北京:科学出版社,2002.
    [79]廖邵英,体火箭推进增压输送系统,北京:国防工业出版社,2007.
    [80]马兴瑞,王本利,苟兴宇等,航天器动力学——若干问题进展及应用,北京:科学出版社,2001.
    [81]梁昆淼,数学物理方法,北京:高等教育出版社,2000.
    [82]黄圳圭,赵志建,大型航天器动力学与控制,北京:国防科技大学出版社,1990.
    [83]黄怀德,振动工程(下),北京:宇航出版社, 1995.
    [84]陈予恕,非线性振动系统的分岔和混沌理论,北京:高等教育出版社,1993.
    [85]陈予恕,非线性振动,天津:天津科学技术出版社,1983.
    [86]陈予恕,唐云,非线性动力学中的现代分析方法,北京:科学出版社,2000.
    [87]陈树辉,刘世龄,张佑启等,强非线性振动的定量方法,广州:广东科技出版社,2004.
    [88]王洪礼,张琪昌,非线性动力学理论及应用,天津:天津科学技术出版社,2002.
    [89]A.H. Nayfeh and D.T. Mook, Nonlinear Oscillations, New York:Wiley, 1979.
    [90]曾绍标,熊洪允,毛云英,应用数学基础(下册),天津:天津大学出版社,1993.
    [91]刘习军,贾启芬,工程振动理论与测试技术,北京:高等教育出版社,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700