用户名: 密码: 验证码:
高速公路滑坡动力稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雅安经石棉至泸沽高速公路是国家高速公路网中的重要路段,线路所经区域地形复杂、地貌类型多样,公路沿线附近断裂构造发育,地震活动频繁。地震发生时,常常造成边坡失稳,严重危害公路、房屋建筑等安全,如何保证地震作用下的边坡稳定性是亟待解决的难题。本文以雅泸高速公路C17段磨房沟古滑坡为例,在充分研究滑坡工程地质条件的基础上,采用FLAC3D数值模拟手段,研究了古滑坡在地震作用下的动力响应,通过评价滑坡稳定性状态,提出了相应的治理措施。研究取得主要成果如下:
     (1)运用有限差分软件FLAC3D模拟研究了古滑坡在地震作用下的动力响应。数值模拟过程中,在坡体布置了9个监测点,得出以下认识:
     ①地震作用下古滑坡的最大位移达1.28m,沿主滑方向位移最大值为1m,边坡变形明显区域主要集中在坡体由缓变陡的部位,地震力作用下,滑坡体表层位移变化量较大;竖向加速度对磨房沟古滑坡的变形影响很大,当地震竖向加速度与水平向加速度相等时,滑坡最大位移量为1.91m,相比竖向加速度为0时,位移量增加了约50%,沿主滑方向的位移最大值为1.38m,滑体与下覆岩土体交界处位移量相比竖向加速度为0时变化不大,由此可见,竖向加速度对滑坡堆积体坡表的影响较大。
     ②滑坡体内的最大不平衡力在地震时逐渐增大,6~7S时最大不平衡力达到最大值,然后逐渐回落。
     ③在主滑方向不同高程处的位移量有随高程的升高而增加的趋势,同一高程处的位移量,主滑方向较两侧的位移量大;同一位置处,边坡的位移随深度的增加而减小。
     ④滑坡在地震动力作用下的加速度放大系数随高程的增加呈先增加后减小的趋势,在高程1285m处放大系数达到最大值1.95,此时加速度值为13.7m/s2;高程在1285m以上的加速度放大系数均小于1。加速度随深度的变化呈先增加后减小的规律,在深度为15m处水平加速度放大系数达到最大值0.67,由滑体厚度约15m左右判断出水平加速度最大值部位也是滑面所在处。
     ⑤剪应变增量主集中在滑坡体东侧,可分为三个区域,其高程分别为I区:1318m~1325m、II区:1328m~1339m、III区:1343m~1348m,剪应变增量最大值为0.046。对计算模型施加竖向加速度时,边坡剪应变增量变大,最大值集中在三个区域,与竖向加速度为0时一致,剪应变增量最大值为0.067,相比竖向加速度为0时增加了约46%,滑面附近剪应变增量在0.007~0.014之间,基本上无变化。
     ⑥滑坡体表面、滑坡体周界以及滑坡体中心部分区域都处于张拉和剪切破坏状态,滑坡体中部高程在1329m~1354m之间大部分区域处于剪切状态。
     (2)在考虑了边坡动态响应具有水平向放大效应和竖直向放大效应的基础上,针对该边坡设计了治理措施,通过有效检验,治理措施是有效地。
The highway from Ya’an-Shimian-Lugu is important sections of the State Highway Network. The line through the region where have complex topography and diverse landscape. Faults development along highway, seismic activity frequently. Slope instability often induced after earthquake and damage roads severely, harm to highway and housing construction. It is a pressing problem to ensure slope stability under earthquake. In this paper, take C17 Mofanggou ancient landslide of Ya’an-Lugu highway as an example,based on full study to the engineering geological conditions, use numerical simulation methods to study dynamic response under the earthquake of ancient landslides, then analyze ancient landslide stability and propose the corresponding support measures. Main results as follows:
     (1 ) Use the finite difference software—Flac3D to simulate dynamic response of the ancient landslide response under earthquake. Layout 9 monitoring points in landslide body .According to numerical simulation of slope dynamic response under earthquake, we can arrive at the following understanding :
     ①Under earthquake, maximum displacement of the ancient landslide is 1.28m, the maximum displacement along the main slip direction is 1m, the obvious deformations mainly concentrate on site that the terrain from gentleness to steepness .Landslide surface has a large amount displacement under earthquake. Vertical acceleration affect Mofanggou ancient landslide deformation greatly , when the vertical acceleration equal to horizontal acceleration, the maximum displacement of landslide is 1.91m, the displacement increased about 50% compared with the vertical acceleration is 0; The maximum displacement is 1.38m along the main sliding direction.Compared with the vertical acceleration is 0,the displacement at junction of sliding body and lower rock mass changed slightly.Therefore, vertical acceleration affect slope surface greatly.
     ②Maximum unbalanced force of landslide body increase gradually under earthquake, 6 ~ 7s reach its maximum value and then reduce gradually.
     ③Displacement increase with elevation along main sliding direction. At the same elevation ,the displacements of main sliding direction is higher than two sides . At the same location, the displacement decreases with depth increasing.
     ④Seismic acceleration amplification factor increase with the increasing of the elevation and then decreased, maximum magnification factor is 1.95 at elevation 1285m and at the moment the acceleration is 13.7m/s2; Magnification factor is less than 1 at elevation above the 1285m. Acceleration was increased and then decreased with depth, maximum horizontal acceleration amplification factor is 0.67 at the depth of 15m. Landslide thickness is about 15m, so the maximum level acceleration at the area of slip surface.
     ⑤Shear strain increment can be divided into three regions, the elevation was :I area: 1318m ~ 1325m, II area: 1328m ~1339m, III area: 1343m ~ 1348m, the maximum shear strain increment is 0.046,concentrated in east of landslide. Shear strain increment of slope becomes larger when vertical acceleration imposed on the calculation model, as the same as vertical acceleration is 0, the maximum concentration in three regions, maximum value is 0.067, increased about 46% compared with vertical acceleration is 0,Shear strain increment between 0.007 and 0.014 near the sliding surface, unchanged essentially.
     ⑥Landslide surface、landslide perimeter and central part of the landslide area are in a state of tension and shear failure.At elevation 1329m ~1354m, most regions in the shear state at central part of landslides.
     (2) Considering the dynamic response of the ancient landslide has the horizontal and vertical amplification, design the slope support measures.Through effective inspection,the control measures are effective.
引文
[1]湖南省交通规划勘察设计院.雅泸公路两阶段施工图设计文件[R].长沙:交通规划院,2007.
    [2]裴向军.活动断裂区高速公路边坡稳定性评价及防治措施研究课题进展情况汇报[R].成都:成都理工大学地质灾害防治地质环境保护国家重点试验室,2007.
    [3]国家电力公司成都勘测设计研究院.四川省南桠河栗子坪水电站可行性研究告,CD116 KX-13-3(1)[R].成都:成都勘测设计研究院,2002.
    [4]王思敬,黄鼎成.中国工程地质世纪成就[M].北京:地质出版社,2004:302.
    [5]刘立平,雷尊宇,周富春.地震边坡稳定分析方法综述[J].重庆交通学院学报,2001,20(3):83~88.
    [6]黄润秋.汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J].岩石力学与工程学报,2009(6):1239-1249.
    [7]黄润秋裴向军李天斌.汶川地震触发大光包巨型滑坡基本特征及形成机理分析[J].工程地质学报,2008,16(6):730-741.
    [8]姜彤.边坡在地震力作用下的加卸载响应规律与非线性稳定分析:[博士学位论文].北京:中国地震局地质研究所,2004.
    [9]洪海春,徐卫亚.地震作用下岩质边坡稳定性分析综述[J].岩石力学与工程学报,2005,24(1):4827-4836.
    [10]董志高,吴继敏,王文远等.地震作用崩塌堆积体边坡稳定性分析[J].水利水电科技进展, 2006,26(5):37-40.
    [11]陆少云,刘祖德.地震对边斜坡稳定性的影响研究[J].安全与环境工程,2007,14(1):1-3.
    [12]Kramer S L.Geotechnical Earthquake Engineering[M].USA,New Jersey:Prentice Hall,1995.
    [13]祁生文.边坡动力响应研究及应用[博士学位论文][D].北京:中国科学院地质与地球物理研究所,2002.
    [14] Ishizaki Hatekeyama. Consideration on the dynamical behavior of earth dams[R]. Bul. No.52,Disaster Prevention Research Inst.,KyotoUnvi.,1963.
    [15]薄景山,徐国栋,景立平.土边坡地震反应及其动力稳定性分析[J].地震工程与工程振动, 2001, 21(2): 116–120 .
    [16]刘汉龙,费康,高玉峰.边坡地震稳定时程分析方法[J].岩土力学, 2003, 24(4): 553–556.
    [17] LIN Meei-ling, WANG Kuo-lung. Seismic slope behavior in alarge-scale shaking table model test[J]. Engineering Geology,2006, 86(2, 3): 118–133.
    [18]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定分析[J].岩石力学与工程学报, 2004, 23(8): 1318–1324.
    [19]周永江,王开云,符文熹,何江达.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报, 2007, 25(1): 93–98.
    [20] Clough RW,Chopra A K. Earthquake stress analysis in earth dams[J].J. Engng. Mech.,ASCE,1966,92(EM2):51~60
    [21]刘耀儒,刘元高,周维垣等.应用FLAC方法进行动力分析[J].岩石力学与工程学报,2001,20(2):1 518~1 522.
    [22]郭汉荣.锥形边坡稳定性分析[J].岩石力学与工程学报,1998,17(2):123-128.
    [23] Timothy DS,Hisham.Performance of three-dimensional slope stability methods in practice[J].J.Geotech.& Geoenvir.Engng.,1998,124(11):1049-1060.
    [24]邵龙潭,唐洪祥,韩国城.有限元边坡稳定分析方法及其应用[J].计算力学学报,2001,18 (1):81-87.
    [25]肖专文,张奇志.遗传进化算法在边坡稳定性分析中的应用[J].岩土工程学报,1998,20 (1):44-46.
    [26]朱大勇.边坡临界滑动场及数值模拟[J].岩土工程学报,1997,19(1):63-68.
    [27] Clough R W,Chop ra A K.Earthquake stress analysis in earth dams[J]. J. Engrg. Mech.,ASCE,1966,92(EM2):197-211.
    [28]彭建兵.区域稳定动力学研究[D].西安:西安工程学院,1999.
    [29]唐洪祥,邵龙潭.地震动力作用下有限元土石坝边坡稳定性分析[J].岩石力学与工程学报,2004,23(8):1318-1324.
    [30]刘春玲,祁生文,童立强等.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [31]周永江,王开云等.高地震烈度区堆积体边坡动力响应时程特征分析[J].山地学报,2007,25(1):93-98.
    [32]汪贤良.强震作用下堆积体边坡变形特征和稳定性分析[D].成都理工大学硕士学位论文,2009.
    [33]陈建君.复杂山区斜坡的地震动力响应分析[D].成都理工大学硕士学位论文,2009.
    [34]郑颖人,叶海林,黄润秋.地震边坡破坏机制及其破裂面的分析探讨[J].岩石力学与工程学报,2009,28(8):1714-1723.
    [35]姜忻良.可变形离散元法及其在地下工程中的应用[D].天津:天津大学,2007.
    [36]中华人民共和国水利电力部. SDS01-79.土工试验规程[S].水利出版社,1980.
    [37]黄润秋,许强,陶连金等.地质灾害过程模拟和过程控制研究[M].北京:科学出版社,2002.
    [38]Itasca Consulting Group.Flac3D Version 2.0 User’s manual[M].Minneapolis:ICG.1997.
    [39]刘帅红,薄景山,刘德东.岩土边坡地震稳定性评价方法研究进展[J].地震工程与工程振动,2005,20(1):164-171.
    [40]刘帅红,薄景山.岩土地震稳定性评价方法研究进展[J].防灾科技学院学报,2007,9(3):20-27.
    [41]祁生文,伍法权,严福章等.岩质边坡动力反应分析[M].北京:科学出版社,2007
    [42]陈育民,徐鼎平等. FLAC/FLAC3D基础与工程实例[M]中国水利水电出版社,2008
    [43]蒋溥,戴丽思.工程地震学概论[M]北京:地震出版社,1993
    [44]国家地震局,兰州地震研究所,宁夏自治区地震队.1920年海源大地震[M]北京:地震出版社,1980
    [45]任自铭.地震作用下斜坡动力响应及稳定性研究[D].西南交通大学硕士学位论文,2007
    [46]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [47] JTJ044-89.公路工程抗震设计规范[S].北京:人民交通出版社,1989.
    [48]程东幸,刘大安,丁恩保等.层状反倾岩质边坡影响因素及反倾条件分析[J].岩土工程学报,2005,27(11):1362-1366.
    [49]杨航宇,颜志平,朱赞凌等.公路边坡防护与治理[M].北京:人民交通出版社,2002.
    [50]陈蜀俊,党晓芙,曾心传等.奉节长江大桥北岸边坡在地震荷载作用下的稳定性分析[J].岩石力学与工程学报.2004,23(4):657-662.
    [51]陈国兴.岩土地震工程学[M].北京:科学出版社.2007:270-276.
    [52]胡聿贤.地震工程学[M].北京:科学出版社.1988:158-159.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700