用户名: 密码: 验证码:
电动汽车的非悬挂质量变化对整车平顺性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车在节能、环保和性能上具有传统汽车无法比拟的优势,已经成为世界公认的新能源汽车发展的主流。本文研究电动汽车非悬挂质量变化对整车平顺性的影响,即由于电动汽车采用电动轮驱动系统,其非悬挂质量发生巨大变化,导致整车舒适性能发生改变。针对这种变化,本文进行了系统的研究分析工作。
     本文首先介绍了采用电动轮驱动的电动汽车发展现状以及本论文的研究背景和意义,概括了汽车平顺性研究方面的知识,强调了本文研究的必要性。其次,建立了包括前后悬架、转向系、轮胎、车身等仿真模型。最后,进行了不同路况、不同车速、不同非悬挂质量的电动汽车整车仿真,在时域和频域内进行了该车的仿真试验分析。比较分析了相关评价指标仿真特性曲线,对仿真所得数据进行了处理,分析得出非悬挂质量变化大小对电动汽车平顺性的影响规律。
With the development of society and the continuous improvement of people's life, automobiles are becoming a tool of transportation. A good auto product should be an artwork. At the same time, people have a higher demand for transportation comfort. To ensure the safety, high efficiency and comfort of traffic and transportation, automobile ride comfort is getting more and more important .Automobile ride comfort is one of the most important performances of automobiles. Many automobiles companies are researching the automobile ride comfort and improving it to enhance the competitive power of their own automobiles. Therefore, the analysis of Vehicle ride comfort, has become a very important task.
     Electric vehicles is better than traditional vehicle in energy saving, environmental protection, and performance, it is the product of common role by the socio-economic benefits, energy and environmental protection. Electric vehicle has already become the new energy vehicle developmental mainstream which is recognized by the world. And using electric wheel drive system on electric which can reduce vehicle quality improve the performance and reduce the costs of vehicle is a feasibility technology. However, due to the introduction of Motor Wheel and the increasing of non-hoisting quality, the vehicle performance is greatly changed. Therefore, combining with the development of a new generation of domestic electric vehicle, this dissertation studies the simulation and analysis of vehicle ride.
     The whole dissertation includes five chapters:
     In chapter one, this dissertation review on the development of electric vehicles, and introduce the background and significance of this article. The summarization about this article is done.
     In chapter two, the knowledge, methodology and factors about Vehicle Ride Comfort is summed up in this dissertation, the weighted rms value of the acceleration method to evaluate Vehicle Ride Comfort is used.
     In chapter three, based on the software ADAMS/Car, this dissertation established a electric vehicle model. Model includes the front and rear suspensions system, the tire system, the rigid body system and the steering system. Through simulation, this dissertation tunes the stiffness of the front and rear suspensions system to meet the needs of Vehicle Ride Comfort simulation.
     In chapter four, based on the software ADAMS/Car Ride, this dissertation generates road spectrum document. The Vehicle Ride Comfort simulation of electric vehicle with different unsprung mass is done. Through comparison and analysis, the impact of unsprung mass on the Vehicle Ride Comfort is summed up.
     In chapter five, this dissertation describes the main results of the studies. Through this study, the Vehicle Ride Comfort of electric vehicles degrades with the increase of unsprung mass. The low-frequency vertical vibration acceleration of electric vehicles heart significantly increases with the increase of unsprung mass.
     Consequently, the vertical performance of electric vehicles with wheel-drive has been greatly changed. Therefore, in the development process of electric vehicle with wheel-drive, it should be to minimize the unsprung mass or use relatively small wheel motor.
引文
[01]于志生主编.汽车理论(第三版),机械工业出版社,2000.10
    [02]靳力强,王庆年,宋传学.电动轮结构对汽车接地性及舒适性的影响,吉 林大学
    [03] Hyeongcheol Lee and Masayoshi Tomizuka. Adaptive Vehicle Traction Force Control for Intelligent Vehicle Highway Systems (IVHSs). IEEE Transactions on Industrial Industrial electronics, VOL. 50, NO. 1, FEB 2003 p37-47
    [04] Masayuki Terashima, Tadashi Ashikaga. Novel Motors and controllers for high Performance Electric Vehicle with Four In-Wheel Motors. IEEE Transactions on Industrial Industrial electronics, VOL. 44, NO. 1, FEBRUARY 1997. p28-38
    [05] F.Carricchi, F.crescimbini, E.santini. Axial Flux Electromagnetic Differential induction motor.'Electric Machines and drives'. 11-13 September 1995, Conference PublicationNo.412, IEE, 1995 p1—5
    [06]宁国宝.电动车轮边驱动系统的发展,上海汽车,2006.11
    [07]陈清泉,现代电动车、电机驱动及电子电力技术,北京:机械工业出版 社,2006
    [08]孙建成,车辆行驶平顺性的预测与研究,汽车研究与开发,1998
    [09]王国强等,虚拟样机技术及其在ADAMS上的实践,西北工业出版社, 2002
    [10]孙建成车辆行驶平顺性的预测及研究,汽车研究与丌发,1998
    [11]高树新等,汽车脉冲输入平顺性评价指标限制的研究,汽车技术,1996
    [12]陈宪忠,时域内轿车行驶平顺性建模及仿真研究,吉林大学硕士学位论 文
    [13]袁士杰,吕哲勤.多刚体体系统动力学,北京理工大学出版社,1996.3
    [14]刘延柱,洪嘉振,杨海兴.多刚体系统动力学,高等教育出版社,1989.3
    [15] R. Schwertasek, R. E. Roberson, Dynamics of Multibody System, Berlin:Springer-Verlag, 1986.
    [16] G. Bianchi, W.Schiehlen, Dynamics of Multibody System, Berlin :Springer-Verlag, 1986.
    [17] A. A. Shabana, Dynamics of Multibody System, New York: Wiley, 1989.
    [18]喻凡,林逸.汽车系统动力学,北京:机械工业出版社,2005
    [19]姚祖康,路面管理系统,北京:人民交通出版社,1993
    [20]王岩松,耿艾莉.汽车平顺性非线性模拟分析及软件实现,渤海大学学报 (自然科学版),2005(V01.26)No.2
    [21]刘俊,林砺宗,刘小平,王刚.A。DA。MS柔体运动仿真分析研究及运用, 现代制造工程,2004第6期
    [22]曹丽亚,汽车脉冲平顺性仿真分析,北京理工大学学报,2005(’V01.28) No.4
    [23] MSC. Getting Started Using Adams/Car [K]. 2005
    [24]金睿臣,宋健.应用机械系统分析软件ADMAS研究汽车对路面随机输入 的影响,1998年ADAMS软件中国地区用户年会论文集
    [25]王国权,杨文通,许先锋,余群.汽车平顺性的虚拟试验研究,上海交通 大学学报,2003(V01.37)No.1l
    [26]王明容,宋永增,甄子键,任尊松,汽车平顺性建模与仿真分析,设计· 计算·研究,2005年第4期
    [27] MSC. Getting Started Using Adams/Car Ride. 2005
    [28]张威等.汽车动力学仿真模型的发展,汽车技术,2003年第2期
    [29]蔚晓丹,国际平整度指数IRI作为路面平整度评价指标的研究,公路交通 科技,1999年11月
    [30] Sayers M W, S M Karamihas. The Little Book of Profiling. University ofMichigan Transportation Research Institute. 1998
    [31] Sayers M W. On the Calculation of International Roughness Index from Longitudinal Road Profile. Transportation Research Record 1501.1995, 1-12
    [32]马天飞,王登峰,梁和平.利用:MSC ADAMS/Car·建立轿车的刚弹耦合模 型,计算机辅助工程,2004.6
    [33]GB/T7031-1986.车辆振动输入路面平度表示方法。汽车国家标准汇编
    [34]时培成,韦山.双横臂扭杆弹簧悬架线刚度计算及动态仿真,机械工程师, 2006年第8期
    [35]藤瑞品,胡良军,曾代忠,胡敏哲.轻型汽车悬架侧倾角刚度分析,企业 技术开发,2006(V01.25)No.5
    [36] Using ADAMS/Solver TM SubRoutines, Version9, MDI, June 20 1997
    [37] Using ADAMS/View TM Function Builder, Version9, MDI, June 20 1997
    [38] Using ADAMS/Solver TM, Version 9, MDI, 1997
    [39] ADAMS Theory Seminar, MDI, 1994
    [40]郭二生,空气悬架大客车操纵稳定性和行驶平顺性仿真与试验研究,吉 林大学硕士学位论文
    [41]王英华,时域内轿车行驶平顺性的进一步研究,吉林大学硕士学位论文
    [42]雷雨成,CAll90汽车悬架设计及平顺性分析,专用汽车,1994
    [43]郑建荣,ADA:MS-虚拟样机技术入门与提高,北京:机械工业出版社, 2002
    [44]李军等,ADAMS实例教程,北京理工大学出版社,2002
    [45]许先锋,随机路面输入的汽车平顺性仿真分析,美国MDI公司2001年 中国用户年会论文集
    [46]汽车工程手册编辑委员会,汽车工程手册·试验篇,人民交通出版社, 2001.05,284~285
    [47] Ronald A. Bixel et al. Development in Vehicle Center of Gravity and Inertial Parameter Estimation and Measurement. SAE. Transaction 950356
    [48]张庆才,李玉峰,董文明.汽车7自由度模型建模及在汽车平顺性能仿真 研究中应用,上海汽车,1999
    [49]李伟浩,汽车行驶平顺性评价方法,机电工程技术,2002.07,33(38)
    [50] J.Wittenburg, Dynamics of Systems of Rigid Bodies, Stuttgart, 1977
    [51] T.R.Kane, D.A.Levinson, Multibody Dynamics, Journal of Applied Mechanics,Vol.50, 1983
    [52] ADAMS/Tire Option, Version 12.0,Mechanical Dynamic,Inc.
    [53] Using ADAMS /View, Function Builder, Version 12.0
    [54]中华人民共和国国家标准,汽车平顺性脉冲输入行驶试验方法, GB 5902—86
    [55]中华人民共和国国家标准,汽车平顺性随机输入行驶试验方法, GB/T4970-1996

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700