用户名: 密码: 验证码:
大型数控切点跟踪曲轴磨床智能加工工艺及策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大型曲轴是船舶、机车和发电设备内燃机上的关键零件,其加工质量与内燃机的耐磨损性、耐疲劳性、振动、噪声等性能关系密切,并直接影响内燃机的可靠度和使用寿命。船舶、机车制造业的快速发展、内燃机产品的更新换代,对大型曲轴的制造工艺提出了高速、精密、复合化的要求。
     针对切点跟踪磨削技术的工艺特点和加工对象大型曲轴的特性,结合“高档数控机床与基础制造装备重大专项”——大型数控切点跟踪曲轴磨床项目(编号:2009ZX04001-111)的实施,本文以提高大型曲轴切点跟踪磨削过程控制水平为研究主旨,围绕着大型曲轴智能磨削的关键技术及工艺展开系统研究,主要对曲轴弹性变形、自动定位及磨削余量分配优化、磨削参数智能决策、砂轮磨损对连杆颈几何形状和表面质量的影响、误差智能补偿等问题进行深入研究分析,并引入传感器检测及人工智能技术为解决这些难题提出了相应的方法,论文的主要研究工作和成果如下:
     研究了曲轴在重力、夹具夹紧力和磨削力作用下产生的弹性变形及其对连杆颈尺寸、圆度的的影响。在此基础上,分析了中心架辅助支撑及优化磨削工艺、合理安排工步顺序对减少曲轴弹性变形的作用。根据垂直、水平方向弹性变形的不同特点,重点针对中心架辅助支撑,研究了基于档距变化调整垂直方向支撑块位置的变形控制方法,并提出了基于主轴颈切深误差调整水平方向支撑力的变形控制方法,实现了对曲轴不同方向上弹性变形的有效控制。
     为了快速、精确地确定曲轴工件坐标系与机床坐标系之间的关系并且保证加工余量的均匀分布,以曲轴自动定位测量系统为基础,首先制定了触发式测头自动跟踪测量连杆颈表面的控制策略,通过测量数据确定了各档连杆颈圆柱面方程。在此基础上,构建了基于各档连杆颈磨削余量分布优化的加工零点定位模型,并建立了约束条件以避免“负余量”现象。求解此模型时采用杂交粒子群算法,引入基于不可行度的竞争选择机制处理约束,实例分析表明该模型和算法在求解磨削余量、确定磨削点位方面具有准确、快速的特点。
     探讨了曲轴切点跟踪磨削参数选取问题,设计了磨削参数智能决策系统。先对曲轴切点跟踪磨削系统参数进行分类,在此基础上将参数决策任务进行了分解,着重为磨削用量和砂轮修整参数的选取,设计了以范例推理Agent为基础,以模型推理Agent为核心,以规则推理Agent为补充的三种决策Agent。在此基础上,以黑板结构作为多Agent之间通讯与相互作用的媒介,构建了由交互层、决策层和资源层组成的基于多Agent的参数智能决策系统,实现了初始磨削用量的优化选择。
     砂轮的状态在一定程度上决定了被加工工件的磨削质量,为此详细分析了砂轮半径变化对连杆颈几何形状的影响以及砂轮磨损对连杆颈表面波纹度和粗糙度的影响。以此为基础,结合曲轴切点跟踪磨削过程控制的需要,研究了基于接触传感器的砂轮半径测量方法;并利用砂轮磨粒破碎、剥落产生的声发射信号,根据其振铃计数和均方根与设定阈值的比较结果进行磨削接触或修整过程监控;又以当量磨削厚度、声发射信号均方根、砂轮主轴功率信号的多项式回归曲线均值作为输入,砂轮修整信号作为输出,构建了基于RBF神经网络的砂轮磨损识别模型,并通过实验验证了该模型在砂轮磨钝监测中的有效性。
     研究了曲轴切点跟踪磨削加工误差补偿策略和智能补偿方法,并设计了相应补偿系统。首先提出一种适应切点跟踪磨削特点的在线误差补偿策略:通过向数控系统提供附加脉冲修正量的方式消除曲轴连杆颈加工误差。在此基础上,针对连杆颈综合加工误差,研究了在线智能预补偿方法,给出相应的补偿算法与推理规则,并利用RBF神经网络选取补偿调节因子,对补偿力度进行控制。又引入了基于模糊自学习的误差补偿方法,以连杆颈半径误差及其变化率作为模糊推理输入量,并利用自学习算法将模糊推理输出与以往补偿经验相结合作为砂轮架跟踪运动的附加修正量。磨削实验结果显示,两种补偿方法都能有效地缩小连杆颈的圆度误差,但前者更适用于“边加工边补偿”的在线补偿,而后者则具有更好的补偿精度和更快的误差收敛速度。
As the key part of the internal-combustion engine used in ship, locomotive and electric power equipment, the large-scale crankshaft has close relationship with its wearing resistance, fatigue resistance, vibration and noise characteristic and has the direct influence on its reliability and useful life. With the rapid development of ship and locomotive building manufacturing, the older generations of internal-combustion engines have to be replaced by the new ones, which ask the high-speed, high-precision and complex processing technique of the large-scale crankshaft.
     Supported by National Science and Technology Major Projects to research and develop the large-scale tangential point tracing grinding machine for crankshaft(No. 2009ZX04001-111), this dissertation does systematical research on some key problems of tangential point tracing grinding to enhance the control level of grinding process for the large-scale crankshaft. Keeping in mind the special characteristics of this grinding technique and the huge crankshaft, the deep studies are conducted on the elastic deformation of crankshaft, the automatic positioning of crankshaft, the optimization of grinding allowance distribution, the intelligent decision of grinding parameters, the influence of grinding wheel wearing on machining quality and the intelligent compensation of machining error. The sensor detecting technology and the artificial intelligence technology are introduced in this dissertation to resolve the technical difficulties as mentioned above. The main researches and results of this dissertation are summarized as follows:
     The influence of the elastic deformation on the ground crank pin’s dimension and roundness due to gravity, clamping force and grinding force is analyzed. Based on this analysis the methods including the auxiliary support from steady rest, the optimization of grinding parameters and the sound order of grinding process, for reducing crankshaft’s elastic deformation is discussed. According to the different characteristics of vertical and horizontal deformations, the emphasis is putted on the study of corresponding control of steady rests’supporting force in each direction. The process for position control of steady rests’vertical supporting pads is based on the change of crank span. And based on the error of grinding depth for crank journal, a dynamic adjustment method is proposed to control the horizontal supporting force. Thanks to these control methods, crankshaft’s elastic deformation can be decreased effectively.
     To position the crankshaft in machine coordinate system with the uniform distribution of grinding allowance automatically and exactly, the strategy for controlling touch trigger probe to realize the dynamic tracking measurement for cylindrical surface of crank pin is designed on the basis of measurement device grounded on coordinate measuring principle. Using formulae of all the crank pins’cylindrical surfaces obtained by measurement data, the method for crankshaft’s automatic position is presented based on building optimization model of grinding allowance distribution. And the constraints are also established to avoid the negative grinding allowance of semi-manufactured crank pins. The hybrid particle swarm algorithm is adopted to solve the optimization model and the competition strategy based on unfeasible degree of solution is utilized to handle the constraints. The case study demonstrates that crankshaft can be located in machine coordinate system with uniform distribution of grinding allowance quickly and exactly through this optimization model and its solution algorithm.
     The intelligent decision system is designed to select the parameters of crankshaft tangential point tracing grinding. According to the classification of all the parameters, the parameter decision-making task is analyzed. CBR Agent,RBR Agent and MBR Agent are respectively designed as the basic, key and supplementary modules for inferring the main grinding parameters and grinding wheel dressing parameters. Using blackboard to mediate the communications and interactions among all the agents, the intelligent decision system consisting of HMI layer, decision layer and resource layer based on multi-agent framework is founded to realize the selection and optimization of the initial parameters of crankshaft tangential point tracing grinding.
     The state of grinding wheel has decisive influence on grinding quality of workpiece to a certain extent. Thus this dissertation analyzes the influence of change in grinding wheel dimesnsion on the ground contour of crank pin as well as the influence of grinding wheel wearing on surface waviness and roughness of the ground crank pin in details. According to the demand of controlling crankshaft tangential point tracing grinding, the measurement process based on contact senor is studied to survey grinding wheel radius. The ring-down count and root mean square of acoustic emission signal produced by the fragmentation and exfoliation of abrasive grains are applied to detect the contacting state of the grinding wheel and the workpiece or the dressing state of the grinding wheel. The grinding wheel wearing identification model is build using radical basis function neural networks (RBF NN)which takes the equivalent grinding thickness, the root mean square of AE signal and the average value of grinding wheel spindle power signal after polynomial regression analysis as inputs and the dressing signal of grinding wheel as output. The validity of this identification model is then verified by the experiment results.
     The compensation strategy, method and system for machining error of crank pin in tangential point tracing grinding are researched deeply in this dissertation. The additional impulses as the displacement correction of grinding carriage are given to numerical control system for reducing the errors, which is an effective compensation strategy apt for tangential point tracing grinding. Based on this strategy, an intelligent machining error on–line precompensation system is studied and its corresponding compensation algorithms and reasoning rules are also introduced. The RBF NN is used to decide the compensation regulation factor by which the intensity of error compensation can be controlled. Considering both the error compensation experience and its developmental trend, a new compensation method based on fuzzy reasoning and self-learning for crank pin’s machining error is proposed. According to the radius error of crank pin and its change, the fuzzy reasoning module infers the compensation value for crank pin’s machining error. The grinding experimental results show that the roundness error can be reduced effectively by both two methods, but the former method is more suitable for on-line compensation system and the latter one has higher compensation precision and efficiency.
引文
【1】.刘玉岩,任光胜.船用柴油机的大型曲轴机械加工工艺浅析[J].机械设计与制造,2008,(12):242-243.
    【2】.虞行国,刘江.大型曲轴磨床典型结构与先进的磨削工艺[J].金属加工(冷加工),2009,24:22-24.
    【3】.田应仲.曲轴非圆磨削表面几何形状误差及其在线测量方法的研究[D].上海:上海大学,博士学位论文,2007.
    【4】. T(?)nshoff Hans Kurt,Scherger Stephan,Hinkenhuis Helmut. Adaptive process control in noncircular grinding[C]. Dynamic Systems and Control Division (The ASME International Mechanical Engineering Congress and Exposition),1999,67:923-929.
    【5】. L. Guo,A. Sch(?)ne. A comprehensive approach and its application to nonlinear adaptive control to form grinding processes[C]. Proceedings of the 31st Conference on Decision and Control,Tucson,Arizona,1992,2:1267-1272.
    【6】. T. Fujiwara,S. Tsukamoto,M. Miyagawa. Analysis of the grinding mechanism with wheel head oscillating type CNC crankshaft pin grinding[J]. Key Engineering Materials, 2005, 291-292(8):163-168.
    【7】.许第洪,孙宗禹,周志雄.切点跟踪磨削法运动模型的研究[J].机械工程学报,2002,38(8):68-73.
    【8】.周志雄,罗红平,宓海清.切点跟踪磨削法磨削曲轴零件的若干问题探讨[J].中国机械工程,2002,138(238):2004-2007.
    【9】.周志雄,罗红平,许第洪等.切点跟踪磨削法中工件的刚度误差分析及其补偿[J].机械工程学报,2003,39(6):98-10.
    【10】.谢胜泉.非圆柱表面回转体零件CBN磨削CNC系统关键技术研究[D].武汉:华中理工大学,博士学位论文,1998.
    【11】.谢胜泉,段正澄,邓勇.自适应跟踪算法在非圆柱表面磨削加工中的应用[J].中国机械工程,1998,9(7):7-9.
    【12】.谢胜泉,段正澄.自适应零相位误差跟踪算法用于非圆柱磨削[J].华中理工大学学报,1998,(2):32-34.
    【13】.谢胜泉,朱国力,邓勇.曲轴磨削加工新方法与插补算法的研究[J].机械与电子,1998,(3):31-33.
    【14】.吴钢华,何永义,田应仲.曲轴非圆的恒当量磨削厚度磨削运动模型研究[J].中国机械工程,2006,17(6):587-591.
    【15】.吴钢华,沈南燕,方明伦.曲轴非圆磨削运动中动态误差及补偿[J].机械工程学报, 2009,45(1):101-105.
    【16】. Tian Yingzhong,Li Ming,Li Wei. Multi-sensor tracing principle for crankshaft roundness measurement during noncircular grinding process[C]. International Technology and Innovation Conference, Hangzhou China,2006,524:258-262.
    【17】.马维民.数控非圆磨削误差仿真和补偿技术的研究[D].北京:北京航空航天大学,硕士学位论文,2002.
    【18】.姚峻.汽车零件的磨削──美国Landis公司最新磨削技术[J].磨床与磨削,2000,(1):65-66.
    【19】.荣烈润.高速磨削技术的现状及发展前景[J].机电一体化,2003,(1):6-10.
    【20】. Jucrank-cn.pdf[EB/OL].Http://www.miit.gov.cn/n11293472/n11293832/n12843926/13200190.html, 2006.
    【21】.埃马克机床(太仓)有限公司.创新研发“随动磨削”技术——NAXOS-UNION公司曲轴磨削全球领先[J].航空制造技术,2007,(5):106-107.
    【22】.张青雷,郭井宽.基于仿真技术的船用曲轴精加工校调工艺研究[J].上海电气技术,2008,1(1):39-44.
    【23】.李勇,郑建荣,肖建伟.基于数值模拟的大型曲轴精加工调校方法研究[J].制造技术与机床,2009,(10):118-121.
    【24】. Dieter Lehmann. Process for grinding crankpins of a crankshaft and grinder for this purpose: United States, 5453037[P/OL].1995-09-26. http://patft.uspto.gov/netacgi/nph-Parser(?) Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum. htm&r=1&f=G&l=50&s1=5453037.PN.&OS=PN/5453037&RS=PN/5453037.
    【25】. Micheal Laycock. Method and apparatus for supporting a crankshaft in a grinding machine for grinding the crankpins of the crankshaft: United States, 6149503[P/OL]. 2000-11-21. http://patft.uspto.gov/netacgi/nph-Parser(?)Sect1=PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6149503.PN.&OS=PN/6149503&RS=PN/6149503.
    【26】. Erwin Junker. Rough- and finish-grinding of a crankshaft in one set-up: United Sattes, 6878043[P/OL]. 2005-04-12. http://patft.uspto.gov/netacgi/nph-Parser(?)Sect1= PTO1&Sect2=HITOFF&d=PALL&p=1&u=%2Fnetahtml%2FPTO%2Fsrchnum.htm&r=1&f=G&l=50&s1=6878043.PN.&OS=PN/6878043&RS=PN/6878043.
    【27】.杨光,郭艳丽,修文卿.基于机器视觉的曲轴加工初始等位[J].机械工程师,2008,(5):48-49.
    【28】. I. Ainsworth,M. Ristic,D. Brujic. CAD-based measurement path planning for free-form shapes using contact probes[J]. International Journal of Advanced Manufacturing Technology,2000,16:23-31.
    【29】.顾永生.曲轴主轴颈和连杆轴颈的粗加工工艺分析[J].世界制造技术与装备市场,2002,(4):45-48.
    【30】.李海国.发动机曲轴制造技术新动向[J].制造技术与机床,2006,(8):21-23.
    【31】.李海国.国内外内燃机曲轴制造技术现状及发展趋势[J].山东内燃机,2003,(l):13-16.
    【32】.郭艳丽.基于毛坯最佳匹配的曲轴定位基准的关健技术研究[D].武汉:武汉理工大学,硕士学位论文,2009.
    【33】.李春,刘书桂.三坐标测量机的测头半径补偿与曲面匹配[J].仪器仪表学报,2003,24(4):145-147.
    【34】.刘郁,周凯,毛德柱.智能寻位加工技术中一种新的寻位方法[J].制造技术与机床,2001,(3):27-29.
    【35】.廖菲,曾韬.基于三坐标测量机的曲面测量规划方法[J].微计算机信息,2010,10:152-154.
    【36】.曾艳,李斌,彭芳瑜.面向数控加工的大型螺旋桨桨叶的余量估算问题研究[J].中国机械工程,2006,6:566-569.
    【37】.沈兵,吴联银,高军.数控加工中毛坯最佳适配算法的研究[J].组合机床与自动化加工技术,1999,7:14-18.
    【38】. Ko K H, Maekawa T,Patrikalkais N M. Algorithms for optimal partial matching of free-form objects with sealing effeets. Graphical models,2005,67(2):120-148.
    【39】. Marek Dobosz, Adam Wozniak.CMM touch trigger probes testing using a reference axis. Precision Engineering, 2005,29(3):281-289.
    【40】. Kwan H.Lee, Hyun-pung Park. Automated inspection planning of free-form shape parts by laser scanning. Robotics and Computer-Integrated Manufacturing, 2000, 16(4):201-210.
    【41】.陈继平,李元科.现代设计方法[M].武汉:华中理工大学出版社,2000.
    【42】.龚纯,王正林.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    【43】.高尚,杨静宇.群智能算法及其应用[M].北京:中国水利水电出版社,2006.
    【44】. Comley P,Walton I,Jin T. A high material removal rate grinding process for the production of automotive crankshafts[J]. CIRP Annals-Manufacturing Technology, 2006 ,55,(1):347-350.
    【45】.王红军,韩秋实,李光.数控凸轮轴磨床磨削参数智能化选择模型研究[J].制造技术与机床,2003,11:34-37.
    【46】. W B Rowe,Y Li, B Mills. Application of intelligent CNC in grinding[J]. Computers in Industry,1996,31:45-60.
    【47】. R Cai,W B Rowe,J L Moruzzi. Intelligent grinding assistant (IGA)-system development part I intelligent grinding database[J]. International Journal of Advanced Manufacture Technology, 2007, 35:75-85.
    【48】. W B Rowe,Y Li,I Inasaki,S Malkin. Applications of artificial intelligence in grinding[J].CIRP Annals-Manufacturing Technology, 1994, 43(2):521-531.
    【49】. M Sakakura, I Inasakia. Intelligent data base for grinding operations[J]. CIRP Annals-Manufacturing Technology, 1993, 42(1):379-382.
    【50】.楼少敏.模糊神经网络在磨削参数决策系统的应用研究[J].机电工程,2001,18(5):105-107.
    【51】.严涛,董秀林,周福章.基于FNN智能型磨削参数决策系统[J].机床与液压,1999,4:22,27-29.
    【52】.刘贵杰,巩亚东,王宛山.磨削加工参数智能化在线调整方法研究[J].中国机械工程,2003,14(15):1268-1271.
    【53】. Walsh A,Baliga B,Hodgson P. A study of the crankshaft pin grinding forces[J]. Key Engineering Materials-Advances in Abrasive Technology,2004,257-258:75-80.
    【54】. Fujiwara T,Tsukamoto S,Miyagawa M,Omori A. Analysis of pin grinding mechanism in twin axes synchronous controlled crankshaft pin grinder[J]. Transactions of the Japan Society of Mechanical Engineers, Part C, 2007, 73,(8):2350-2356.
    【55】. H K T(?)nshoff, T Friemuth, J C Becker. Process Monitoring in Grinding Original Research Article[J]. CIRP Annals-Manufacturing Technology,51(2), 2002:551-571.
    【56】. I Inasaki, B Karpuschewski, H S Lee. Grinding Chatter-Origin and Suppression[J]. Annals of CIRP, 2001, 50(2):515-534.
    【57】. M Lee, J Bae, K Yoon, F Harashima. Real time and an in-process measuring system for the grinding process cylindrical workpieces using Kalman filtering[J]. IEEE Transactions on Industrial Electronics, 2000, 47(6):1326-1333.
    【58】. J Fu, C Troy, K Mori. Chatter classification by entropy functions and morphological processing in cylindrical traverse grinding[J]. Precision Engineering, 1996, 18(2-3):110-117.
    【59】. J S Kwak, M K Ha. Intelligent diagnostic techniques of machining state for grinding[J]. International Journal of Advanced Manufacturing Technology,2004, 23(5-6):436-443.
    【60】.刘贵杰,巩亚东,王宛山.磨削质量在线智能监测及模糊综合评判[J].金刚石与磨料磨具工程,2004年4月,总第140期第2期,pp.25-27
    【61】.刘贵杰,巩亚东,王宛山.基于神经网络的磨削砂轮状态的在线监测[J].东北大学学报(自然科学版),2002,23(10):984-987.
    【62】.巩亚东,王宛山.声发射磨削接触检测系统的研究[J].东北大学学报(自然科学版), 1997,18(6):667-670.
    【63】.王强,刘贵杰,王宛山.基于小波包能量系数法的砂轮状态监测[J].中国机械工程,20(3):285-287.
    【64】.刘贵杰,巩亚东,王宛山. AE信号归原处理法在砂轮磨钝监测中的应用[J].机械制造,2002, 40(7):59-60.
    【65】.刘贵杰.磨床砂轮智能监测及修整系统[J].机械制造,2003,41(464):57-58.
    【66】.巩亚东,吕洋,王宛山.基于多传感器融合的磨削砂轮钝化的智能监测[J].东北大学学报(自然科学版),2003,24(3): 248-251.
    【67】.毛彬,周国荣,蒋复岱.基于小波变换的轧辊磨床振动信号分析研究.噪声与振动控制. 2007年2月,第1期, p48-50.
    【68】.昝涛,王民,李刚,费仁元.小波包分解与Fuzzy ART神经网络在磨削振动监测中的应用[J].北京工业大学学报,2008,34(7):679-681.
    【69】. Pawel Lezanski. An intelligent system for grinding wheel condition monitoring[J]. Journal of Materials Processing Technology, 2001, 109:258-263.
    【70】.陈爱弟,王信义,王忠民,杨大勇.用于监测刀具磨损的声发射(AE)特征优选方法[J]. 北京理工大学学报, 2000,20(3): 270-275.
    【71】. R. Teti, K. Jemielniak, G. O’Donnell, D. Dornfeld. Advanced monitoring of machining operations[J]. CIRP Annals-Manufacturing Technology,2010,(59):717–739.
    【72】.许第洪.切点跟踪磨削法核心技术的研究[D].长沙:湖南大学,博士学位论文,2005.
    【73】.吴钢华.曲轴非圆磨削轨迹控制关键技术研究[D].上海:上海大学,博士学位论文, 2006.
    【74】.吴钢华,沈南燕,方明伦.曲轴非圆磨削运动中动态误差及补偿[J].机械工程学报,2009,45(1):101-105.
    【75】. Tian Xincheng, J P Huissoon, Xu Qing. Dimensional Error Analysis and Its Intelligent Pre-compensation in CNC Grinding[J]. International Journal of Advanced Manufacturing Technology, 2008, 36:28-33.
    【76】.田新诚,徐青,彭勃.磨削加工误差智能补偿系统及输入输出响应[J].系统仿真学报,2003,15(11):1631-1633.
    【77】.樊晓霞,张建斌.一种六缸曲轴的磨削加工仿真分析[J].组合机床与自动化加工技术,2008,2:83-86.
    【78】.刘国庆,杨庆东. ANSYS工程应用教程(机械篇)[M].北京:中国铁道出版社,2003.
    【79】.徐中明,牟笑静,彭旭阳.基于有限元法的发动机曲轴静强度分析[J].重庆大学学报,2008,31(9):977-981.
    【80】.王亚双,王凤岐,马秋生,王怀明.基于ANSYS的JZH25型均质机曲轴的应力分析[J]. 华北航天工业学院学报,2005,15(4):20-22.
    【81】.张海峰.大型压缩机曲轴特性研究[D].南京:南京理工大学,硕士学位论文,2005.
    【82】.李黎明. ANSYS有限元分析实用教程[M].北京:清华大学出版社,2005.
    【83】.黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    【84】. Heath A R,Mc Namara PM. Crankshaft stress analysis combination of finite element and classical analysis Techniques[J]. Trans. ASME,J. Eng. Fro Gas Turbines and Power,1990, 112(7):268-275.
    【85】.陈英莫,陈波.高精度磨削细长轴的简单新工艺[J].精密制造与自动化,2005,(2):55-57.
    【86】.吴丽萍.巧用曲轴中心架[J].金属加工(冷加工),2010,16:44.
    【87】.陈昭莲.细长轴在机械加工中常见问题及处理措施[J].机械工程师,2000,(5):27-28.
    【88】. S. Malkin.磨削技术理论与应用[M].沈阳:东北大学出版社,2002,8.
    【89】. Yongsheng Gao ,Barrie Jones. Positon motion control of workpiece steadies for compensation in the traverse gringding process[J]. Proceedings of the Third IEEE Conference on Control Applications, Glasgow, UK, 1994, 3:1493-1498.
    【90】.邱琦,璩玮.中心架的设计与加工[J].精密制造与自动化,2010,(1):36-38,54.
    【91】. Shen Nanyan,He Yongyi,Wu Ganghua. Calculation model of the deformation due to grinding force in crank pin non-circular grinding[J]. International Technology and Innovation Conference, Hangzhou, China, 2006:1325-1330.
    【92】.陈满意,李斌,段正澄.叶片零件毛坯余量分布优化问题研[J].机械科学与技术,2006,25(2):246-248.
    【93】.刘彦臣,王彪.利用数控设备进行在线测量的探讨[J].机械管理开发,2004,(3):23-24.
    【94】.侯宇.三坐标测量机上圆柱度评定的一个实用算法[J].宇航计测技术, 1994,13(6):16-19.
    【95】.刘国光.基于Matlab评定圆柱度误差[J].工程设计学报,2005,12(4):236-239.
    【96】.陈立杰,张镭,张玉.直角坐标采样时的圆柱度误差数学模型[J].东北大学学报(自然科学版),2005,26(7):677-679.
    【97】.李惠芬,蒋向前,张玉.角坐标系下计算圆柱度误差的一种实用算法[J].仪器仪表学报, 23(4):424-426.
    【98】.史文彬.关于使用数控机床实现在线测量——系统连接的探索与研究[D].太原:中北大学,硕士学位论文,2007.
    【99】.王春,于随然,卢杰持.采用触发测头进行曲面自动跟踪测量[J].大连理工大学学报, 1998,38(1):47-49.
    【100】.刘法军.采用中心架控制曲轴磨削时主轴跳动的分析[J].内燃机,1996,(1):17-18.
    【101】.黄越,王东明,周锡青.求解函数优化问题的自适应粒子群算法[J].科技信息, 2009,7:8-9.
    【102】.李炳宇,萧蕴诗,吴启迪.一种基于粒子群算法求解约束优化问题的混合算法[J].控制与决策,2004,19(7):804-807,812.
    【103】.刘华葵,林玉娥,王淑云.粒子群算法的改进及其在求解约束优化问题中的应用[J]. 吉林大学学报,2005,43(4):472-476.
    【104】.寇晓丽.群智能算法及其应用研究[D].西安:西安电子科技大学,博士学位论文,2009.
    【105】.崔长彩,黄富贵,张认成,李兵.粒子群优化算法及其在圆柱度误差评定中的应用[J].光学精密工程, 2006, 14(2):256-260.
    【106】. Natsuki Higashi, Hitoshi Iba. Particle swarm optimization with gaussian mutation[C].Proceedings of the Swarm Intelligence Symposium, 2003:72-79.
    【107】. Morten Lovbjerg, Thomas Kiel Rasmussen, Thiemo Krink. Hybrid particle swarm optimization with breeding and subpopulations[C]. Proceedings of the Genetic and Evolutionary Computation Conference, 2001.
    【108】. Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems[C]. Proceedings of the Euro-International Symposium on Computational Intellgence, 2002.
    【109】.黄圣杰.求解约束优化问题的粒子群算法研究[D].南京:南京信息工程大学,硕士学位论文,2008.
    【110】.张雯雰,刘华艳,孟令梅.改进的群搜索优化算法在MATLAB中的实现[J].电脑与信息技术, 2010, 18(3): 44-46.
    【111】.韩小雷.粒子群一模拟退火融合算法及其在函数优化中的应用[D].武汉:武汉理工大学,硕士学位论文,2008.
    【112】.张敏慧.改进的粒子群计算智能算法及其多目标优化的应用研究[D].杭州:浙江大学,硕士学位论文,2005.
    【113】. C A Coello, M S Lechuga. A proposal for multiple objective particle swarm optimization[C]. IEEE Proceedings World Congresson Computational Intelligence ,2002:1051-1056.
    【114】. Shi Y H,Eberhart R C. Pamareter selection in particle swarm optimization[C]. Proceeding of the7th Annual Conference on Evolutionary Programming, 1998:591-600.
    【115】. Meng Chia Hsiang. Automated precision measurement of surface profile in CAD-directed inspection[J]. IEEE Transactions on Robotics and Automation,1992,10(2):268-278.
    【116】. F M M Chan, T G King, K J Stout. The influence of sampling strabegy on a circular feature in coordinate measurement[J].Measurement, 1996,19(2):73-81.
    【117】. Binh Konr. A multi-objective evolution strategy for constrained optimization Problems[C]. Proceedings of the 3rd International Conefrence on Genetic Algorithm, Brno,Czech RePublic,1997:176-182.
    【118】. Steven N Spitz, Aristides A G Requicha. Multiple-goals path planning for coordinate measuring machines[C]. Proceedings-IEEE International conference on Robotice and Automation, 2000:2322-2323.
    【119】. Steven Nadav Spitz. Dimensional inspection planning for coordinate measuring machines[D]. Los Angeles, California, U.S: University of Southern California, Thesis for the degree of Doctor of Philosophy, 1999.
    【120】. Wei Gao, Jun Yokoyama, Hidetoshi Kojima, Satoshi Kiyono. Precision measurement of cylinder straightness using a scanning multi-probe system[J]. Precision Engineering, 2002,26(3):279-288.
    【121】. Kwan H.Lee, Hyun Pung Park. Automated inspection planning of free-form shape parts by laser scanning[J]. Robotics and Computer-Integrated Manufacturing, 2000, 16(4):201-210.
    【122】. H L Liu, H M Shi, B Li, X Li. A new method and instrument for measuring circular motion error of NC machine tools[J]. International Journal of Machine Tools and Manufacture,2005,45(11):1347-1351.
    【123】.耿建鲁.基于黑板系统的多智能体系统实现方法的研究[D].哈尔滨:哈尔滨工程大学,硕士学位论文,2003.
    【124】.黄波,倪重匡.一种基于黑板模型的智能决策系统生成器的结构设计[J].计算机研究与发展, 1997, 34(5):382-386.
    【125】.孙喁喁,黄光球.基于黑板的多Agent智能决策支持系统的研究[J].现代电子技术, 2007, 20:85-87,93.
    【126】.蒋丽娟,刘卫国.基于层次黑板模型的多Agent系统研究[J].计算机系统应用, 2008, 5:10-13.
    【127】. Y Li,W B Rowe,B Mills. Study and selection of grinding conditions Part 1: grinding conditions and selection strategy[C]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 1999, 213:119-129.
    【128】. W B Rowe,Y Li,X Chen,B Mills. An intelligent multiagent approach for selection of grinding conditions[J]. CIRP Annals-Manufacturing Technology, 1997, 46(1):233-238.
    【129】. Cao Yuada,Jiang Nutao. A blackboard-based multi-agent cooperative expert system tool[J]. Journal of Beijing Institute of Technology,1998, 7(4): 406-411.
    【130】. Jose Negrete Martinez,Pedro Pablo Gonzalez Perez. Net of multi-agent expert systems with emergent control[J]. Expert Systems with Applications, 1998, 14:109-116.
    【131】. Y.C. Jiang, Z.Y. Xia, Y.P. Zhong, S.Y. Zhang. An adaptive adjusting mechanism for agent distributed blackboard architecture. Microprocessors and Microsystems 29 (2005):9-20.
    【132】. Suzanne D. Pinson, Jorge Anacleto Louqa., Pavlos Moraitis. A distributed decision support system for strategic planning. Decision Support Systems 20 (1997):35-51.
    【133】.傅杰才.磨削原理与工艺[M].长沙:湖南大学出版社,1986,8.
    【134】. F T法拉戈.美国磨削技术[M].北京:机械工业出版社,1991,3.
    【135】.李伯民,赵波.实用磨削技术[M].北京:机械工业出版社, 1996.
    【136】.殷作禄.高级磨工技术[M].北京:机械工业出版社, 2000.
    【137】.蔡荣莲,赵怡旻,陈永法.超声波磨削控制仪在磨床的应用[J].精密制造与自动化,2005,(1):18-20.
    【138】. L Xue,F Naghdy,C Cook. Monitoring of wheel dressing operations for precision grinding[C]. IEEE International Conference on Industrial Technology, 2002, 2002,(2):1296-1299.
    【139】.王欣玲,张洪.表面结构(粗糙度、波纹度、形状)测试技术研究[J].机械工业标准化与质量, 2000,(2):19-23.
    【140】.姜永,武林跃.砂轮不平衡量对磨削表面波纹度影响[J].长春光学精密机械学院学报, 2001,24(3):29-31.
    【141】.官承准,梁式.磨削表面波纹度的若干影响因素[J].广西大学学报(自然科学版),1989,(4):39-44.
    【142】.胡俊标.表面波纹度在磨损过程中变化机理的研究[J].机械制造,2001,(6):30-32.
    【143】. Xun Chen, W B Rowe, B Mills. Analysis and simulation of the grinding process. Part IV: effects of wheel wear[J]. International Journal of Machine Tools and Manufacture, 1998, 38(1-2):41-49.
    【144】. X Zhou, F Xi. Modeling and predicting surface roughness of the grinding process[J]. International Journal of Machine Tools & Manufacture, 2002, 42, 969-977.
    【145】. Y D Gong, B Wang, W S Wang. The simulation of grinding wheels and ground surface roughness based on virtual reality technology[J]. Journal of Materials Processing Technology, 2002,129:123-126.
    【146】. Fritz Klocke, Barbara Linke. Mechanisms in the generation of grinding wheel topography by dressing[J]. Production Engineering, 2008,2(2):157-163.
    【147】. A Hassui, A E Diniz, J F G Oliveira. Experimental evaluatuion on grinding wheel wear through vibration and acoustic emission[J]. Wear,1998,217:7-14.
    【148】. Albert J Shih, Jeffrey L Akemon. Wear of the blade diamond tools in truing vitreous bond grinding wheels Part I. Wear measurement and results[J]. Wear 2001, 250: 587-592.
    【149】. T M A Maksoud, M R Atia. Review of Intelligent Grinding and Dressing Operations[J]. Machining science and technology, 2004,8(2):263-276.
    【150】.严文浩.砂轮磨损的测量[J].磨料磨具与磨削,1987,3(39):43-48.
    【151】.王如松,陈文杰,宁同海.磨床数控化改造中砂轮形状的自动检测与修整[J].精密制造与自动化, 2007, 172(4): 54-57.
    【152】. Dittel-System AE 6000 Process Monitoring Module Installation and Operation Manual.pdf[EB/OL]. www.dittel.com. 2005,4.
    【153】. T Warren Liaoa, Chi-Fen Tingb, J Quc. A wavelet-based methodology for grinding wheel condition monitoring[J]. International Journal of Machine Tools & Manufacture,2007, 47:580-592.
    【154】.侯卫兵,冯冠平.应用于磨床砂轮磨钝及故障检测的神经网络研究[J].测试技术学报, 1996,10(2-3): 537-543.
    【155】.蒋丽英,王蕾,席剑辉,徐涛.基于RBF网络的刀具磨损状态预测技术研究[J].仪器仪表学报, 2009,30(6):196-199.
    【156】.耿荣生,沈功田,刘时风.声发射信号处理和分析技术[J].无损检测,2002,24(1): 23-28.
    【157】.宋贵亮,巩亚东.砂轮精确修整时的声发射检测方法[J].新技术新工艺, 2000,(1):21-22.
    【158】.卢静波,吴艺能.非线性回归模型的线性变换和正交多项式回归[J].统计与决策, 2009,23: 13-14.
    【159】.丁小峰,周月超.基于RBF神经网络的刀具磨损量的估测[J].机床与液压, 2005, 10: 196-199.
    【160】.朱明星,张德龙. RBF网络基函数中心选取算法的研究[J].安徽大学学报(自然科学版),2000, 24(1):72-78.
    【161】.臧小刚,宫新保,常成.一种基于免疫系统的RBF网络在线训练方法[J].电子学报, 2008, 36(7):1396-1400.
    【162】.王维.异形螺杆加工刀具状态监控及在线补偿技术研究[D].沈阳:东北大学,博士学位论文,2006.
    【163】.张平.集成化声发射信号处理平台的研究[D].北京:清华大学,博士学位论文,2002.
    【164】.庄子杰.基于声发射和振动法的刀具磨损状态检测研究[D].上海:上海交通大学,硕士学位论文,2009.
    【165】. Ji Huan, Weimin Ma. Method for graphically evaluating the workpiece’s contour error in non-circular grinding process[J]. International Journal of Advanced Manufacturing Technology, 2010, 46: 117-121.
    【166】. Zbigniew Lechniak, Andrzej Werner, Konstanty Skalski. Methodology of off-line software compensation for errors in the machining process on the CNC machine tool[J]. Journal of Materials Processing Technology, 1998, 76:42-48.
    【167】. Hyun Seung Choi, Jang Ryeol Seo, Sun-Kyu Lee. Machining error compensation of extern cylindrical grinding using a thermally actuated rest[J]. Journal of Materials Processing Technology, 2002, 127:280-285.
    【168】.张秋菊,赵一丁,毛军红.模糊自学习误差补偿方法及其在位置误差补偿中的应用[J].西安交通大学学报,1995, 29( 2): 67-71.
    【169】.李国勇.智能控制及其MATLAB实现[M].北京:电子工业出版社, 2005.
    【170】.张秋菊,林其骏,吴宏.应用模糊推理的计算机辅助位置误差补偿[J].西安交通大学学报, 1992,26(2):55-62.
    【171】.吴宏,张秋菊,林其骏. Fuzzy自学习误差补偿方法的研究与应用[J].洛阳工学院学报,1993,14(2):39-44.
    【172】. Ye Jiang. Machining accuracy enhancement using an iterative learning control approach[D]. London, Ontario, Canada: University of Western Ontario, Thesis for the degree of Doctor of Philosophy, 2007.
    【173】.郭建亮,崔伯第,郑书华.基于切削力测量的细长轴加工误差在线补偿[J].机床与液压,2009,37(12):66-67,79.
    【174】.李琳,李永华,李可佳,吴伶锡.模糊控制在自动补偿磨削系统中的应用研究[J].中南林业科技大学学报, 2009,29(5):171-173.
    【175】.邓超,吴军,刘倩.基于模糊控制的位置精度补偿方法[J].计算机集成制造系统,2010,16(3):628-635.
    【176】. Hong Yang, Jun Ni. Dynamic modeling for machine tool thermal error compensation[J]. Journal of Manufacturing Science and Engineering, 2003, 125(2):245-254.
    【177】.周静,陈蔚芳,曲绍朋.数控加工误差主动补偿方法[J].计算机集成制造系统.2010,16(9): 1902-1907.
    【178】. Wu Hong'en, Li Guili, Shi Daguang, Zhang Chengrui. Fuzzy logic thermal error compensation for computer numerical control noncircular turnning system[C]. 9th International Conference on Control, Automation, Robotics and Vision, 2006:1-5.
    【179】. Cheol W Lee. Intelligent modeling and optimization of grinding processes[D]. West Lafayette, Indiana, U.S: Purdue University, Thesis for the degree of Doctor of Philosophy, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700