用户名: 密码: 验证码:
多测点平面度误差智能评定与不确定度分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大尺寸、高精度工件测量点较多,用传统形状误差评定算法计算,会出现算法不收敛或计算缓慢问题,已难以适应产品检测发展要求,因此研究高准确度、高可靠性、高效率的现代评定方法具有重要实际意义。研究工作得到教育部新世纪优秀人才支持计划项目(NCET-08-0211)、广东省高校高层次人才项目(粤教师函[2010]79号)的资助。
     论文讨论平面度误差定义、多测点平面度误差评定难点、评定方法优劣的性能指标,从基于数值算法平面度误差评定方法、基于计算几何法平面度误差评定方法、基于智能算法平面度误差评定方法三个方面分析讨论平面度误差评定方法的国内外研究进展,确定论文的研究内容。论文主要工作包括:
     研究多测点智能评定优化算法及测量数据仿真方法。分析指出特征测量点分布在最小包容区域平面附近,提出最小二乘残差法(Least Squre Risidual,LSR)的特征测量点提取方法,减小多测点评定过程计算量;根据测量点在x、y、z轴向的坐标极值求出包容区域的两种极端情况,从而确定最小包容区域法向量范围,并作为智能算法个体初始化依据;进一步探讨智能算法适应度函数、停机条件的设计,并在以上研究基础上提出基于遗传算法、粒子群算法、蜂群算法的平面度误差智能评定方法;通过分析平面加工过程影响因素,提出了由多项式函数、三角函数、随机误差函数组成,且符合最小包容区域判别准则的加工平面仿真模型;利用该模型验证智能评定算法的性能,实验结果表明提取阈值系数kP=0.6、初始化个体数sINIT=20时,评定时间TC≤0.0508s、评定误差δt≤0.8745×10-5mm,说明以上智能评定算法处理多测点的性能较好。
     研究基于β分布统示法的智能评定不确定度评估方法。以粒子群智能评定算法为例,分析新个体的包容区域宽度分布特性,得出智能评定结果概率密度函数f (t_e)分布为有界右偏概率分布;分析指出b分布统示法在h> g>1时,与f (t_e)分布特性吻合,并采用该方法对f (t_e)进行拟合;利用评定结果的最优值、 b分布的左边界与平面度误差的关系,提出一种平面度误差区间估计方法,同时采用百分位数Qp截取法保留优秀评定样本,采用最大熵方法(MEM)求解左边界的重要参数mte、ste,提高区间估计的可靠性;仿真实验结果表明b分布统示法对智能评定结果都可取得较好拟合效果,平面度误差估计区间跨度Dt T均较小,智能评定结果样本N S=100,截取百分位数Q_p=20时,Dt_T [10~-7,10~-5]mm,且都能包容平面度误差,能够有效评估智能评定的不确定度。
     研究平面度误差的支持向量机(SVM)评定方法。分析支持向量回归(SVR)和平面度误差最小包容区域的数学模型,指出SVR的寻优目标——最优超平面与最小包容区域评定原则在几何机理上完全一致,并提出基于ε-SVR的平面度评定方法;针对ε难以确定,提出基于分离式支持向量机分类(SSVC)的平面度误差评定方法,并采用SMO算法将对偶化模型分解为两个样本Langarange因子求解,提高计算效率;提出基于蒙特卡罗法的测量不确定度评估方法;仿真评定实验结果表明SSVC评定方法评定误差较低,评定时间TC≤0.0508s,说明SSVC评定方法处理多测点的性能也较好;借助映射F将最小区域中心圆、最小区域中心圆柱面转换到Hilbert空间的超平面形式,探讨支持向量机(SVM)应用于圆度误差、圆柱度误差评定机理,为SVM方法应用于其他形状误差评定提供一种思路。
     开展花岗岩平板、轨道板平面度误差、轴承环圆度误差智能评定实验研究,验证平面度误差及圆度误差智能评定与不确定度评估在实际测量中的实用性、有效性。
There are many measurement points for large scale and high precision workpieces,therefore, the traditional form error evaluation method in this case does not converge orcalculates slowly, and it is difficult to meet the needs of the development of product testing,so that the research of high accuracy, high reliability, high efficiency of modern evaluationmethod has important practical significance. The reaseach work received financial supportfrom Ministry of Education Support Program for New Century ExcellentTalent(NCET-08-2011), Guangdong Province Institutes of Higher Education High-qualifiedTalent Project(Yue Jiao Shi Han[2010]79).
     Beginning with discussion of flatness definition, difficulties for many measurementpoints evaluation, evaluation performance indexes, this research progress at home and abroadof the flatness evaluation based on numerical algorithm, computational geometry, andintelligent algorithm were reviewed generally to determine the research content of this paper.The main research work in this paper is as follows:
     Many measurement points intelligent evaluation optimization algorithm and thesimulation method for measurement points were researched. It was analyzed thatcharacteristic measurement points are distributed nearby the minimum zone planes, acharacteristic measurement points extraction method Least Square Residual-LSR wasproposed to reduce computational complexity in the evaluation. Two extreme cases ofminimum zone were calculated according to coordinate extremums of measurement points inx、y、z–axis, then minimum zone normal vector range was determined, which intelligentalgorithm individuals initialization was depending on. Fitness function and terminationcondition were researched. Based on the above, several bionic intelligent flatness evaluationmethods based on genetic algorithm, particle swarm optimization, and artificial bee colonywere proposed. According to analyze the affecting factors in the planar process, the planeprocessing simulation model was constructed, which consisted of a polynomial function,trigonometric function, random error function and satisfied minimum zone criterion. Themodel was used to verify intelligent evaluation methods, and the results showed that whenextracting threshold factor kP=0.6, initial individuals amount sINIT=20, evaluation timeTC≤0.0508s, evaluation error δt≤0.8745×10~-5mm, which proved that the intelligent evaluationmethods were effective for many points evaluation.
     The assessment method for intelligent evaluation uncertainty based on β distributionuniform expression method was researched. Taking particle swarm optimization (PSO) evaluation method as an example, through analyzing enveloping zone distribution feature ofthe new particle, it was obtained that the probability density function of intelligent evaluationresults f (t_e)is bounded and right skewed. It was pointed that β distribution, if h> g>1,coincides with f (t_e)’s distribution feature, therefore β distribution was used for fitting f (t e)probability distribution. The best evaluation value and the left margin of β distribution werechosen for flatness error interval estimation, while percentile Qpintercept method wasproposed to reserve better evaluation samples, the maximum entropy method(MEM) wasused to calculate the important parameters of the left marginmte,steto improve thereliability of the interval estimation. The simulation experiments results showed that βdistribution uniform expression method has a good fitting for intelligent evaluation results,while the length of flatness estimate sectionDt Thas a short span. As the number ofintelligent evaluation samplesN S=100, intercept percentile Q p=20,Dt T [10~-7,10~-5]mm,whileDt Tincluded flatness error value. This method could effectively present intelligentevaluation uncertainty.
     Flatness error evaluation method based support vector machine (SVM) was researched.Through analyzing the mathematic models of support vector machine regression (SVR) andflatness error minimum zone, it was pointed that SVR optimization goals-optimal hyper planeand the minimum zone criterion results in exactly the same geometric mechanism.Consequently, the evaluation method based on ε-SVR was proposed. Aiming at ε was hard tofix, the evaluation method based on seperated support vector machine classification (SSVC)was also proposed, which uses SMO algorithm to decomposite the even model intocalculating two samples’ Langarange factors to improve computational efficiency.Measurement uncertainty assessment methods using Monte Carlo Method was proposed. Alsosimulation measurement data evaluation experiments were performed. The simulationexperiments results showed that SSVC evaluation error was lower, and evaluation timeTC≤0.0508s, which proved that SSVC was also effective for many points evaluation. Throughmapping F, minimum zone center circle and center cylindrical surface are transformed intohyper plane in Hilbert space, SVM could be used in roundness error and cylinderity errorevaluation, which provided a new idea for other form error evaluation.
     Granite surface plates, track plates flatness error, bearing ring roundness errorintelligent evaluation experiments were performed; the results verified that the flatness errorand roundness error intelligent evaluation and uncertainty assessment in this paper is of practicality and effectiveness in practical measurement.
引文
[1]王先逵.现代制造技术及其发展趋向[J].现代制造工程,2008,(1):1-8.
    [2]叶声华.现代测试计量技术及仪器的发展[J].中国测试,2009,35(2):1-6.
    [3]海克斯康测量技术公司.实用坐标测量技术[M].北京:化学工业出版社,2008:1-8.
    [4] Diaz N. Decision support system framework for coordinate measurement inspection planning[D].Norman: The University of Oklahoma,2008.
    [5]国家自然科学基金委员会工程与材料科学部.机械工程学科发展战略报告[M].北京:科学出版社,2010.288-315.
    [6] GB/T11337-2004.平面度误差检测[S].北京,中华人民共和国国家质量监督检验检疫总局,2004.
    [7] ASME Y14.5.National Standard on Dimensioning and Tolerancing[S]. New York, ASME,2009.
    [8] ISO/TS12781-1. Geometrical Product Specifications (GPS)-Flatness Part1: Vocabulary and parametersof flatness[S]. Geneva, ISO,2003.
    [9] Yau H T, Menq C H. Unified least-squares approach to the evaluation of geometric errors using discretemeasurement data[J]. International Journal of Machine Tools and Manufacture,1996,36(11):1269-1290.
    [10] Xiang yang. An Iterative Reweighted Least Squares Algorithm[J]. Journal of Manufacturing Scienceand Engineering Volum,2004,126(3):535-541.
    [11]王金星.平面度坐标测量的不确定度计算[J].中国机械工程,2005,16(19):1701-1703.
    [12] Prisco U, Polini W. Flatness, Cylindricity and Sphericity Assessment Based on the Seven Classes ofSymmetry of the Surfaces[J]. Advances in Mechanical Engineering,2010,2010:1-11.
    [13] Carr K, Ferreira P. Verification of form tolerances part I: Basic issues, flatness, and straightness[J].Precision Engineering,1995,17(2):131-143.
    [14] Cheraghi S H, Lim H S, Motavalli S. Straightness and flatness tolerance evaluation: an optimizationapproach[J]. Precision Engineering,1996,18(1):30-37.
    [15] Weber T, Motavalli S, Fallahi B, et al. A unified approach to form error evaluation[J]. PrecisionEngineering,2002,26(3):269-278.
    [16] Murthy T S R, Abdin S Z. Minimum zone evaluation of surfaces[J]. International Journal of MachineTool Design and Research,1980,20(2):123-136.
    [17] Kanada T, Suzuki S. Evaluation of minimum zone flatness by means of nonlinear optimizationtechniques and its verification[J], Precision Engineering.1993,15(2):93-99.
    [18] Damodarasamy S, Anand S. Evaluation of minimum zone for flatness by normal plane method andsimplex search[J]. IIE Transactions,1999,31(7):617-626.
    [19]高以成.病态方程最小二乘解的算法、程序和应用[J].自动化仪表,1985(3):11-15.
    [20]袁振超,沈云中,周泽波.病态总体最小二乘模型的正则化算法[J].大地测量与地球动力学,2009,29(2):131-134.
    [21] Traband M T, Joshi S, Wysk R A, et al. Evaluation of straightness and flatness tolerances using theminimum zone[J]. Manufacturing Review,1989,2(3):189-195.
    [22] Huang J. An effcient approach for solving the straightness and the flatness problems at large number ofdata points[J],2003,35:15-25.
    [23] Samuel G L, Shunmugam M S. Evaluation of straightness and flatness error using computationalgeometric techniques[J]. CAD Computer Aided Design,1999,31(13):829-843.
    [24] Zhu X, Ding H. Flatness tolerance evaluation: An approximate minimum zone solution[J]. CADComputer Aided Design,2002,34(9):655-664.
    [25] G H. Robust convex hull-based algorithm for straightness and flatness determination in coordinatemeasuring[J]. Acta Polytechnica Hungarica,2007,4(4):111-120.
    [26]岳武陵,吴勇.平面度和直线度误差的快速评定——增量算法[J].计量学报,2008(2):120-123.
    [27] Cho S, Kim J. Straightness and flatness evaluation using data envelopment analysis[J]. TheInternational Journal of Advanced Manufacturing Technology,2012(Online).
    [28] Lee M. A new convex-hull based approach to evaluating flatness tolerance[J]. Computer Aided Design,1997,29(12):861-868.
    [29] Lee M. An enhanced convex-hull edge method for flatness tolerance evaluation[J]. Computer-AidedDesign,2009,41(12):930-941.
    [30] Sharma R, Rajagopal K, Anand S. A genetic algorithm based approach for robust evaluation of formtolerances[J], Journal of Manufacturing Systems.2000,19(1):46-56.
    [31] Tseng H Y. A genetic algorithm for assessing flatness in automated manufacturing systems[J]. Journalof Intelligent Manufacturing,2006,17(3):301-306.
    [32] Cui C, Li B, Huang F, et al. Genetic algorithm-based form error evaluation[J]. Measurement Scienceand Technology,2007,18(7):1818-1822.
    [33] Wen X, Zhu X, Zhao Y, et al. Flatness error evaluation and verification based on new generationgeometrical product specification (GPS)[J]. Precision Engineering,2012,36(1):70-76.
    [34] Yan M J, Gui X L. A new flatness evaluation-rotation method based on GA[J]. Advanced MaterialsResearch,2010,139-141(10):2033-2037.
    [35] Rossi A, Antonetti M, Barloscio M, et al. Fast genetic algorithm for roundness evaluation by theminimum zone tolerance (MZT) method[J]. Measurement,2011,44(7):1243-1253
    [36]崔长彩,张耕培,傅师伟,等.利用粒子群优化算法的平面度误差评定[J].华侨大学学报(自然科学版),2008(4):507-509.
    [37] Kovvur Y, Ramaswami H, Anand R B, et al. Minimum-zone form tolerance evaluation using particleswarm optimisation[J],2008,4(1-2):79-96
    [38]喻晓,黄美发,夏澎.基于改进粒子群算法的新一代GPS平面度误差评定[J].微电子学与计算机,2010,(4):50-53.
    [39] Zhang X, Jiang X, Scott P J. A reliable method of minimum zone evaluation of cylindricity and conicityfrom coordinate measurement data[J]. Precision Engineering,2011,35(3):484-489.
    [40] Sun T. Applying particle swarm optimization algorithm to roundness measurement[J]. Expert Systemswith Applications,2009,36(2):3428-3438.
    [41] Wang Y, Li L, Ni J, et al. Form Tolerance Evaluation of Toroidal Surfaces Using Particle SwarmOptimization[J]. Journal of manufacturing science and engineering,2009,131:1-9.
    [42] Rossi A, Antonetti M, Barloscio M, et al. Fast genetic algorithm for roundness evaluation by theminimum zone tolerance (MZT) method[J]. Measurement,2011,44(7):1243-1252.
    [43] Papakostas G A, Karras D A, Mertzios B G, et al. A Constrained Genetic Algorithm with AdaptivelyDefined Fitness Function in MRS Quantification[J]. Communications in Computer and InformationScience,2010,121:257-268.
    [44] Dalian L, Jinling D, Xiaohua C. A Genetic Algorithm Based on a New Fitness Function for ConstrainedOptimization Problem[C]. Proc. of Seventh International Conference on Computational Intelligenceand Security,2011:6-9.
    [45]金芬,孙春华,钟鸣.遗传算法中适应度函数的改进[J].机械设计与制造,2010(3):218-219.
    [46]张国辉,高亮,李培根,等.改进遗传算法求解柔性作业车间调度问题[J].机械工程学报,2009,(7):145-151.
    [47] Han K H, Kim J H. Quantum-inspired evolutionary algorithms with a new termination criterion, Hεgate,and two-phase scheme[J]. Evolutionary Computation IEEE Transactionson,2004,8(2):156-169.
    [48] Chen H, Pan X Y. The mutation mechanism of ethnic group evolution algorithm[J]. Energy Procedia,2011,13:7525-7530.
    [49]王小平,曹立明.遗传算法理论、应用与软件实现[M].西安:西安交通大学出版社,2002:68-84.
    [50] Nickabadi A, Ebadzadeh M M, Safabakhsh R. A novel particle swarm optimization algorithm withadaptive inertia weight[J]. Applied Soft Computing,2011,11(4):3658-3670.
    [51]胡中华,赵敏.基于人工蜂群算法的TSP仿真[J].北京理工大学学报,2009,(11):978-982.
    [52] Karaboga D, Basturk B. On the performance of artificial bee colony (ABC) algorithm[J]. Applied SoftComputing,2008,8(1):687-697.
    [53] Karaboga D, Akay B. A comparative study of Artificial Bee Colony algorithm[J]. Applied Mathematicsand Computation,2009,214(1):108-132.
    [54] Thomas B. Evolutionary Algorithms in Theory and Practice:Evolution Strategies, Evolution aryProgramming, Genetic Algorithms[M]. Oxford: Oxford University Press,1996:102-134.
    [55]辛民,解丽静,王西彬,等.高速铣削高强高硬钢加工表面残余应力研究[J].北京理工大学学报,2010,(1):19-23.
    [56]佟富强,张飞虎,陈光军,等.低频振动切削对加工表面影响的机理研究[J].华中科技大学学报,2007,35(s1):68-70.
    [57] Wan M, Zhang W H. Efficient algorithms for calculations of static form errors in peripheral milling[J].Journal of Materials Processing Technology,2006,171(1):156-165.
    [58] Xia H H, Ding Y, Wang J. Gaussian process method for form error assessment using coordinatemeasurements[J]. IIE Transactions,2008,40(10):931-946.
    [59] Desta M T, Feng H Y, Ouyang D. Characterization of general systematic form errors for circularfeatures[J]. International Journal of Machine Tools and Manufacture,2003,43(11):1069-1078.
    [60] Jiang Y, Liu G. The simulation of plane measurement points[J]. Advances in Intelligent and SoftComputing,2012,146:759-764.
    [61]林洪桦.再荐误差的β分布统示法[J].中国计量学院学报,2004(2):10-15.
    [62] Jones M C. Kumaraswamy's distribution: A beta-type distribution with some tractability advantages[J].Statistical Methodology,2009,6(1):70-81.
    [63] Olea R A. On the Use of the Beta Distribution in Probabilistic Resource Assessments[J]. Naturalresources research,2011,20(4):377-388.
    [64]林洪桦.测量误差与不确定度评估[M].北京:机械工业出版社,2009:83-85.
    [65]马建全,李广杰,徐佩华,等.基于拉丁方抽样及K-S检验的边坡可靠性分析[J].岩土力学,2011(7):2153-2156.
    [66]庄楚强,何春雄.应用数理统计基础[M].广州:华南理工大学,2006:154-157.
    [67] Wang F, Wang X. Fast and robust modulation classification via Kolmogorov-Smirnov test[J].Communications IEEE Transactions,2010,58(8):2324-2332.
    [68] Franji I, Pe ari J. Schur-convexity and the Simpson formula[J]. Applied Mathematics Letters,2011,24(9):1565-1568.
    [69] Quarteroni A, Saleri F, Gervasio P. Scientific Computing with MATLAB and Octave[M]. SpringerBerlin Heidelberg,2006.
    [70]刘智敏.扩展最大熵原理及其在不确定度中的应用[J].中国计量学院学报,2010,(1):1-5.
    [71] Kim S K, Jung B S, Lee W I. An inverse estimation of surface temperature using the maximum entropymethod[J]. International Communications in Heat and Mass Transfer,2007,34(1):37-44.
    [72] Gadelmawla E S. Simple and efficient algorithms for roundness evaluation from the coordinatemeasurement data[J]. Measurement,2010,43(2):223-235.
    [73]王军,王小椿,姜虹,等.螺旋锥齿轮齿面的三坐标测量[J].机械工程学报,2003(6):151-154.
    [74]张国雄.三坐标测量机[M].天津:天津大学出版社,1999:312-392.
    [75]杨洪涛.坐标测量机误差建模与修正技术研究[D].合肥工业大学,2007.
    [76] Aggogeri F, Barbato G, Barini E M, et al. Measurement uncertainty assessment of CoordinateMeasuring Machines by simulation and planned experimentation[J]. CIRP Journal of ManufacturingScience and Technology,2011,4(1):51-56.
    [77] JJF1059-1999,测量不确定度评定与表示[S].北京,国家质量技术监督局,1999.
    [78] ISO/IEC Guide98-3:2008,Uncertainty of measurement-Part3:Guide to the expression of uncertaintu inmeasurement(GUM:1995)[S]. Switzerland,Geneva, Iso,2008.
    [79] ISO/IEC Guide98-3/Supp1.1:2008,Uncertainty of measurement-Part3:Guide to the expression ofuncertaintu in measurement(GUM:1995)Supplement1:Propagation of distributions using a Monte Carlomethod[S]. Switzerland,Geneva, Iso,2008.
    [80] S adek J, G ska A. Evaluation of coordinate measurement uncertainty with use of virtual machinemodel based on Monte Carlo method[J]. Measurement,2012,45(6):1564-1575.
    [81] W U Bbeler G, Krystek M, Elster C. Evaluation of measurement uncertainty and its numericalcalculation by a Monte Carlo method[J]. Measurement Science and Technology,2008,19(8):1-4.
    [82]张全明,刘会金.最小二乘支持向量机在电能质量扰动分类中的应用[J].中国电机工程学报,2008,28(1):106-110.
    [83] Vapnik V N. The Nature of Statistical Learning Theory[M]. New York: Springer,2000:20-53.
    [84] Chang C C, Lin C J. LIBSVM: a library for support vector machines[J]. ACM Transactions onIntelligent Systems and Technology,2011,2(3):27.
    [85] Catanzaro B, Sundaram N, Keutzer K. Fast support vector machine training and classification ongraphics processors[C]. Proc. of the25th international conference on Machine learning,2008:104-111
    [86] Burges C J C. A tutorial on support vector machines for pattern recognition[J]. Data mining andknowledge discovery,1998,2(2):121-167.
    [87] Smola A, Vapnik V. Support vector regression machines[J]. Advances in neural information processingsystems,1997,9:155-161.
    [88]孙德山.支持向量机分类与回归方法研究[D].中南大学,2004.
    [89]杜树新,吴铁军.用于回归估计的支持向量机方法[J].系统仿真学报,2003(11):1580-1585.
    [90]邓乃扬,田英杰.数据挖掘中的新方法:支持向量机[M].北京:科学出版社,2004:77-88.
    [91] Smola A J, Sch O Lkopf B. A tutorial on support vector regression[J]. Statistics and computing,2004,14(3):199-222.
    [92] Platt J, Others. Sequential minimal optimization: A fast algorithm for training support vectormachines.In: Advances in Kernel Methods—Support Vector Learning[M].Cambridge: MIT Press,1999:185–208.
    [93] Fan R E, Chen P H, Lin C J. Working set selection using second order information for training supportvector machines[J]. The Journal of Machine Learning Research,2005,6:1889-1918.
    [94] Gadelmawla E S. Simple and efficient algorithms for roundness evaluation from the coordinatemeasurement data[J]. Measurement,2010,43(2):223-235.
    [95] Xiuming L, Zhaoyao S. Evaluation of roundness error from coordinate data using curvature technique[J].Measurement,2010,43(2):164-168.
    [96] Venkaiah N, Shunmugam M S. Evaluation of form data using computational geometric techniques—Part II: Cylindricity error[J]. International Journal of Machine Tools and Manufacture,2007,47(7–8):1237-1245.
    [97] Lei X, Song H, Xue Y, et al. Method for cylindricity error evaluation using Geometry OptimizationSearching Algorithm[J]. Measurement,2011,44(9):1556-1563.
    [98] JB/T7975-1999.岩石平板[S].北京,国家机械工业局,1999.
    [99] CRTSⅡ型板式轨道用预应力混凝土轨道板厂房与装备设计[J].铁道建筑,2008(增刊):29-34.
    [100] JJG117-2005.平板检定规程[S].北京,国家质量监督检验检疫总局,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700