用户名: 密码: 验证码:
重庆市“一小时经济圈”生态安全评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生态安全是国家安全和社会稳定的一个重要组成部分,与国防安全、经济安全、金融安全等具有同等重要的战略地位,也是实现经济社会稳定、快速、可持续发展的基础和前提。随着人口增长、社会经济迅猛发展,人地矛盾日益突出,人类活动对环境扰动的范围扩张且强度加剧,自然资源过度消耗,尤其是掠夺式开发与利用,导致生态破坏、环境退化等后果,这将使人类丧失大量适于生存和发展的空间,并由此引发生态环境灾害和大量生态灾民,不仅冲击着社会的稳定,还可能对区域发展甚至国家安全构成威胁。生态安全与经济发展之间的长期博弈,使人们越来越强烈意识到和谐友好型生态环境作为“经济、社会、自然”良性循环的支撑,经济发展必须要以一定的生态用地作为安全保障,且人类生存与社会经济健康持续发展对良好生态的不断追求,必然对生态环境的保护与建设提出更高的要求,生态安全问题成为当前及未来一定时间内持续性发展研究的热点。我国对生态安全的研究起步较晚,尚缺乏生态安全研究的系统的理论与方法体系,虽基于景观生态学、保护生物学、干扰生态学、恢复生态学、生态经济学、复合生态系统理论、生态伦理学等多方面,从区域尺度上对生态安全进行了研究,且在城市、西部干旱区等区域的生态安全方面的研究取得了一定的成果,但对生态安全的理论与实践的研究还不够深入且研究方向较为单一,大多是基于生态安全设计方面,研究成果也主要停留在理论研究和概念探讨这一层次,而对于更深层次的诸如生态安全评价、生态安全预警、生态安全调控等方面还远远不及欧美国家,应用研究在国内尚未全面展开。
     重庆地处长江上游,三峡库区,生态区位十分重要,不仅对本地区生态安全具有举轻若重的作用,也对全国生态安全具有重大影响。一方面,重庆长江上游生态战略地位的维持已被提到国家战略需求的高度,在国家生态安全和国民经济社会中具有不可替代的作用和地位,另一方面,是维护三峡库区和长江中下游生态安全的重要屏障,对促进中下游地区经济社会健康持续发展起着重要作用。重庆地貌形态复杂多样,地域分异格局明显,不同区域的生态-经济功能存在差异,以主城为核心,在交通1小时可通达的范围内,涵盖23个区县的“一小时经济圈”,是重庆市工业化与城市化发展中心区,也是经济发展与生态安全博弈最激烈,土地利用/覆盖变化最显著区域。因此,本文基于重庆市“一小时经济圈”详实的、多时相的RS数据源,采用监督分类和目视解译相结合的方法,建立研究区基础数据库,并借鉴经典统计方法、GIS空间分析方法、地理统计学等方法,分析了研究区2000-2008年的土地利用变化、水土流失动态变化、城市热岛效应等主要生态安全因子变化特征,构建重庆市“一小时经济圈”生态安全综合评价指标体系与评价模型,探讨该区域生态安全空间格局及发展态势,以期能为实现本区域的生态安全提供参考依据。得到主要结论如下:
     1、土地利用动态变化特征
     从土地利用数量结构来看:研究时段内耕地资源均处主导优势,2000、2008分别占总面积的65.44%和61.07%,但减少1251.14km2,变化率达-20.47%,流失明显;水田-旱地交互转化突出,转化率均超过50%以上,各土地类转化为旱地的概率均较大;林地主要来源于草地、耕地和居民点及工矿用地,居民点及工矿用地主要源于未利用地,且变化幅度最大达106.05%,最小的水域降幅仅0.32%;土地利用变化速度较快,其综合土地利用动态度达到0.96%,K绝对值变化强度依次为:居民点及工矿用地>草地>未利用地>水田>旱地>林地>水域。
     从土地利用空间变化来看:研究时段内除了林地、草地外,其它地类主要分布在海拔800m以下,且低海拔区各地类转化幅度较高海拔区大;水田流失为早地的区域位于南川、綦江和万盛,主城区水田主要转为居民点及工矿用地,旱地主要流失区域主要位于长寿、涪陵和永川,“三大山脉”(缙云山、中梁山、铜锣山)边缘地带的旱地主要转为林地;土地利用程度呈现一个明显的发展态势,沙坪坝、南岸、渝中、江北、渝北等主城区的土地利用程度进入一个衰退期,而永川,江津,涪陵,南川等“外围层”区县进入了发展上升期。
     2、水土流失动态变化特征
     研究区土壤侵蚀类型均以微度侵蚀、轻度侵蚀和中度侵蚀为主,且随着防治工程的强化,大部分区县水土流失状况得到有效控制,土壤侵蚀类型呈现由高级向低级转化的良好趋势。微度、轻度和中度侵蚀面积之和占总面积比例由2000年的93.56%提高到2008年95.24%,其中微度侵蚀面积增加18.99%,而轻度、中度、强度、极强度及剧烈侵蚀面积分别减少了3.86%、13.46%、1.64%、0.03%、0.01%。从空间看,两时段内主城九区水土流失变化最明显,主要侵蚀类型由2000的轻度侵蚀转为2008年的微度侵蚀,同时大足、潼南与北碚地区由剧烈与强度侵蚀带转为了中度或轻度侵蚀带。
     从地形因子梯度特征来看:水土流失主要发生于海拔1500m以下,强弱呈垂直分布特征。1500m以下面积比超过95%,尤其在200m-500m和500m-800m的人类活动剧烈地带最广,超过70%,且主要分布中度侵蚀、强度侵蚀、剧烈侵蚀、极强度侵蚀类型,而1500m以上地区植被发育较为良好,多为微度侵蚀或轻度侵蚀。2008年剧烈侵蚀主要分布带由2000年的200m-500m区域变为500m-800m区域,且500m以下区域急剧减少,极强度侵蚀类型在200m-500m区域增加,达52.54%。从坡度梯级看,0-5。梯度间,各土壤侵蚀类型面积随着侵蚀强度级增大而增大,5-8°和8-15°梯度间,各侵蚀类型面积比例较为接近,15°以上,主要分布强度侵蚀和极强度侵蚀类型。研究时段内,剧烈侵蚀类型面积从3.417 km~2急剧减少至0.71km~2,而在0-5°和25°以上却明显增加近11和5个百分点。分布8°以上的极强度侵蚀面积从83.57%减少至75.14%,且15°以上减少10.32%。
     3、城市热岛效应时空变化特征
     研究区域城市热岛效应呈现“三区、两带”状分布。“三区”即三大区域,分别为“主城团聚体”、“渝西北团聚体”和“渝东北团聚体”,“两带”即两大经济带,分别为“渝西经济带”和“沿长江经济带”。明显的热岛效应中心位于铜梁北部与合川西南部交界处;此外,沿长江一带的经济发达区域属于高温区;而低温区、弱低温区、亚低温区则主要分布于研究区域东南部的南川、万盛以及綦江等中低山区域。2000-2008年间,研究区域各温度级别整体呈现出稳中微变的状况:高温区和中温区略有上升、弱高温区稍有下降,低温区和亚低温区基本稳定,这说明了2000-2008年期间,研究区域城市热岛效应并无明显变化。
     4、生态安全空间格局及时空变化
     本文采用“本底-压力-状态-响应”模型构建了重庆市“一小时经济圈”生态安全综合评价的24个指标体系,并运用层次分析法确定了各因子的权重。从研究区全局来看,两时间段的生态质量差异以东北-西南方向为分界线,生态质量较好的区域基本分布于该分界线右侧的长寿、涪陵、江津等地,而生态质量较差的区域基本分布于该分界线左侧的潼南、大足、铜梁、荣昌以及永川等地。研究区域生态安全评价平均分在2000年为62.95,在2008年为64.73。
     2000年生态安全评价值呈类似的金字塔的正态分布,峰值分别是60、65和69,到2008年,研究区域生态安全评价值在预警、较不安全和不安全区域,评价值呈现多峰值的分布模式;在较安全和安全区域,评价值呈现梯形上升趋势。整体上来看,安全区域面积呈现明显上升趋势。
     本文将研究区域生态安全质量变化值划分为七个,可以发现:研究区域生态安全质量整体上呈上升的趋势,显著变好面积远远大于显著变差的面积;略微变差和明显变差区域所占比例之和为19.13%,而略微变好和明显变好区域面积比例之和为43.2%,说明研究区域在2000-2008年生态治理效果明显。
     生态安全研究是一个复杂的系统工程,最终目的是最大可能地使自然资源乃至整个生态系统得到可持续利用,为实现人类经济社会的可持续发展提供生态安全保障。研究如何实现区域及其周边地区的自然资源在人口、社会经济和生态环境三个约束条件下稳定、协调、有序和永续利用是生态安全研究的有效方法。
Ecological security is vital to national security and social stability, with the same importance as national defense, economic security and financial security. It is also the precondition and basis of rapid and stable economic development or even sustainable development. With the rapid population growth and economic development, the conflict of human and land relations becomes increasingly intense because the expanded extent and intensification of human activities disturb environment. The negative effects are as follows:environment degradation and ecological destruction caused by excessive development and overuse of natural resources; loss of living space for human being's survival and development; growing population attacked by ecological disaster and extreme environmental events. As a result, it is possible to endanger the stability of society and threaten the security of regional and national development. Fortunately, people's consciousness on environment protection has been aroused by long-term gaming of ecological security and economic development. Friendly and harmonious eco-environment can sustain the development of economy, society and nature. Both the human survival and social economic development needs more ecological land to ensure ecological security, which require high standards in ecological protection and construction. Thus much attention will be put on ecological security in the long run. However, there lack systematic theories and methodologies of ecological security study, and especially lacks long-term experience of the study in China. Existing researches have been conducted on regional (such as dry area in the western China) or urban ecological security, based on related theories including landscape ecology, conservation biology, disturbance biology, restoration ecology, biological economics, compound ecosystem theory and ecological ethics and so on. Nevertheless, most studies focus on the theories and concepts of ecological security instead of assessment, early-warning and adjustment of ecological security. Consequently, the fruits and application of ecological security studies in China lag behind those in the Western countries.
     In order to fill in the gaps, this dissertation aims at further the study of ecological security, taking a case of Chongqing Municipality. Chongqing is located in the upper branch of Yangtze River and the center of Three Gorge Reservoir, which indicate that ecological security in the municipality is important for whether local places or the whole nation. On the one hand, the Chongqing's ecological security is the requirement for the national strategy positioning since its unique function in the national development. On the other hand, it is necessary in ecological security and sustainable development for the middle and lower branches of Yangtze River and Three Gorge Reservoir. Chongqing is characterized by diverse landforms and distinct regional difference, which results in the variations of ecological and economic functions in different zones. Especially, the metropolitan area as'one-hour economic circle'is named after the one hour accessibility by public transportation, including 23 districts and counties around the urban built-up-area of Chongqing. This area is featured by highly intense conflict of economic development and ecological security, as well as prompt land use/cover change, considering its function as industrial and urban center. Thus'one-hour economic circle'was selected as a case in this study. The main data sourced from time series of remotely sensed images. Supervised classification and manual interpretation methods were employed to map land use/cover change. Based on the database, classical statistics, spatial analysis of Geographic Information System and geo-statistics were used in the study of ecological security which was reflected by land use change, soil and water erosion dynamics, urban heat island between 2000 and 2008. The comprehensive assessing model and its index system were established in'one-hour economic circle'for the purpose of exploring spatial pattern and evolving trend of ecological security, which aimed at providing suggestions for the better of regional ecological security.
     The main results are as follows:
     1. The characters of land use change
     First, cultivated land in this area decreased but dominated in all land use types between 2000 and 2008, since the ratio of cultivated land area to the total land area changed from 65.44%to 61.07%, with a decrease of 20.47% and 1251.14 km2. The conversion between paddy field and dryland amounted over 50%, and the amount of other land use types converted to dryland was in the first or second rank in all conversion types. The increased forestland came from original pasture, cultivated land, rural residential and industrial land. The increment of residential land and industrial land were mainly converted from unused land with a maximum conversion rate of 106.05% and a minimum of 0.32%. The comprehensive land use dynamics was as high as 0.96% in the period. The absolute change value of K coefficients ranked in descending trend:residential land and industrial land, pasture, unused land, paddy field, dryland, forestland, waterbody.
     Second, other land use types apart from forestland and pasture largely distributed in the areas with altitude below 800 m. The conversion rate of land use types is higher in low-altitude areas than high-altitude areas. The conversion of paddy field to dryland occurred in Nanchuan, Qijiang and Wansheng, and the conversion of paddy field to residential land and industrial land took place in the main center of Chongqing. The loss of dryland mainly distributed in Changshou, Fuling and Yongchuan. Dryland converted to forestland on the edge of the mountains including Jinyun Mountain, Zhongliang Mountain, Tongluo Moutain. The land use degree began to decrease in Shapingba, Nan'an, Yuzhong, Yubei in the main center, while it increased in Yongchuan, Jiangjing, Fuling, Nanchuan in the outer counties.
     2. The characters of soil and water erosion
     The types of soil erosion in the study area were dominated by micro, slight and moderate erosion. Soil erosion had been effectively controlled in most counties by the implementation of controlling projects in that severe soil erosion converted to slight one. The ratio of micro, slight and moderate eroded land area to the total area increased from 93.56% in 2000 to 95.24% in 2008, among which the ratio of micro erosion increased by 18.99%, though the ratio of slight one decreased by 3.86%, that of moderate one decreased by 13.46%, that of intense one by 1.64%, that of severely intense one by 0.03%, and that of extremely intense one by 0.01%. The spatial results showed that soil erosion was controlled in nine districts of the main center, since most of slight erosion had been converted to micro one. At the same period, extremely and intense erosion were converted into moderate and slight one in Dazhu, Tongnan, Beiei.
     Soil erosion took place mainly below 1500 m in altitude, and its intensification varied in different altitude. The ratio of eroded area to the total area was more than 95% below 1500 m, among which the ratio was over than 70% for 200-500 m and 500-800 m as a result of intensive human activities and the major types of erosion were moderate, intense, serenely intense and extremely intense one. The area higher than 1500 m covered with high-density vegetation and had only micro or slight erosion. Most of intense erosion located in the area of 200-500m in 2000, and it located in the area of 500-800 m in 2008, which resulted in less erosion in the area below 500 m. The extremely intense erosion increased in the area of 200-500 m and was up to 52.54%. In terms of sloping grade, the area with soil erosion increased with ascending erosion intensification between 0°and 5°; the area with all kinds of soil erosion had no big difference for 5-8°and 8-15°; the area with intense and extremely intense soil erosion located over 15°. The area of extremely intense erosion decreased from 3.417 km2 in 2000 to 0.71km2 in 2008 for the whole study area, but it increased by 11% for the area in 0°-5°and by 5% for the area in 25°and above. The area of extremely intense erosion decreased from 83.57% to 75.14% in 8-15°in the period, and decreased by 10.32% in 15-25°.
     3. Spatial-temporal characters of urban heat island change
     The overall distribution of urban heat island was described as'Three zones and two belts', that is, The Main Center Zone, The Northwest Zone and The Northeast Zone in Chongqing, as well as The West Economic Belt, The Yangtze River Belt. The prominent urban heat island located in the boundary between the north of Tongliang and the southwest of Hechuan. The high land surface temperature zone was found in the economic developed area along the River. The low, inferiorly low and secondly low temperature distributed in the southeast of Chongqing, including the middle and low altitude mountains in Nanchuan, Wansheng and Qijiang. All kinds of temperature area were stable in the study area between 2000 and 2008. The high or middle temperature area increased slightly, and inferiorly high temperature area decreased slightly, but the low and secondly low temperature area seldom changed. This reflects that there had no apparent change in urban heat island effect in the period.
     4. Spatial-temporal change of ecological security pattern
     Ecological security assessment employed 24 indices based on'background-pressure-status response' model in'one-hour economic circle' of Chongqing. The weights of these indices were obtained using Analytic Hierarchy Process method. The quality of environment was divided by the line along the northeast and southwest in the period. The area in the right of the line had better quality of environment, such as Changshou, Fuling and Jiangjin, but the area in the left was in the contrast such as Tongnan, Dazhu, Tongliang, Rongchang, Yongchuan. The average value assessed was 62.95 in 2000 and 64.73 in 2008, respectively.
     Ecological security values seemed like the normal distribution in 2000, with peak values of 60,65 and 69, whereas it distributed as multi-peak pattern in the early-warning zone, less secure zone and not secure zone in 2008, and rose in trapezoid shape in more secure zone or secure zone. Above all, the area with security increased apparently.
     The value of ecological security change was divided into seven zones. The results show that the overall value increased. The reasons for this were that the area with improved value exceeded that with deteriorated value; the area with slightly and notable deteriorated value occupied 19.13% of the total area; and the area with slightly and notable improved value accounted for 43.2% of the total. This reflected positive effects of environmental improvement between 2000 and 2008.
     Study on ecological security requires complex and systematic methods. The ultimate goal of this kind of study is to realize sustainable use of nature resources and the whole ecosystem as far as possible, and eventually to lay foundation for sustainable development of society and economy. The ecological security study should be effective only if natural resources in regional and surrounding areas can be used in a stable, harmonious, ordered and sustainable way, under the constrains of population growth, social economic development and eco-environment protection.
引文
A.C.T. Pinheiro,R. Mahoney,et al. Development of a daily long term record of NOAA-14 AVHRR land surface temperature over Africa[J].Remote Sensing of Environment 103 (2006) 153-164
    Anderson, J. R., E. Hardy, J. Roach, and R. Witmer. A land use and land cover classification system for use with remote sensor data.U. S. Geological Survey Profession Paper,964. Washington, DC.1976.24.
    Antonio Di Gregorio, Louisa J.M Jansen.FAO land Cover Classification:A Dichotomous, Modular-Hierarchical pproach,1997,http://www.fao.org/waicent/faoinfo/agricult/AGL/AGLS/FGDCFAO.htm
    Baret F, Guyot G, Major D J. TSAVI:A vegetation index which minimizes soil brightness effects on LAI and APAR estimation[C].Proceeings of the 12th Canadian Symposium on Remote Sensing. Vancouver, Canada,1989, 1355-1358
    Berro P. Assessing landscape health:A case studyfrom northeastern Italy [J].Environ Management. 2001.27(3):349-365
    Boscietto JJ. A framework for ecological risk assess—ment:Beyond the quotient method. In:Newman MC andCL, eds. Risk Assessment:Logical and Measurement. Michigan:Ann Arbor Press1998:11-12
    Boughton DA, Smith ER and O'Nell RV, Regional vulnerability:A conceptual framework [J]. Ecosystem Health. 1999,(5)312-322
    Brail R K, Klosterman R E (Eds) Planning Support Systems:Integrating Geographic Information Systems, Models, and Visualization Tools·2001·ESRI Press, Redlands, CA
    Carlson T.N., Dodd J.K., Benjamin S.G Satellite estimation of the surface energy balance, moisture availability and thermal inertia [J]. Journal of Applied Meteorology.1981,20:67-87.
    Carsjens G J, van Lammeren R J A, Ligtenberg A·STEPP:Strategic tool to integrate environmental aspects intoplanning procedures·In:Geertman S, Stillwell J (Eds·)·Planning Support Systems in Practice-Heidelberg: Spring-er-Verlag,2002·139-154
    Cynil O. Environmental conflict and national security in Nigeria:ramification ofthe ecological security nexus for subregional peace. In:ACDIS Occasional Paper.Illinois,1997
    Dabberdt,W. F. and Davis, P. A.,.Determination of energy characteristics of urban rural surfaces in the greater St. Louis area[J]. Boundary-Layer Meteorology,1978,14,105-121
    DAILY G. What are ecosystem services?[C]//Daily GNature'sServices:Societal Dependence on Natural Ecosystems. Washington DC:Island Press,1997:1-10
    Dobson, Andy P, et al, Hopes for the future:Resto-ration ecology and conservation ecology[J]. Science, 1997.277:515-524
    Duckworth,F.A.,and J.S.Sandberg,.The effect of city upon horizontal and vertical temperature gradients.Bull.Amer.Meteor.soc.,1954,35,198-207
    EHRLICH P R,EHRLICHAH.Extiction[M].New York:Ballantine,1981.
    Environment Protection Agency of USA. Framework for Ecological Risk Assessment. In:National ecological assessment and management. Washington DC,1992,21-25
    FEEN R H.Keeping the balance:ancient Greek philosophical con-cerns with population and environment[J].Population Environment,1996,17:447-458.
    Fernandez C, Wu JQ, McCool DK, et al. Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD. Journal of Soil and Water Conservation,2003,58:128-136
    Gallo K P, et al.the use of a vegetation index for assessment of the urban heat island effect [J]. International Journal of Remote Sensing,1993b,14:2223-2230
    Gammon J A, Pefiuelas J and Field C B. A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency [J], RemoteSense Environment,1992.41:35-44
    Gupta R K, Vijayan D, Prasad T S, et al.Role of Bandwidth in Computation of NDVI From Landsat TM and NOAA/AVHRR Bands[J]. Advances in Space Research,2000,26(7):1141-1144.
    Han DING, Ren-Chao WANG, Jia-Ping WU. Quantifying Land Use Change in Zhejiang Coastal Region, China Using Multi-Temporal Landsat TM/ETM+Images [J]. Pedosphere,2007,17:712-720
    HOLDREN J P,EHRLICH P R.Human population and the globalenvironment[J].American Scientist,1974,62:282-292.
    Howard L. Climate of London deduced from meteorological observation[J],3d ed. Vol.1.Harvey and Darton,1833
    Hu Yang, Zhongdong Yang. A modified land surface temperature split window retrieval algorithm and its applications over China [J]. Global and Planetary Change 52 (2006) 207-215
    Itami R M,MacLaren G,Hirst K.Integrating the AHP with geographic information systems for assessing resource conditions in rural catchments in Australia [A].Managing Forest Ecosystems,the Analytic Hierarchy Process in Natural Resource and Environmental Decision Making[C].2001,3:269-287
    Kinnell P I A. Converting USLE soil erodibilities for use with the QREI30 index. Soil and Tillage Research, 1998,45:349-357
    KouliM, Soupios P, VallianatosF. Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern Crete, Greece.EnvironmentalGeology,2008,57:1318-1326
    Landsberg, H.E., The climate of towns. Man's role in changing the face of the Earth[M],University of Chicago Press,1193 pp.1956
    LEOPOLD A. A Sandy County Almanac and Sketches from here andthere[M].New York:Cambridge University Press,1949
    M. C. HANSEN, B. REED. A comparison of the IGBP Discover and University of Maryland lkm global land covers products, int. J.remote sensing,2000, vol.21, no.67:1365-1373
    Malczewski J-GIS-based land-use suitability analysis:A critical overview·Prog·Plan·,2004,62:3-65
    Malin F.Human security versush:ecological security-compatible ornon-compatible goals?.In:Proceedings,SIWI seminar,balancing hnman security and ecological security interests in a catchment towards upstream/downstream hydrosolidanty.Sweden:Stockholm International Water Institute,2002,6-13
    MARSH G P.Man and Nature[M].New York:Charles Scribner,1864.
    Meng, F.,Liu, M.,Zhang., X.,y. Extracting Urban and Backup Land Covers on the ETM Imagery.Urban Dimensions of Environmental Change:Science,Expossures,Policies and Technologies,2005, Science press,270-276
    Mitchell,J.M,The temperature of cities[J].Weatherwise,1961.14,224-229
    Moore ID, Wilson JP. Length-slope factors for the Revised Universal Soil Loss Equation:Simplified method of estimation. Journal of Soil and Water Conservation,1992,47:423-428
    Myrup L.O. A numerical model of the urban heat island[J].Journal of Applied Meteorology.1969,8:908-918
    Norton SB, Rodier DJ, Gentile JH, et al. A frame work for ecological risk assessment at the EPA. EnvironTaxcol Chem,1992.11:1663-1672
    Oak T.R. The heat island of the urban boundary layer:characteristics,causes and effects. In wind Climate in cities [M]. edited by J.E.Cermak, NATO ASI series, Kluwer Academic Publishers,1995,81-107
    OSBORN F. Our Plundered Planet[J].Boston:Little and Brown Com-pany,1948:67-68.
    Quattrochi D A, Luvall J C, Rickman D L. A decision support information system for urban landscape management using thermal infrared data [J]. Photogrammetric Engineering & Remote Sensing,2000,66(10): 1195-1207.
    Outcalt, S. I.,The development and application of a simple digital surface climate simulator[J].Journal of Meteorology,1972.11,629-636.
    Rapport D J. Ecosystems not optimized:A reply. Aquatic Ecosystem Health,1993,2(1):57-58
    Rees W E,Wackernagel M.Urban ecological footprints:Why cites cannot be sustainable and why they are a key to sustainability.Environmental Impact Assessment Review,1996:224-248
    Renard KG, FosterGR, WeesiesGA,et al. Predicting soil erosion by water:A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE)//U. S. Department of Agriculture, ed. Agricultural Handbook. Washington:U. S. Department of Agriculture,1997
    Richard Y.M. Kangalawe, Carl Christiansson, Wilhelm O stberg Changing land-use patterns and farming strategies in the degraded environment of the Irangi Hills, central Tanzania[J]Agriculture, Ecosystems and Environment 2008 (125) 33-47
    RussianFederation Security Council. Russian national security.www.rusiaeurope.mid.ru/ Russian Europe, 2000-07-12
    Shen Zehao,Zhang Quanfa,Yue Chao et al.The spatial pattern of land use/land cover in the water supplying area of the middle-route of the South-to-North Water Diversion(MR-SNWD)Project[J].Acta Geographica Sinica,2006,61(6):633-644.
    Shi Minjun,Wang Tao.An application of bio-economic household model to analysis on man-land relationship behaviorin ecologically fragile land of China [J].Acta Geographica Sinica,2005,60(1):165-174.
    Steohan,P.,Roland,E.,Yconne,G.Modeling the environmental impacts of urban land use and land cover change-a study in Merseyside.UK [J].landscape and Urban Planning,2005,71,295-310
    Sugita M, Brutsaert W.Comparison of land surface temperatures derived from satellite observations with ground truth during FIFE [J]. International Journal of Remote Sensing,1993,14:1659-1676.
    Swanson F J, Kratze T K, Caine N.Landform effects on ecosystem patterns and processes [J].Bioscience,1988,38:92-98
    Tong C. Review on environmental indicator research[J]. Research on EnvironmentalScience,2000,13(4):53-55.
    Tran Hunga, Daisuke Uchihama.et al., Assessment with satellite data of the urban heat island effects in Asian mega cities [J]. International Journal of Applied Earth Observation and GeoInformation 8 (2006) 34-48.
    Trmvis C C, Morris J M. The emergence of ecological risk assessmen[J].Risk Analy,1992,12(2):167-168.
    T. R. Oke, G. Zeuner, E. Jauregui. The surface energy balance in Mexico City [J]. Atmospheric Environment, 1992,45,203-208
    VALAT,周惟道.水利工程的技术与生态安全性评价方法现状[J].水工建设,1990,9:3-4
    VOGT W.Road to Survival[M].New York:William Sloan,1948:129-157.SCEP(Study of Critical Environmental Problems).Man's Impact onthe Global Environment[M].Berlin:Springer-Verlag,1970.
    Voogt J A, et al. Thermal remote sensing of urban climates [J]. Remote Sensing of Environment,2003, 86:370-384
    Vicente-Serrano SM,Saz-Sanchez MA,Cuadrat J M.Comparative analysis of interpolation method in the middle Ebro Valley(Spain):application to annual precipitation and temperature[J].Climate Reaearch,2003,24(2):161180
    Wear D N, Bolstad P. Land-use changes in southern Appalachian landscapes [J]. Ecosystems,1998,1(6):575-594
    Weng Qihao. Estimation of land surface-vegetation abundance relationship for Urban Heat Island studies[J].Remote Sensing of Environment,2004,89(4):467-483.
    WESTMAN W E.How much are nature's services worth[J].Science,1977,197:960-964.
    Wischmeier W H. A Rainfall Erosion Index for a Universal Soil-loss Equation. Soil Science Society Proceedings.1959,23(3):246-249
    Wischmeier W H.et al.A Soil Erodibility Nomograph Farmland and Construction sites. Journal of Soil and Water Conservation,1971,26,189-193
    Wischmeier W H, Smith D D. Predicting Rainfall Erosion Losses from Cropland East of the Rocky Mountains. Agric. Handbook. No.282. Washington, D.C:USDA,1965
    Xiong Ying,Guang-Ming Zeng,Gui-Qiu Chen,Combining AHP with GIS in synthetic evaluation of eco-environment quality-A case study of Hunan Province,China[J]. Ecological Modelling,2007,209,97-109
    Yang Limin. Integration of a numerical model and remotely sensed data to study urban/rural land surface climate process[J].Computers & Geosciences,2000,26:451-468.
    Zhang H Y,Zhao X Y,Cai Y L,et al.Human driving mechanism of regional landuse change:a case study of Karst mountain areas of southwestern China[J].Chinese Geographical Science,2000,10(4):289-295
    白香花.北京城区下垫面类型及城区格局对热场分布影响研究[硕士论文][D].北京:北京师范大学,2003
    摆万奇,赵士洞.土地利用和土地覆盖变化研究模型综述[J].自然资源学报,1997,12(2):170-177.
    鲍超,方创琳.水资源约束力的内涵、研究意义及战略框架团[J].自然资源学报,2006,21(5):844-852
    蔡崇法,丁树文,史志华等.应用USLE模型与地理信息系统IDRISI预测小流域土壤侵蚀量的研究[J].水土保持学报,2000,14(2):19-24
    崔书红.沙尘暴雪暴频频来袭,我国生态安全危机四伏.http://www. news.sohu. com/20010209/file/0936, 004,100234. html,2001-05-03
    陈国阶.论生态安全[J].重庆环境科学,2002 24(3):1-3
    陈尚,张朝晖,马艳等.我国海洋生态系统服务功能及其价值评估研究计划[J].地球科学进展,2006,21(11):1127-1133.
    陈燕红,潘文斌,蔡芫镔.基于RUSLE的流域土壤侵蚀敏感性评价——以福建省吉溪流域为例[J].山地学报,2007,25(4):490-496
    陈云浩,李晓兵,李京,等.面向航空遥感应用的可调节植被指数研究[J].中国矿业大学学报,2004.33(4):438-442.
    陈云浩,史培军,李晓兵.基于遥感和GIS的上海城市空间热环境研究[J].测绘学报,2002,31(2):139-144
    丁学才,张志凯,周红妹等.上海地区夏季高温分布及热岛效应研究.[J].大气科学,2002,26(3):412-421.
    范天锡.北京地区城市热岛特征的卫星遥感[J].气象,1987,13(10):29-32.
    范心圻.遥感技术在北京城市热岛研究中的应用及优势[J].世界导弹与航天,1991,6:6-11
    方创琳.西北干旱区生态安全系统结构与功能的监控思路初论[J].中国沙漠,2000,20(3):326-328
    方创琳,张小雷.干旱区生态重建与经济可持续发展研究进展[J].生态学报2001,21(7):1163-1170
    费鲜芸,赵庚星,高祥伟.土地利用/覆盖遥感分析研究综述[J].山东农业大学学报,2002,33(4):515-518.
    冯耀忠.干线输油管道生态安全问题及其解决途径[J].国外油气储运,1995,13(3):63-66
    傅伯杰,陈利顶,马克明.黄土丘陵区小流域土地利用变化对生态环境的影响-以延安市羊圈沟流域为例[J].地理学报,1999,54(03):241-246
    高志强,刘纪远.基于遥感和GIS的中国植被指数变化的驱动因子分析及模型研究[J].气候与环境研究.2000,5(2):155-164
    高志强,刘纪远,庄大方.基于GIS的中国土地资源生态环境质量同人口分布的关系研究[J].遥感学报,1999,3(1):66-70
    辜胜阻,侯伟丽.治理长江上游水土流失的对策.长江流域资源与环境[J].2000,9(2):260-264.
    郭妮.植被指数及其研究进展[J].干旱气象,2003,21(4):71-75
    黄奕龙,陈利顶,傅伯杰等.黄土丘陵小流域沟坡水热条件及其生态修复初探[J].自然资源学报,2004,19(02):183-189
    季崇萍,刘伟东,轩春怡.北京城市化进程对城市热岛的影响研究[J].地球物理学报,2006,49(1):69-77
    纪瑞鹏,张喜民,李刚.沈阳市及其它五个城市的城市热岛效应卫星监测研究[J].辽宁气象,2000,4:22-26
    贾士荣.转基因作物的安全性争论及其对策[J].生物技术通报,1999,15(6):1-7
    蒋剑峰.福建省城市化与区域经济协调发展研究[D].福州:福建师范大学,2006
    孔红梅,赵景柱.生态系统健康评价初探[J].应用生态学报,2002,13(4):486-490
    李建牢,任杨俊.关注西北地区生态安全,实现经济可持续发展[J].水土保持学报,2002.16(5):39-41
    李素美.生态安全的经济评价方法及整体思路[[J].山西林业科技,2003.6:26-28
    李晓兵.国际土地利用·土地覆盖变化环境影响研究[J].地球科学进展,1999,14(4):395-400
    李新,程国栋,卢玲.空间内插方法比较[J].地球科学进展.2000,15(3):260-265
    李秀彬.全球环境变化研究的核心领域一土地利用/土地覆被变化的国际研究动向[J].地理学报,1996,51(6):553-558
    李月臣,刘春霞.北方13省土地利用/覆盖动态变化分析[J].地理科学,2007,27(1):45-52
    李月臣,刘春霞,赵纯勇,黄建辉.三峡库区重庆段水土流失的时空格局特征[J].地理学报,20088,63(5):502-513
    李运学,邓吉华,黄建胜,等.水土流失是我国的头号环境问题[J].水土保持学报,2002,16(5):105-107
    李智广.中国水土流失现状与动态变化[J].中国水利,2009(7):8-11
    梁音,史学正.长江以南东部丘陵山区土壤可蚀性K值研究[J].水土保持研究,1999,6(2):47-52
    林学椿,于淑秋.北京地区气温的年代际变化和热岛效应.地球物理学报,2005,48(1):39-45
    林忠辉,莫兴国,李宏轩,等.中国陆地区域气象要素的空间插值[J].地理学报2002,57(1):47-56
    刘纪远.中国资源环境遥感宏观调查与动态研究[M].北京:中国科学技术出版社,1996
    刘静玉.伊洛河流域典型区域LUCC及其驱动机制研究-以洛宁县为例[D].河南大学研究生硕士学位论文.2003.
    刘淼,胡远满,徐崇刚.基于GIS、RS和RUSLE的林区土壤侵蚀定量研究——以大兴安岭呼中地区为例[J].水土保持研究,2004,11(3),21-24
    刘士余,左长清.水土保持与国家生态安全[J].中国水土保持科学.2004,2(1):102-105
    刘熙明,胡非,李磊等.北京地区夏季城市气候趋势和环境效应的分析研究[J].地球物理学报,2006,49(3):689-697
    刘勇洪,牛铮,徐永明,王长耀,李贵才.基于MODIS数据设计的中国土地覆盖分类系统与应用研究[J].农业工程学报,2006,22(5),99-104
    刘庄,谢志仁,沈渭寿.提高区域生态环境质量综合评价水平的新思路[J].长江流域资源与环境,2003,12(2):163-168
    罗亚,徐建华,岳文泽.基于遥感影象的植被指数研究方法评述[J].生态科学,2005,24(1):75-79
    马克明,傅伯杰,黎晓亚,等.区域生态安全格局:概念与理论基础[J].生态学报,2004,24(4):761-768
    马志尊.应用卫星影像估算通用土壤流失方程各因子值方法的探讨[J].中国水土保持,1989,(3):24-27
    毛克彪,覃志豪,施建成.用MODIS影像和劈窗算法反演山东半岛的地表温度[J].中国矿业大学学报,2005,34(1):46-50
    毛小苓,刘阳生.国内外环境风险评价研究进展[J].应用基础与工程科学学报,2003,11(3):266-273
    牟金泽,孟庆枚.陕北部分中小流域输沙量计算[J].人民黄河,1983(4):35-37
    潘建平.RUSLE及其影响因子的快速计算分析[J].地质灾害与环境保护,2008.19(1):88-92
    覃志豪.用陆地卫星TM6数据演算地表温度的单窗算法[J].地理学报,2001.56(4):456-466
    曲格平.关注生态安全之一:生态环境问题已经成为国家安全的热门话题[J].环境保护,2002,(5):3-4
    冉圣宏,吕昌河,贾克敬,等.基于生态服务价值的全国土地利用变化环境影响评价[J].环境科学,2006,27(10):2139-2145
    任志远,张艳芳.土地利用变化与生态安全评价[M].北京:科学出版社,2003
    史培军,李晓兵,陈晋,等.土地利用/覆盖变化与生态安全响应机制[M].北京:科学出版社,2004
    施晓清,欧阳志云.城市生态安全及其动态评价方法[J].生态学报,2005,25(12):3237-3243
    孙江华,袁德成,欧阳华.外来入侵种及其对森林生态系统的威胁:概念和对策[J].中国森林病虫,2002,21(6):32-35
    史志华,蔡崇法,丁树文,等.基于GIS和RUSLE的小流域农地水土保持规划研究[J].农业工程学报,2002,18(4):172-175.
    谭炳香,李增元,王彦辉,等.基于遥感数据的流域土壤侵蚀强度快速估测方法[J].遥感技术与应用,2005,20(2):215-220.
    潭维炽,叶万庚.现代测控管理工程[M].北京:宇航出版社,1993
    田光进,张增祥,赵晓丽,等.中国耕地土壤侵蚀空间分布特征及生态背景[J].生态学报,2002,22(1):10-16.
    田庆久,闵祥军.植被指数研究进展[J].地球科学进展,1998.13(4):327-333.
    王朝科.建立生态安全评价指标体系的几个理论问题[J].统计研究,2003,(9):17-20
    王敬国,张土龙,陈英旭.资源与环境概论[M].北京:中国农业大学出版社,2000,56-57
    王礼茂,郎一环.中国资源安全研究的进展及问题[J].地球科学进展,2002,21(4):333-340
    王清.山东省生态安全评价研究:[山东大学博士论文].济南:山东大学生命科学学院,2005,65-69
    王思远,刘纪远,张增祥.近10年中国土地利用格局及其演变[J].地理学报,2002,57(5):523-530.
    王万忠,焦菊英.中国的土壤侵蚀因子定量评价研究[J].水土保持通报,1999,16(5):1-20
    文军.国家环境安全及其对中国的启示[J].社会科学战线,2001(1):197-203
    王效科,欧阳志云,肖寒等.中国水土流失敏感性分布规律及其区划研究[J].生态学报,2001,21(1):14-19
    王秀兰,包玉海.土地利用动态变化研究方法[J].地理科学进展,1999,18(1):81-87
    王正兴,刘闯,Huete Alfredo.植被指数研究进展:从AVHRR-NDVI到MODIS-EVI[J].生态学报,2003,23(5):979-987
    吴刚,魏晶,张萍,等.三峡库区农林复合生态系统的效益评价[J].生态学报,2002,22(2):233-239
    吴开亚.生态安全理论形成的背景探析[J].合肥工业大学学报(社会科学版),2003,17(5):24-27
    吴素业.安徽大别山区降雨侵蚀力简化算法与时空分布规律[J].中国水土保持,1994,(4):12-13
    吴征镒.中国植被[M].北京:科学出版社,1980
    肖风劲,欧阳华.生态系统健康及其评价指标和方法[J].自然资源学报,2002,17(3):203-209
    肖笃宁,陈文波,郭福良.论生态安全的基木概念和研究内容[J].应用生态学报,2002,13(3):354-358
    熊鹰.湖南省生态安全综合评价研究:[湖南大学博士学位论文].长沙:湖南大学,2008
    徐建华.现代地理学中的数学方法[M].北京:高等教育出版社,1996.115-128
    延平军,黄春长,陈瑛.跨世纪全球环境问题及行为对策[M].北京:科学出版社1999
    阎伍玖.区域农业生态环境质量综合评价方法与模型研究[J].环境科学研究,1999,12(3):51-52
    杨京平,卢剑波.生态安全的系统分析[M].北京:化学工业出版社,2002
    杨青生,刘闯.MODIS数据陆面温度反演研究[J].遥感技术与应用,2004,19(2):90-94
    叶亚平,刘鲁君.中国省域生态环境质量评价指标体系研究[J].环境科学研究,2000,13(3):33-36
    余谋昌.论生态安全的概念及其主要特点[J].清华大学学报(哲学社会科学版),2004,19(2):29-35
    肖寒,欧阳志云,王效科等.GIS支持下的海南岛土壤侵蚀空间分布特征[J].土壤侵蚀与水土保持学报,1999,5(4):75-84
    谢志仁,刘庄.江苏省区域生态环境综合评价研究[J].中国人口、资源与环境,2001,11(3):85-88
    徐海根.自然保护区生态安全设计的理论与方法[M].北京:中国环境科学出版社,2000
    严星,林增杰.地籍管理(修订本)[M],北京:中国人民大学出版社,1994
    杨勤科,李锐.中国水土流失和水土保持定量研究进展[J].水土保持通报,1998,18(5):13-18.
    尹希成,困扰人类的全球问题[M].北京:北京大学出版社.1999
    游松财,李文卿.GIS支持下的土壤侵蚀量估算-以江西省泰和县灌溪乡为例[J].自然资源学报,1999,14(1):62-68
    杨维,刘云国,曾光明等.定量遥感支持下的红壤丘陵区土壤侵蚀敏感性评价——以长沙市为例[J].环境科学与管理,2007,32(1):120-125
    袁兴中,刘红.生态系统健康评价概念构架与指标选择[J].应用生态学报,2001,12(4):627-629
    岳天祥.生态环境质量评价方法研究[J].水土保持学报,1998,7(4):33-38
    张树文,张养贞,李颖等.东北地区土地利用/覆被时空特征分析[M].科学出版社,北京:2006.2.
    张岩,刘宝元,史培军.黄土高原土壤侵蚀农作物覆盖因子计算[J].生态学报,2001,21(7):1050-1056
    张永生,遥感图象信息系统[M].北京:科学出版社,2000:119
    张玉良.前苏联植物保护的生态安全方法[J].苏联科学与技术,1994,3:35-36
    张增祥.资源环境遥感监测与综合评价研究[M].北京:宇航出版社,1997,64-67
    赵士洞,罗天样.区域尺度陆地生态系统生物生产力研究方法[J].资源科学,1998,20(1):23-34.
    赵大庆,韩釜山.基于气象卫星数据的深圳地区城市热岛分析[J].环境保护科学,1991,17(3):1-4
    赵怀全.城市生态安全评价与研究-以合肥市为例[D].合肥:合肥工业人学,2007
    周斌,杨柏林.运用多时相直接分类法对土地利用进行遥感动态监测的研究[J].自然资源学报, 2001,16(3),263-267
    周伏建,陈明画,林福兴等.福建省土壤流失预报研究[J].水土保持学报,1995,9(1):25-36
    周红妹,葛伟强,周成虎.基于遥感和GIS的城市热场分布规律研究[J].地理学报,2001,56(2):189-197
    周上游.农业生态安全与评估体系研究:[中南林学院博士学位论文].长沙:中南林学院资源与环境学院,2004,21-24
    周淑贞,束炯.城市气候学[M].气象出版社,1994
    郑新奇,王爱萍.基于RS与GIS的区域生态环境质量综合评价研究-以山东省为例[J].环境科学学报,2000,20(4):489-493
    朱蕾,黄敬峰.基于GIS和空间插值技术的南方丘陵山区土地生产潜力估算[J].浙江大学学报(农业与生命科学版)2007,33(4):458-465.
    邹长新,沈渭寿.生态安全研究进展[J].农村生态环境,2003,19(I):56-59
    左伟.基于RS、GIS的区域生态安全综合评价[M],测绘出版社,北京:2004
    左伟,王桥,王文杰等.区域生态安全评价指标与标准研究[J].地理学与国土研究,2002,18(1):67-71
    左伟,周慧珍,王桥,等.区域生态安全综合评价与制图-以重庆市忠县为例[J].土壤学报,2004,4(2):203-209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700