用户名: 密码: 验证码:
不同控制条件下堆肥过程中腐殖质的转化机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了系统探索不同控制条件下堆肥过程中腐殖质的转化规律和机制。布置了系列堆肥试验,研究了在不同季节条件下翻堆频率和覆盖条件、不同通风量和通风方式、不同化学添加剂等对堆肥过程中腐殖质转化规律的影响。并研究了堆肥施入土壤后对作物以及土壤腐殖质的影响进行了初步研究。通过元素分析、红外光谱以及GC-MS分析技术研究了堆肥过程中腐殖质的结构特征。主要研究结果如下:
     (1)堆肥过程显著提高了胡敏酸态碳、氮占腐殖质态碳、氮的比重。温暖季节可挥发性物质的降解率要高于寒冷季节。堆肥70d以后,寒冷季节腐殖质碳(HS-C)占TOC的比重及增加幅度均要高于温暖季节。翻堆处理能显著降低堆肥过程中胡敏酸的E4/E6值。
     (2)过高的通风量将导致堆体热量和水分的大量散失。堆体可挥发性物质降解主要集中在升温期和高温阶段。间歇式通风堆肥处理相比于连续式通风处理,HS-C占TOC的比重的变化幅度明显要大,但连续式通风处理在堆肥过程中胡敏酸态氮(HA-N)与富里酸态氮(FA-N)比值要高于间歇式通风处理。堆肥结束时,强制通风处理富里酸碳氮比高于不通风堆肥处理,同时通风显著降低了堆肥过程中胡敏酸E4/E6值。
     (3)化学添加剂可降低挥发性物质的降解率,其中过磷酸钙+氯化镁处理不仅降低了可挥发性物质的损失,同时也降低了腐殖质中胡敏酸的含量,但可显著提高堆肥全氮中腐殖质态氮(HS-N)的比例。堆肥过程中腐殖质态氮占堆肥全氮的比重与铵态氮含量呈正相关。胡敏酸碳与富里酸碳比值(HR=HA-C/FA-C)和胡敏酸碳与腐殖质碳比值(HP=HA-C/HS-C)在堆肥的升温期和高温期变化比较剧烈。相比蘑菇渣和锯末堆肥处理,玉米秸秆堆肥处理更有利于有机碳的腐殖化作用。
     (4)腐熟堆肥施入到土壤,对玉米产量的影响主要是通过影响玉米的穗行数和行粒数来实现,同时腐熟堆肥比化肥处理更有利于土壤有机质的积累。施用堆肥明显增加土壤中全氮的含量,增加幅度最大为过磷酸钙添加量为15%的堆肥。土壤富里酸碳(FA-C)在两年轮作后各处理都出现了不同程度的下降,土壤中胡敏酸的含量有显著增加。
     (5)胡敏酸和富里酸结构的变化主要集中在堆肥的后腐熟化阶段。胡敏酸芳构化程度高于富里酸,堆肥过程中胡敏酸属于Rp型,相比较于土壤的胡敏酸还比较“稚嫩”。70d条垛式堆肥结束后,富里酸的结构主要以苯酚、烷烃、甲酯、酰胺为主,胡敏酸的结构含有烷烃、苯、苯酚、脂类、酰胺等,其中主要以脂类为主并含有大量的酰胺类物质。
In order to systematically explore humus transformation mechanisms during composting under different controlled conditions. Lots of composting experiments were arranged. The impact of turning frequency and coverage conditions under different seasons, different ventilation rate and way, and different chemical additives on transformation of humus during the composting process has been systematically studied, and also the impact on crop and soil humus after compost applied to the soil was studied. Structural characteristics of humus in the composting had been studied by elemental analysis, FT-IR and GC-MS analysis technology. The main research conclusions are as follows:
     (1) The composting significantly improved the humic acid carbon, nitrogen accounted for the proportion of the humus carbon, nitrogen. Volatile substances degradation rate in warm season was higher than in the cold season. After70days composting, humus carbon (HS-C) accounted for the proportion of TOC and the rate of increase in cold season were both higher than in the warm season. Turning could significantly reduce the E4/E6valueof humic acid.
     (2) Excessive ventilation rate resulted in a large number of heat and moisture loss during composting. Volatile substances degradation occurred mainly in the heating and thermophilic phase. Intermittent ventilation compared to continuous ventilation, the variation of HS-C accounted for the proportion of TOC was much larger, but the ratio of humic acid nitrogen (HA-N) and fulvic acid nitrogen (FA-N) under continuous ventilationand was higher than the intermittent ventilation. After composting, the C/N of fulvic acid under forced ventilation treatments was higher than non-ventilation treatment, and ventilation significantly reduced the humic acid E4/E6value.
     (3) Chemical additives could reduce the degradation rate of the volatile substances during the composting, and superphosphate+magnesium chloride treatment not only reduced the loss of volatile substances, but also reduced the content of humic acid in the humus, however, it can significantly improved the porportion of humus nitrogen (HS-N) in the total nitrogen. The humus nitrogen accounted for the proportion of the total nitrogen in the compost was positively correlated with the content of ammonium nitrogen. The ratio of humic acid carbon and fulvic acid carbon (HR=HA-C/FA-C) and the ratio of humic acid carbon and humus carbon (HP=HA-C/HS-C) changed intensely in the heating and thermophilic phase. Compared to mushroom compost and sawdust compost, corn straw compost was more favorable to humification of organic carbon.
     (4) When compost applied to the soil, it affected the corn yield by corn rows per ear and kernels per row, and it was more conducive to the accumulation of soil organic matter compared with fertilizer treatment. Compost treatments significantly increased the content of soil total nitrogen, the greatest increase happened in the adding superphosphate15%treatment. Content of soil fulvic acid carbon (FA-C) after two-years rotation were different degrees of decline, but a significant increase in the content of soil humic acid.
     (5) The changes in the structure of humic acid and fulvic acid mainly happened in maturity stage. The aromatization extent of humic acid was higher than fulvic acid, the type of humic acid was Rp in the composting process, and still was relatively immature compared to soil humic acid After70days windrow composting, the structure of fulvic acid included phenol, alkanes, methyl ester, amide. Structure of humic acid contained alkanes, benzene, phenol, lipids, amides, and mainly was lipids and amides.
引文
Adani F., Genevini P L., Tambone. A new index of organic matter stability. Compost Science and Utilization,1995, (3):25-37
    Ait Baddib G, Cegarrab J, Merlina G. Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste wheat straw mixture. Journal of Hazardous Materials,2009,165:1119-1123
    Aiken G.R., Malcolm R.L. Molecular weight of aquatic fulvic acids by vapor pressure osmometry, Geochim cosmochim Acta,1987,51,2177-2184
    Amir S, Hafidi M, Merlina G, et al. Structural characterization of fulvic acids during composting of sewage sludge. Process Biochemistry,2005,40(5):1693-1700
    Amir S, Hafidi M, Lemee L, et al. Structural characterization of fulvic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry. Journal of Analytical and Applied Pyrolysis,2006,77(2):149-158
    Amir S, Hafidi M, Lemee L, et al. Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry. Process Biochemistry,2006,41(2):410-422
    Baddi G A, Cegarra J, Merlina G, et al. Qualitative and quantitative evolution of polyphenolic compounds during composting of an olive-mill waste-wheat straw mixture. Journal of Hazardous Materials,2009,165(1-3):1119-1123
    Ben Mahmoud I., Medhioub M., Rigane H et al. Evolution of humic fractions in calcimagnesic soils and brown iso-humic soil s amended wit h compost and manure. Compost Science Utilization, 2007,15 (4):253-256
    Binner E, Smidt E, Tintner J, et al. How to enhance humification during composting of separately collected biowaste:impact of feedstock and processing. Waste Management & Research,2011, 29(11):1153-1163
    Brunetti G., Soler-Rovira P., Matarrese F et al. Composition and Structural Characteristics of Humified Fractions during the Co-composting Process of Spent Mushroom Substrate and Wheat Straw. Journal of Agricultural and Food Chemistry,2009,57(22):10859-10865
    Buffle J., Greter F L., Haerdi W. Measurement of Complexation Properties of Humic and Fulvic Acids in Natural-Waters with Lead and Copper Ion-Selective Electrodes. Analytical Chemistry, 1977,49(2):216-222
    Campitelli P., Ceppi S. Effects of composting technologies on the chemical and physicochemical properties of humic acids. Geoderma,2008,144(1-2):325-333
    Concheri G, Nardi S, Reniero F, et al. The effects of humic substances within the Ah horizon of a Calcic Luvisol on morphological changes related to invertase and peroxidase activities in wheat roots. Plant and Soil,1996,179(1):65-72
    Cabaniss S E.,Zhou Q H, Maurice P A, et al. A log-normal distribution model for the molecular weight of aquatic fulvic acids. Environmental Science & Technology,2000,34(6):1103-1109
    Castaldi P, Alberti G, Merella R, et al. Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Management,2005,25(2):209-213
    Carter MR. Stewart BA. Structure and organic matter storage in agricultural soil. Lew is Pubishers. CRC Press,1996
    Dewes T. Effect of pH, temperature, amount of litter and storage density on ammonia emissions from stable manure. Journal of Agricultural Science,1996,127:501-509
    Eklind Y, Kirchmann H. Composting and storage of organic household waste with different litter amendments Ⅱ:nitrogen turnover and losses. Bioresource Technology,2000,74(2):125-133
    Elwell D L., Keener H M., Wiles M C., Borger D C., Willett L B. Odorous emissions and odor control in composting swine manure/sawdust mixes using continuous and intermittent aeration. Transactions of the Asae.2001,44(5):1307-1316
    Fukushima M, Yamamoto K, Ootsuka K, et al. Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresource Technology,2009,100(2):791-797
    Francioso O., Ciavatta C., Tugnoli V et al. Spectroscopic characterization of pyrophosphate incorporation during extraction of peat humic acids. Soil Science Society of America Journal, 1998,62(1):181-187
    Frederick C, Michel J, Reddy, C. Composting rate, odor production, and compost quality in bench-scale reactors. Compost Science and Utilization,1998,6(4):6-14
    Fukumoto Y., Osada T., Hanajima D., Haga K. Patterns and quantities of NH3, N2O and CH4 emissions during swine manure composting without forced aeration-effect of compost pile scale. Bioresource Technology,2003,89:109-114
    Fukushima M., Miura A., Sasaki.M et al. Effect of an allophanic soil on humification reactions between catechol and glycine:Spectroscopic investigations of reaction product. Journal of Molecular Structure.2009 (917:142-147
    Gao M., Liang F., Yu A., Li B., Yang L. Evaluation of stability and maturity during forced-aeration composting of chicken manure and sawdust at different C/N ratios. Chemosphere,2010, 78:614-619
    Granhall U. Biological Nitrogen Fixation in Relation to Environmental Factors and Functioning of Natural Ecosystems.1981, Pp.131-134 in Terrestrial NitrogenCycles, Eds. F.E. Clark and T.Rosswal.Stockholm:Ecology Bulletin 33
    Hao X.Y., Chang C., Larney F.J., Travis G.R. Greenhouse gas emissions during cattle feedlot manure composting. Journal of Environmental Quality,2001,30(2):376-386
    Haug R.T. Compost Engineering. Principles and Practice. Ann Arbor Science.1980
    Head M J., Zhou W J. Evaluation of NaOH leaching techniques to extract humic acids from palaeosols. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms,2000,172:434-439
    Hertkorn N, Claus H, Schmitt-Kopplin P.H, Perdue E.M, Filip Z. Utilization and transformation of aquatic humic substances by autochtonous microorganisms, Environ. Sci. Technol,2002, (36)4334-4345
    Hsu J H and Lo S L. Chemical and spectroscopic analysis of organic matter transformations during composting of pig manure. Environmental Pollution,1999,104(2):189-196
    Huang G.F., Wong J.W.C., Wu Q.T. Nagar B.B.. Effect of C/N on composting of pig manure with sawdust. Waste Management,2004,24:805-813
    Inbar Y, Chen Y, Hadar Y. Humic substances formed during the composting of organic matter. Soil Sci Am J,1990,54:1316-1323
    Itavaara M.,Vikman M and Karjomaa S. Testing methods for determining the compostability of packaging materials., in Proceedings of Biological Waste Management "Wasted Chance", J. Barth, Editor.1995, BWM Infoservice, Germany
    Kakezawa M., Nishida T., Takahara Y. Structural Characteristics of humic acids extracted from woody composts by two-step composting process. Soil Sci. Plant Nutr,1992,38(1):85-92
    Kawasa Kis., Manie N., Watanabe A. Composition of humic acids wit h respect to t he degree of humification in culti-vated soils wit h and wit hout manure application as assessed by fractional precipitation. Soil Science and Plant Nutrition,2008,54 (1):57261
    Kelleher B P, Leahy J J, Henihan A M, et al. Advances in poultry litter disposal technology-a review. Bioresource Technology,2002,83(1):27-36
    Lau A K, Lo K V, Liao P H. Aeration experiments for swine waste composting. Bioresource Technology,1992,41:145-152
    Liang C., Das K.C., McClendon R.W. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresource Technology,2003,86: 131-137
    Mathur S P.Bioconversion of Waste Materials to Industrial Products.New York:Composting processes, 1991:147-186
    Masami F., Kanako Y., Keishi O et al. Effects of the maturity of wood waste compost on the structural features of humic acids. Bioresource Technology,2009,(2):791-797
    M.C. Wang, P.M. Huang. Cleavage and polycondensation of pyrogallol and glycine catalyzed by natural soil clays. Geoderma,2003, (112),31-50
    Miikki V., Senesi N., Hanninen K. Characterization of humic material formed by composting of domestic and industrial biowastes. Part 2:Spectroscopic evaluation of humic acid structures. Chemosphere,1997,34(8):1639-1651
    Michael T., Michael S., Heide S. FTIR-spectroscopic characterization of humic acids and humin fractions obtained by advanced NaOH, Na4P2O7, and Na2CO3 extraction procedures. J Plant Nutr Soil Sci,2007,170,522-529
    N Zhu. Effect of low initial C/N ratio on aerobic composting of swine manure with rice straw. Bioresource Technology,2007,98:9-13
    Niklinska M, Marayski M, Laskowski R. Effect of temperature on humus respiration rate and nitrogen mineralization:implication for global climate change. Biogeochemistry,1999,44:239-257
    Plaza C., Senesi N., Polo A et al. Acid-base properties of humic and fulvic acids formed during composting. Environmental Science & Technology,2005,39(18):7141-7146
    Rasapoor M., Nasrabadi T., Kamali M., Hoveidi H. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Management,2009,29:570-573
    Sanchez-Monedero M A., Roig A., Cegarra J et al. Relationships between water-soluble carbohydrate and phenol fractions and the humification indices of different organic wastes during composting. Bioresource Technology,1999,70(2):193-201
    Senesi N. Composted Materials as Organic Fertilizers. Science of the Total Environment,1989,81(2): 521-542
    Smidt E., Meissl K., Schmutzer M et al. Co-composting of lignin to build up humic substances Strategies in waste management to improve compost quality. Industrial Crops and Products,2008, 27(2):196-201
    Soumia amira, Abdelmajid Jouraiphyb, Abdelilah Meddic-HB et al. Structural study of humic acids during composting of activated sludge- green waste:Elemental analysis, FTIR and 13C NMR. Journal of Hazardous Materials,2010,177:524-529
    Stevenson F J, ed. Humus chemistry genesis composition, reactions.1982, Willey Interscience:New York.
    Stevenson,F.J. Humus chemistry:Genesis, composition, reactions.2nd ed. John Wiley& Sons, New York,1994
    Sugahara K., Inoko A. composition analysis of humus and characterization of humic acid abtained from city refuse compost. Soil Science and Plant Nutrition,1991,(27):213-224
    Tang J. G., Shibata A., Zhou Q.X., Katayama A. Effect of Temperature on Reaction Rate and Microbial Community in Composting of Cattle Manure with Rice Straw. Journal of Bioscience and Bioengineering,2007,104 (4):321-328
    Thompson AG, Wagner-Riddle C, Fleming R. Emissions of N2O and CH4 during the composting of liquid swine manure. Environmental Monitoring and Assessment,2004,91:87-104
    Tuomela M.,Vikman M.,Hatakka A et al. Biodegradation of lignin in a compost environment:a review. Bioresource Technology,2000,72(2):169-183
    Tuomela M., Oilvanenl P., Hatakka A. Degradation of synthetic 14C-lignin by various white-rot fungi in soil. Soil Biology& Biochemistry,2002,34(11):1613-1620
    Veeken A, Nierop K, de Wilde V & Hamelers B. Characterisation of NaOH-extracted humic acids during composting of a biowaste. Bioresource Technol,2000,72:33-41
    Xianzhi Song, Farwell S.O. Pyrolysis gas chromatography atomic emission detection method for determination of N-containing components of humic and fulvic acid. Journal of Analytical and Applied Pyrolysis,2004,71(2):901-915
    Xu S.W., Hao X.Y., Stanford K., McAllister T., Larney F. J., Wang J.G. Greenhouse gas emissions during, co-composting of cattle mortalities with manure. Nutr Cycl Agroecosyst,2007,78:177-18
    Zech W., Senesi N., Guggenberger G et al. Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma,1997,79(1-4):117-161
    Zucconi F.,Forte M.,MonacA. Biological evaluation of compost maturity. Biocycle,1981,22:27-39
    鲍士旦.土壤农化分析[M].北京:中国农业出版社,2000
    蔡建成.堆肥工程与堆肥工厂[M].北京:机械工业出版社,1990
    曹喜涛,黄为一,常志州,黄红英.鸡粪堆制过程中氮素损失及减少氮素损失的机理[J].江苏农业学报,2004,20(2):106-110
    曹立群.鸡粪堆肥含氮转化规律与异养亚硝化细菌研究[D].东北农业大学,2008
    陈兰,唐晓红,魏朝富.土壤腐殖质结构的光谱学研究进展[J].中国农学通报.2007,23(8):233-238
    陈文优.畜禽粪便对农业环境的影响及管理对策[J].农业环境与发展,2007,(3):87-91
    陈云嫩,梁礼明.城市生活垃圾的资源化处理[J].中国资源综合利用,2003(5):11-13
    成绍鑫.重新认识腐植酸对化肥的增效作用及有关对策[J].腐植酸,1998(3):1-8
    董旭,娄翼来.2008.长期定位施肥对土壤养分和玉米产量的影响.现代农业科学.1(15):9-11
    崔宗均,宫小燕,李国学.变性梯度凝胶电泳在堆肥微生物研究中的应用[J].微生物学通报,2004,31,(5):116-119
    高宗辉.城市生活垃圾处理方法评述[J].四川建筑,2002,22(3):82-83
    黄红丽.木质素降解微生物特性及其对农业废物堆肥腐殖化的影响研究.湖南大学博十学位论文.2009.湖南:长沙
    何德文,金艳,柴立元等.国内大中城市生活垃圾产生量与成分的影响因素分析[J].环境卫生工程,2005,13(4):7-10
    贺琪,李国学,张亚宁,林小凤.高温堆肥过程中的氮素损失及其变化规律[J].农业环境科学学报2005,24(1):169-173
    冯明谦.城市生活垃圾处理现状及发展趋势[J].环境卫生工程,1999,7(4):145-147
    黄吕勇.土壤学[M].北京:中国农业出版社,2000
    焦洪超,张洪芳,栾炳志等.不同通风量对猪粪好氧堆肥效果的影响[J].农业工程学报,2008.(24):173-177
    李伟伟,刘荣章,李建华.农业循环经济与废弃物资源化利用策略[J].台湾农业探索,2006,(2):36-39
    李庆康,吴雷,刘海琴等.我国集约化畜禽养殖场粪便处理利用现状及展望[J].农业环境保护2000,19(4):251-254
    李吉进.畜禽粪便高温堆肥机理与应用研究[D].中国农业大学,2004
    李国学,张福锁.固体废物堆肥化与有机复混肥生产[M],北京:化学工业出版社,2000
    李国学.堆肥化过程氮素损失原位控制及机理研究.国家自然科学基金项目结题报告,2008,12
    李艳霞,王敏健等.城市固体废弃物堆肥化处理的影响因素[J].土壤与环境1999,8(1):61-65
    李艳霞,王敏健,王菊思,陈同斌.固体废弃物的堆肥化处理技术[J]环境污染技术与设备2000,1(4):39-44
    刘杏兰,高宗,刘存伟,等.有机-无机肥配施的增产效应及对土壤肥力影响的地位研究[J1.土壤学报,1996,33(2):138-147刘盛萍,蔡敬民,吴克等.城市生活垃圾处理现状及对策探讨[J].合肥学院学报(自然科学版),2005,15(4):53-57
    刘茜.胡敏酸-氧化铁-高岭石复合体的形成与表征.华中农业大学硕士学位论文.2009.湖北:武汉
    李华,杨肖娥.不同氮钾条件下水稻基因型氮、钾积累利用差异[J].中国水稻科学,2002,16(1):86-88
    李学恒.土壤化学[M].北京:高等教育出版社,2001.
    李全,孙晓杰,王思明等.通风方式对污泥与树叶及稻秸堆肥腐熟指标的影响[J].轻工科技.2012(12)73:74
    刘小虎,邹德乙,康笑峰,等.长期轮作施肥对土壤有机质及其组分的影响.沈阳农业大学学报,1998,29(1):53-58
    罗奇祥.腐植酸和钾的相互关系研究初报[J].江西腐植酸,1980(2):19-24黄昌勇主编.十壤学.2000.北京:中国农业出版社1-311
    索超.猪粪堆肥过程中腐殖质的生成及其对Cu的吸附作用研究.西北农林科技大学硕十学位论文.2009.陕西:杨凌
    宋祥云.土壤胡敏素组成及结构特征研究.硕士学位论文[D],吉林农业大学,2007
    沈玉君.不同控制参数对堆肥过程中气体变化的影响[D].2009,中国农业大学
    曲晓晶.堆肥及长期施肥对腐殖质组分数量和结构特征的影响.吉林农业大学硕十学位论文.2008.吉林:长春
    汤仲恩,朱文玲,吴启堂.环境条件对猪粪好氧堆肥过程的影响[J].生态科学,2006,25(5):467-471
    唐景春,孙青,王如刚,等.堆肥过程中腐殖酸的生成演化及应用研究进展[J].环境污染与防治,2010(05):73-77,88
    夏其伟,田阳,成国祥.2005.生物有机肥-绿色农业的保证[J].中国科技成果.2:36-38
    杨毓峰,薛澄泽,唐新保.畜禽废弃物好氧堆肥化条件研究[J]. 陕西农业科学,1998.45(6):10-11.
    魏自民,席北斗,李鸣晓等.微生物接种堆肥胡敏酸三维荧光特性研究[J].光谱学与光谱分析.2008(12):2895-2899
    魏自民,王世平,席北斗,等.生活垃圾堆肥过程中腐殖质及有机态氮组分的变化.环境科学学报,2007,27(2):235-240
    王国学.腐植酸肥料改土增产效果研究[J].腐植酸,1993(04):38-40
    王丽宏,张立峰.农作物秸秆资源的开发利用[J].河北农业大学学报,2003,26(S1):31-33
    余群,董红敏,张蟄琨.国内外堆肥技术研究进展(综述)[J].安徽农业大学学报2003,30(1) 109-112
    徐红,樊耀波,贾智萍,等.时间温暖联合控制的强制通风污泥堆肥技术[J].环境科学,2000,21(6):51-55
    扬振怀.水土保持是重要的环境和生态修复重建工程[J].中国水土保持,2001(10)
    张园,耿春女,何承文,蔡超.堆肥过程中有机质和微生物群落的动态变化[J].生态环境学报,2011,20(11):1745-1752
    张夫道.氮素营养研究中几个热点问[J].植物营养与肥料学报1998,4(4):331-338
    张永涛,有机固体废弃物堆肥的腐熟度研究[M].西北农林科技大学,2007.
    王强.腐殖酸与铁锰铝及其氧化物相互作用机理研究.西南农业大学博士学位论文.2005.重庆
    郑国砥,陈同斌,高定等.好养高温堆肥处理对猪粪中重金属形态的影响[J].中国环境科学.2005,25(1):6-9
    李吉进.畜禽粪便高温堆肥机理与应用研究.中国农业大学博士学位论文.2004.北京
    张增强,唐新保.污泥堆肥化处理对重金属形态的影响[J].农业环境保护.1996,15(4):188-190
    钟桐生.土壤腐殖酸性质及其化学传感器的研究.湖南大学博士学位论文.2009.湖南:长沙

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700