用户名: 密码: 验证码:
植物材料和水分管理对稻田土壤pH和碳氮矿化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文选取我国南方的3种水稻土(浙江龙游的红砂田、黄筋泥田和浙江嘉兴的黄斑田)土壤和3种植物秸秆(紫云英、水稻、小麦)作为研究材料,采用实验室恒温培养的方法,通过测定土壤pH、NH4+、NO3-、C02、MBC、DOC、 DON等指标,分别研究了添加不同植物材料和不同水分处理(控水、干湿交替、淹水)等因素及其组合对不同初始pH土壤的酸碱性、微生物数量和活性及有机质矿化等的影响,进而对土壤酸化机理及其与土壤碳氮矿化的关系进行了较为系统和具体的分析与探讨,获得了以下主要研究结果:
     (1)添加秸秆明显提高了初始土壤pH不同的酸性水稻土的pH值,土壤pH在3天内快速增加,3天之后在红砂田和黄筋泥田土壤中继续缓慢增加,而在黄斑田土壤中则随培养时间而减小。土壤酸碱缓冲性能较强的黄筋泥田土壤,添加有机物料后其pH变化的幅度较小。添加有机物料对土壤pH的影响程度为初始pH较低土壤大于初始pH较高土壤。土壤碱度的变化受植物材料碱度的影响,其中紫云英大于水稻和小麦秸秆。土壤pH的增加与碱度的增加呈正相关。pH与添加植物材料的C/N比呈显著负相关。
     (2)添加植物材料后,3种水分处理中淹水使得酸性土壤的pH上升幅度最大。对黄斑田土壤,干湿交替处理对提升土壤pH的效果与淹水处理相似。对黄筋泥田,干湿交替处理并添加紫云英可以减少pH的波动。对黄斑田,干湿交替处理使其碱度增加较多,且持续时间较长。添加紫云英后,黄筋泥田相比黄斑田,淹水处理碱度增加幅度越大,持续时间最长。碱度和pH变化呈极显著正相关(p<0.01)。
     (3)添加植物材料增加土壤微生物量,其中紫云英>水稻>小麦。土壤微生物量的变化经历了一个先增加、后减少的动态过程,在第3天达到最大,然后随培养时间而减少,14天后变化不大。从添加3种有机物料后3种土壤微生物量的平均值来看,黄斑田土壤的MBC最高,红砂田最低。土壤微生物量和有机质含量呈极显著正相关,且3种土壤中土壤微生物量C/N比与土壤pH变化均呈极显著正相关(R2=0.87,p<0.01)。紫云英的C/N比为16.8,添加到土壤后易于分解矿化,而水稻和小麦的C/N比分别为39.9和75.3,易发生无机氮的固定。添加植物材料后,微生物在调节土壤有机物质矿化和碱度产生等方面起主导作用,进而导致土壤pH的增加。在添加紫云英的黄斑田和黄筋泥田两种土壤中,干湿交替和淹水处理抑制了土壤微生物的活性,3种水分处理下MBC的大小顺序为CW>W-D>WS。在3种水分处理下,MBC的波动规律均是先增加再减小。添加有机物料后,黄斑田土壤的MBC均高于黄筋泥田土壤,且2种土壤的MBC均显著高于未添加紫云英的土壤。培养末期,控水处理的MBC下降最多,而此时干湿交替处理的MBC高于淹水处理。
     (4)添加秸秆提高了土壤呼吸速率和累计CO2释放量,通常在第3天土壤呼吸速率达到最高,然后随着培养时间的推移而减小。就土壤而言,黄斑田土壤的呼吸速率最高,红砂田土壤最低。添加秸秆后,增加了土壤的呼吸及C02的排放量,且添加紫云英的高于水稻和小麦秸秆。DOC在植物残体的初始分解过程中起到了重要作用,从第1天到第3天,DOC含量快速减小,DOC中有机阴离子的分解对初期土壤pH的上升起主要作用。土壤DON的浓度与植物材料N浓度和超额阳离子呈正相关,与C/N比呈负相关。NH4+浓度在添加紫云英的红砂田和黄筋泥田土壤中随培养时间而增加,而在黄斑田土壤中却随培养时间而减小。在3种土壤中添加水稻和小麦秸秆,初期NO3-N的浓度比不添加的对照土壤低。紫云英促进了NH4-N释放,提高了N03-N浓度,水稻和小麦秸秆则促进了NH4-N固定、降低了NO3-N浓度。研究还表明,在添加紫云英的3种土壤中,NH4-N浓度最高;3种土壤NH4-N浓度的顺序为红砂田>黄筋泥田>黄斑田。
     (5)对于添加紫云英的黄斑田和黄筋泥田2种土壤,控水处理下2种土壤的DOC均剧烈下降,干湿交替和淹水处理可延缓DOC含量的下降。在干湿交替和淹水处理下,酸性较弱、初始有机质含量较高土壤的DOC含量明显高于酸性较强的土壤。添加紫云英后,在控水和淹水处理下,初始有机质含量较高的黄斑田和红砂田土壤的呼吸速率和累计CO2释放量均显著高于初始有机质含量较低的土壤(黄筋泥田)(p<0.01)。对相同土壤而言,淹水处理下累计C02释放量低于控水处理,淹水处理下的厌氧条件限制了微生物的活动。
     (6)添加紫云英后,在淹水和干湿交替处理下,黄斑田土壤的DON显著高于黄筋泥田土壤(p<0.01)。在酸性较强、初始有机氮含量较低的土壤中添加紫云英,控水处理下DON的含量最高。在酸性较弱、初始有机氮含量较高的土壤中添加紫云英,淹水处理的DON含量高于控水处理,干湿交替处理下DoN的含量波动较大,但总体上高于控水处理。在黄筋泥田土壤中添加紫云英,控水处理下NO3-N含量高于干湿交替处理和淹水处理。因此,控水处理对提高黄筋泥田土壤pH的作用低于干湿交替和淹水处理。同样,控水处理下黄斑田土壤的NO3-N浓度与土壤pH的降低有一致的关系。频繁的干湿交替可以增加酸性水稻土的N矿化。在淹水条件下,添加紫云英的黄筋泥田土壤中的NH4-N浓度高于黄斑田土壤,酸性较强、初始有机氮较低的土壤添加紫云英对于土壤NH4-N的增加作用较高;酸性较弱、初始有机氮较高的土壤,添加的紫云英在土壤中的矿化相对较弱。
A Psammaquent and a Plinthudult soil were collected from Longyou County and a Paleudalfs soil was collected from Jiaxing in Zhejiang Province, in the south of China. Chinese milk vetch, wheat straw and rice straw were used in this study. These plant materials were collected from mature plants in the field. Air-dried soils added with plant residues were incubated under the laboratory conditions. Three water treatments were used:control water (CW), wetting-drying cycles (W-D), and water submergence (WS). By measuring the soil pH, NH4+, NO3-, CO2, MBC, DOM, DON and other indicators, the effects of plant residues and water regimes on soil acidification were characterized and the mechanisms of the soil acidification and other aspects were systematically explored and discussed. The main results are as follows:
     (1)Addtion of plant straws significantly increased pH of acidic paddy soils with the different initial pH during the initial three days. After3days, soil pH increased in Psammaquent and Plinthudult soils and decreased in Paleudalfs as incubation time increased. The magnitude of soil pH change was less in the soil with higher buffer capacity. The effect of plant residues on soil pH change was longer and stronger in soils with lower initial soil pH than with higher initial soil pH. Alkalinity production was affected by the type of the residues, being higher in Chinese milk vetch than in wheat straw and rice straw. Soil pH increase was positively correlated with alkalinity and negatively correlated with C/N ratio of the residues.
     (2)Net pH increase was found in two soils upon addition of CM vetch under WS. It was found that the net increase of soil pH relative to its control soil was much higher inPlinthudult soil after addition of CM vetch under WS, and the effect of W-D on net pH increase in Paleudalf soil was similar to WS treatment after addition of CM vetch. Under W-D, soil pH change with incubation time was relatively small by addition of CM vetch in Paleudalf soil. It was observed that the net increase of soil alkalinity after addition of CM vetch under W-D relative to its control soil was much higher and the effect was much longer in Paleudalf soil. Thus, W-D should also be used for managing pH. It was observed that the net increase of soil alkalinity relative to its control soil was much higher in Plinthudult soil after addition of CM vetch under WS. Alkalinity had significant positive correlation with pH changes (p<0.01).
     (3)Soil microbial biomass carbon (MBC) dramatically increased following by incorporation of the plant materials. The residue type had a significant effect on MBC with the order of CM vetch> rice straw> wheat straw. It increased with incubation time, reached the maximum at day3, then decreased and became relatively stable from day14. On average, highest MBC was observed in Paleudalfs soil while lowest was observed in Psammaquent soil. MBC was significantly positively correlated with organic matter content, and the soil microbial biomass C/N was significantly correlated with soil pH changes (R2=0.87, p<0.01). In this experiment, the C/N ratio of CM vetch, rice straw, and wheat straw was16.8,39.9, and75.3, respectively. The addition of CM vetch resulted in net N mineralization while addition of wheat and rice straws resulted in net immobilization. Which was related to the C/N ratio of plant materials. Obviously, microbes played main roles in mineralization and mediated alkalinity production after incorporation of the plant materials, and soil pH was thereby increased. The addition of CM vetch restrained the activity of the microbes in W-D and WS. However, the addition of CM vetch dramatically increased MBC in all the water treatments, the increase being greatest under CW while smallest under WS. Amount of MBC concentrations were initially increased, reached the maximum, and then decreased. The amount of MBC concentrations was always higher in Paleudalfs than in Plinthudult under the water treatments. At the end of incubation, the decrease of MBC was the highest in CW, and MBC content was higher in W-D than in WS.
     (4)Addition of plant straws increased the accumulative CO2emission. Soil respiration rate rapidly increased. It was usually highest at the third day, and then decreased with time of incubation. Respiration rate was highest in Paleudalfs and lowest in Psammaquent. Addition of plant straws increased soil respiration and thereby increased the emission of CO2.The order of the effect of plant residues on soil respiration rate followed:Chines Milk vetch (CM vetch)> Rice straw(RSt)> Wheat straw(WSt). From the first day to the third day, DOC concentration rapidly decreased, and the organic anions in the DOC made a contribution to the increase of soil pH especialy at the initial age. DON concentration was positively correlated with N concentration and excess cations, and was negatively correlated with C/N. In Psammaquent and Plinthudult soils, with addition of CM vetch, NH4+concentration increased with time of incubation. CM vetch promoted NH4-N release and increased NO3-N concentration. Rice and wheat straws promoted NH4-N fixation and decreased NO3-N concentration. Results indicated that the NH4+concentration was highest in soils with addition of CM vetch, the order of NH4+concentration was:Psammaquent> Plinthudult> Paleudalfs.
     (5) In CW, DOC concentrations decreased with time of incubation in two soils with CM vetch added. WS and W-D were better than CW in terms of slowing down the decrease of DOC concentrations. DOC concentrations were much higher in less acidic soils rich in basic organic matter than in more acidic soils of lower basic organic matter in WS and W-D. After addition of CM vetch in the two soils, the respiration rate and cumulative CO2were higher in the soil of rich in basic organic mater in CW and WS (p<0.01). The amounts of cumulative CO2slowly increased in WS than in CW, indicating that the WS condition limited microbial decomposition.
     (6)With CM vetch added and under W-D and WS conditions, DON concentrations were always higher in Paleudalfs than in Plinthudult soil (p<0.01). In more acidic soils with lower basic N, DON concentrations were highest in CW. In less acidic soils with higher basic N, DON concentrations were higher in WS than in C W. The DON concentration increased in a fluctuating pattern in W-D and it was higher in W-D than in CW. For different water treatments and soil types added with CM vetch, the NO3-N concentrations followed the order of CW> W-D> WS. Thus, pH in Plinthudult soil increased less in CW than in W-D and WS. For the same reasons, NO3-N had a great contribution to soil pH decrease in Paleudalfs under CW. In W-D, frequent wetting-drying cycles could increase N mineralization in acidic paddy soils. With CM vetch added, NH4-N concentration was higher in Plinthudult than in Paleudalfs soil, and NH4-N increase was higher in more acidic soil with lower basic N in WS while the NH4-N increase was lower in less acidic soil with higher basic N in WS.
引文
Aber J.D., Magil A.M., Boone, R., et al.1993. Plant and soil responses to three years of chronic nitrogen additions at the Harvard Forest, Massachusetts. Ecological Applications,3 (1):156-166.
    Adams, MUM, Artill P.M.,1984. Patterns of Nitrogen mineralization in 23-year old pine forest following nitrogen fertilizing. Forest Ecology Management,7(3):241-248.
    Adams, TMcM, Laughlin R.J.,1981. The effects of agronomy on the carbon and nitrogen contained in the soil biomass. The Journal of Agricultural Science.97:319-327.
    Agren, G.I., Bosatta E, Magill A.H.,2001. Combining theory and experiment to understand effects of inorganic nitrogen on litter decomposition. Oecologia,128:94-98.
    Anderson, T.H., Domsch, K.H.,1989. Ratios of microbial biomass carbon to total organic carbon in arable soils. Soil Biology and Biochemistry,21:471-479.
    Anderson, T.H.,1998. The influence of acid irrigation and liming on the soil microbial biomass in a Norway spruce (Picea abies [L.] K.) stand. Plant and Soil,117-122.
    Andersson, S., Nilsson, I., Saetre, P.,2000. Leaching of dissolved organic carbon (DOC) and dissolved organic nitrogen (DON) in mor humus as affected by temperature and pH. Soil Biology & Biochemistiy 32:1-10.
    Appel, T.,1998. Non-biomass soft organic N:the substrate for N mineralization flushes following soil drying-rewetting and for organic N rendered CaCl2-extractable upon soft drying. Soil Biology and Biochemistry,30:1445-1456.
    Asghar, M., Kanehiro, Y.,1988. Effects of sugarcane trash and pine-apple residue on titration curves, redox potential and extractable Mn and Fe in an oxisol. Biological Wastes 24:,27-38.
    Austin, A.T., Yahdjian, L., Stark, J.M., et al.2004. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia,141:221-235.
    Azam, F.,,Simmons, F.W., Mulvaney, R.L.,1993. Mineralization of N from plant residues and its interaction with native soil N. Soil Biology and Biochemistry,25(12):1787-1792.
    Baldwin, E., Anderson, T.H.,2003. Comparison of soil fungal/bacterial ratios in a pH gradient using physiological and PLFA-based techniques. Soil Biology and Biochemistry 35:955-963.
    Baldwin, D.S., Mitchell AM.,2000. The effects of drying and reflooding on the sediment and soil nutrient dynamics of lowland river-floodplain systems:A synthesis. Regulated Rivers. Research and Management,16:457-467.
    Bannin, N.C., Grant, C.D., Jones, D.L., Murphy, D.V.,2008. Recovery of soil organic matter, organic matter turnover and nitrogen cycling in a post-mining forest rehabilitation chronsequence. Soil Biology and Biochemistry 40:2021-2031.
    Barekzai, A., Mengel, K.,1993. Effect of microbial decomposition of mature leaves on soil pH. Journal of Plant Nutrition and Soil Science,156:93-94.
    Barrett, J.E., Burke, I.C.,2000. Potential nitrogen immobilization in grassland soils across as soil organic matter gradient. Soil Biology and Biochemistry 32:1707-1716.
    Bayer, C., Martin-Neto, L., Mielniczuk, J., et al.2001. Changes in Soil Organic Matter Fractions under Subtropical No-Till Cropping Systems. Soil Science Society of America Journal, 65:1473-1478.
    Berendse, F.,1990. Organic matter accumulation and nitrogen mineralization during secondary succession in heathland ecosystems. Journal of Ecology,78:413-427.
    Bessho, T., Bell, L.C.,1992. Soil solid and solution phase changes and mung bean response during amelioration of alumunium toxicity with organic matter. Plant and Soil 140:183-196.
    Birch, H.F.,1964. Mineralization of plant nitrogen following alternate wet and dry conditions. Plant and Soil 20:43-49.
    Blair, J.M.,1997. Fire, N availability, and plant response in grasslands:a test of the transient maxima hypothesis. Ecology,78:2359-2368.
    Bremner E, Van K.C.,1992. Seasonal microbial dynamics after addition of lentil and wheat residues. Soil Science Society of America Journal,56:1141-1146.
    Bridgham, S.D., Updegraff K, Pastor J.1998. Carbon nitrogen and phosphorus mineralization in northern wetlands. Ecology,79(5):1545-1561.
    Broadbent, F.E., Nakashima, T.,1974. Mineralization of carbon and nitrogen in soil amended with carbon-13 and nitrogen-15 labeled plant material. Soil Science Society of America Proceedings,38:313-315.
    Burford, J.R., Bmmner, J.M.,1975. Relationships between denitriflcation capacities of soils and total water soluble and readily decomposable soil organic matter. Soil Biology and Biochemistry.7:389-394.
    Butterly, C.R., Baldock J. A., Xu, J.M., Tang, C.X.,2009. Is the alkalinity withn agricultural residues soluble. In:Xu, J.M., Huang, P.M. (Eds.), Molecular Environmental Soil Science at the Interfaces in the Earth's Critical Zone. Zhejiang University Press, Zhejiang,314-316.
    Cabrera, M.,1993. Modeling the flush of nitrogen mineralization caused by drying and rewetting soils. Soil Science Society of America Journal,57:63-66.
    Chantigny, M.H.,2003. Dissolved and water, extractable organic matter in soils:A review on the influence of land use and management practices. Geoderma,113:357-380.
    Chow, A.T., Tanji, K.K., Gao, S.D., Dahlgren, R.A.,2006. Temperature, water content and wet-dry cycle effects on DOC production and carbon mineralization in agricultural peat soils. Soil Biology and Biochemistry,38(3):477-488.
    Christensen, B.T.,1992. Physical fractionation of soil and organic matter in primary particle size and density separates. Advances in Agronomy,20:1-90.
    Cook, B.D., Allan D.L.,1992. Dissolved organic carbon in old field soils:total amounts as a measure of available resources for soil mineralization. Soil Biology and Biochemistry,24: 585-594.
    Cookson, W.R., Murphy, D.V.,2004. Quantifying the contribution of dissolved organic matter to soil nitrogen cyclying using 15N isotopic poor dilution. Soil Biology and Biochemistry,36: 2097-2100.
    Coyne,M.S.,1999. Soil Microbiology:An Exploratory Approach. Delmar Publishers.Washington.
    Cui, M.Y., Caldwell, M.M.,1997. A large ephemeral release of nitrogen upon wetting of dry soil and corresponding root responses in the field. Plant and Soil,191:291-299.
    Curtin, D., Selles, E, Wang, H., et al.1998. Carbon dioxide emissions and transformation of soil carbon and nitrogen during wheat straw decomposition. Soil Science Society of America Journal,62:1035-1041.
    Curtin, D., Campbell, C.A., Jalil A.,1998. Effects of acidity on mineralization:pH-dependence of organic matter mineralization in weakly acidic soils. Soil Biology and Biochemistry,30(1): 57-64.
    Davidson, E.A., Chorover, J., Dail, D. B.,2003. A mechanism of abiotic immobilization of nitrate in forest ecosystems:the ferrous wheel hypothesis. Global Change Biology.9(2):228-236.
    Denef, K., Six, J., Bossuyt H., Frey, S.D.,2001a. Elliott E.T. Merckx R, Paustian K. Influence of dry-wet cycles on the interrelationship between aggregate.particulate organic matter, and microbial community dynamics. Soil Biology and Biochemistry,33(12-13):1599-1611.
    Denef, K., Six, J., Panstian, K., Merckx, R.,2001b. Importance of macroaggrugate dynamics in controlling soil carbon stabilization:short-term effects of physical disturbance induced by dry-wet cycles. Soil Biology and Biochemistry,33:2145-2153.
    Devevre, O.C., Horwath, W.R.,2000. Decomposition of rice straw and microbial carbon use efficiency under different soil temperatures and moistures. Soil Biology and Biochemistry,32: 1773-1785.
    Ding, G, Novak, J.M., Amarasiriwardena D et al.2002. Soil Organic Matter Characteristics as Affected by Tillage Management. Soil Science Society of America Journal,66:421-429.
    Donahue, R.L., Miller, R.W., Shickluna, J.C.,1977. An introduction to soils and plant growth. Engle wood Cliffs:Prentice Hall.
    Duong, T.T.T., Baumann, K., Marschner, P.,2009. Frequent addition of wheat straw residues to soil enhances carbon mineralization rate. Soil Biology and Biochemistry 41:1475-1482.
    Ellert, B.H., Gregorich, E.G.,1995. Management- induced changes in the actively cycling fractions of soil organic matter. In:McFee, W.W., Kelly. J.M. (eds), Carbon Forms and Functions in Forest Soils. Wisconsin, Madison. USA:Soil Science Society of America, Inc., pp.119-138.
    Fernandez, I.J.,.Rustad, L.E., Norton, S.A., et. al.,2003. Experimental acidification causes soil base-cation depletion at the Bear Brook Watershed in Maine. Soil Science Society of America Journal,67(6):1909-1919.
    Fierer, N., Schimel, J.P., Holden PA.2003. Influence of drying-rewetting frequency on soil bacterial community structure. Microbial Ecology,45:63-71.
    Fierer, N., Schimel, J.P.,2002. Effects of drying-rewetting frequency on soil carbon and nitrogen transformations. Soil Biology and Biochemistry,34:777-787.
    Flowers, T.H., O'Caallaghan, J.R.,1983. Nitrification in soils incubated with pig slurry o r ammonium sulphate. Soil Biology and Biochemistry,15(3):337-342.
    Fransluebbers, A.J., Haney, R.L., Hons, F.M., et. al.,1996. Active fractions of organic matter in soils with different texture. Soil Biology and Biochemistry,28:1367-1372.
    Franzluebbers, K., Weaver, R.W., Juo, A.S.R., et al.1994. Carbon and nitrogen mineralization from cowpea plants part decomposing in moist and repeatedly dried and wetted soil. Soil Biology and Biochemistry,26:1379-1387.
    Fyles, J.W., Fyles, I.H., Feller, M.C.,1990. Comparison of nitrogen mineralization in forest floor materials using aerobic and anaerobic incubation and bioassay techniques. Canadian Journal of Soil Science,70(1):73-81.
    Garica, F.O., Rice, C.W.,1994. Microbial biomass dynamics in tallgrass prairie. Soil Science Society of America Journal,58:816-823.
    Bending, GD., Turner, M.K., Burns, I.G.,1998. Fate of nitrogen from crop residues as affected by biochemical quality and the microbial biomass. Soil Biology and Biochemistry, 30(14):2005-2065.
    Giardina, C.P., Ryan, M.G, Hubbard RM et al.2001. Tree Species and Soil Textural Controls on Carbon and Nitrogen Mineralization Rates. Soil Science Society of America Journal, 65:1272-1279.
    Gilmour,J.T.,1984. The effect of soil properties on nitrification and nitrification inhibition. Soil Science Society of America Journal,48:1262-1266.
    Gotoh, S., Onikura, Y,1971. Organic acids in a flooded soil receiving added rice straw and their effect on the growth of rice. Soil Science and plant nutrition,17:1-8.
    Granli, T., Bockman, O.C.,1994. Nitrous oxide from agriculture. Norwegian Journal of Agricultural Science,12:1-128.
    Gregorich, E.G, Drury, C.F., Ellert, B.H., et al.,1997. Fertilization effects on physically protected light fraction organic matte. Soil Science Society of America Journal,61:482-484.
    Gregorich, E.G, Carter, M.R., Angers, D.A., et. al.,1994. Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science, 74:367-385.
    Groffman, P.M., Eagan, P., Sullivan, W.M., Lemunyon, J.L.,1996. Grass species and soil type effects on microbial biomass and activity. Plant and Soil,183(1):61-67.
    Guo, J.H.,Liu, X.J., Zhang, Y., Shen, J.L., Han, W.X., Zhang, W.F., Christie, P., Goulding, K.W., Vitousek, P.M., Zhang, F.S.,2010, Significant acidification in major Chinese croplands. Science,327:1008-1010.
    Guo, Lin.,2001. Carbon sink in cropland soils and the emission of greenhouse gases from paddy soils:a review of work in China. Chemosphere.3:413-418.
    Gupta, J.P., Singh S.D.,1983. Hydrothermal environment of soil and vegetable production with drip and furrow irrigation. Indian Journal of Agricultural Sciencce,53(2):138-142.
    Gurney, K.R.,2009. Global change China at the carbon crossroads. Nature,458(7241):977-979.
    Halverson, I.J., Jones, T.M., Firestone, M.K.,2000. Release of intracellular solutes by four soil bacteria exposed to dilution stress. Soil Science Society of America Journal,64:1630-1637.
    Hamer, U., Unger, M., Makeschin, F..,2007. Impact of air-dryingand rewetting on PLFA profiles of soil microbial communities. Journal of Plant Nutrition and Soil Science,170:259-264.
    Hao, Y., Lai, R., Owens, L. B., et. al.,2002. Effect of cropland management and slope position on soil organic carbon pool at the North Appalachian Experimental Watersheds. Soil and Tillage Research,68(2):133-142.
    Hassink, J., Bouwman, L.A., Zwart, K.B., et. al.,1993, Relationships between habitable pore space, soil biota and mineralization rates in grassland soils. Soil Biology and Biochemistry, 28:1367-1372.
    Hassink, J.,1994. Effects of soil texture on the size of soil microbial biomass and on the amount of C and N mineralization per unit of microbial biomass in Dutch grassland soils. Soil Biology and Biochemistry,26:1377-1581.
    Haynes, R.J.,2000. Labile organic matter as an indicator of organic matter quality in arable and pastoral soils in New Zealand. Soil Biology and Biochemistiy,32:211-219.
    Haynes, R.J.,1999. Labile organic matter fractions and aggregate stability under short-term,grass-basedleys. Soil Biology and Biochemistiy,31:1821-1830.
    Helyar, K.R.,1976. Nitrogen cycle and soil acidification. Journal of the Australian Institute of Agricultural Science 42:217-221.
    Hendrix, P.F., Franzluebbers, A.J., McCracken, D.V.,1998. Management effects on C accumulation and loss in soils of the southern Appalachian Piedmont of Georgia. Soil and Tillage Research,47(3-4):245-251
    Herrick, J.E., Wander, M.,1997. Relationship between soil organic carbon and soil quality in cropped and rangeland soils:the importance of distribution, composition, and soil biological activity. In:Lai, R., Kimble, J. M., Follett, R. F., Stewart, B. A. (Eds.), Soil Processes and the Carbon Cycle.CRC Press, Boca Raton, pp.405-425.
    Herrmann, A.,Witter, E..,2002.Sources of C and N contributing to the flush in mineralization upon freeze-thaw cycles in soils. Soil Biology and Biochemistry,34:1495-1505.
    Hoyt, P.B., Turner, R.C.,1975. Effects of organic materials added to very acid soils on pH, aluminum, exchangeable NH4, and crop yield. Soil Science 119:227-237.
    Hue, N.V., Amiens, I.,1989. Aluminum detoxification with green manures. Communications in Soil Science and Plant Analysis 20:1499-1511.
    Ianbellone, P.A., Guichon, B.A.,Gimcnez, J.E..,2001. Dynamics of physical-chemical properties in soils with anthropic flooding, Buenos Aires Province, Argentina. Soil Science, 166:930-939.
    Iovieno, P., Baath, E.,2008. Effect of drying and rewetting on bacterial growth rates in soil. FEMS Microbiology Ecology,65:400-407.
    Jansson, S. L.,1966. Experimental techniques with nitrogen-15. In Report of the FAO/IAEA Technical Meeting. Brunsick-Volkenrode, p415-422. Pergamon Press, New York.
    Jenkinson, J.S., Ladd, J.N.,1981. Microbial biomass in soil:Measurement and turnover. P.415-471. In E.A. Paul and J.N. Ladd (ed). Soil Biochemistry. Vol.5. Marcell Dekker, Inc., New York.
    Jenkinson, D.S., and Rayner, J.H.,1977. The turnover of soil organic matter in some of the Rothamsted classical experiments. Soil Science,123:298-305.
    Jones, D.L., Shannon, D., Murphy, D., Farrar, J.,2004. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biology and Biochemistry,36(5):749-756.
    Kalbitz, K., Solinger, S., Park, J.H.,2000. Controls on the dynamics of dissolved organic matter in soils:a review, Soil Science.165:277-304.
    Kevin, L.L., Daryl, M.M.,2000. Effect of C:N ratio on microbial activity and N retention. Bench-scale study using gulp and paper Biosolids. Compost Science and Utilization, 8(2):147-159.
    Khalil, M.I., Hossain, M.B., Schmidhalter, U.,2005. Carbon and nitrogen mineralization in different upland soils of the subtropics treated with organic materials. Soil Biology and Biochemistry,37:1507-1518.
    Kieft, T., Soroker, E., Firestone, M.,1987. Microbial biomass response to a rapid increase in water potential when dry soil is wetted. Soil Biology and Biochemistry,19:119-126.
    Klemmedson, J.O.,1989. Nitrogen mineralization in limed and gypsum-ammended substrates from ameliorated acid forest soils. Soil Science,147:55-63.
    Kononova, M.M., Aleksandrova, I.V., Titova, N.A.,1964. Decomposition of silicates by organic substances in the soil. Soviet Soil Science,1005-1014.
    Kruse, J.S., Kissel, D.E., Cabrera, M.L.,2004. Effects of drying and rewetting on carbon and nitrogen mineralization in soils and incorporated residues. Nutrient Cycling in Agroecosystems,69:247-256.
    Lai, R.,2003. Global Potential of soil carbon sequestration to mitigate the greenhouse effect. Critical Reviews in Plant Sciences,2:151-184.
    Lai, R.,2004. Soil carbon sequestration to mitigate climate change. Gerderma,123:1-22.
    Leenheer, J.A.,2003. Aquatic organic matter-understanding the unknown structures is key to better treatment of drinking water. Environment Science and Teclnology,37(1):18-26.
    Leiros, M.C, Trasar-Cepeda C, Seoane S et al.1999. Dependence of mineralization of soil organic matter on temperature and moisture. Soil Biology and Biochemistry,31:327-335.
    Liang, B.C., Mackenzie, A.F., Schnitzer, M., et al.1998. Management-induced change in labile soils with different texture. Soil Biology and Biochemistry,28:1367-1372.
    Liu, M.D., Zhang, Y.L., Wang, Y.J., Yang, D.,2002. Effects of slag application on dynamic changes of pH, water-soluble silicon concentrations in paddy soil and rice yield. Chinese Journal of Soil Science,33,47-50.
    Lohnis, F.,1926. Nitrogen availability of green manures. Soil Science,22:253-290.
    Loiseau, P., Soussana, J.F.,2000. Effects of elevated CO2 temperature and N fertilization on fluxes in a grassland ecosystem. Global Change Biology,6:953-965.
    Lou, Y. S., Li, Z.P., Zhang, T.L., Liang, Y.C.,2004. CO2 emissions from subtropical arable soils of China. Soil Biology and Biochemistry,36:1835-1842.
    Ludemann, H., Arth, I., Liesack, W.,2000. Spatial changes in the bacterial community structure along a vertical oxygen gradient in flooded paddy soil cores. Applied and Environmental Microbiology,66:754-762.
    Lundquist, E.J., Jackson, L.E., Scow, K.M.,1999. Wet-dry cycles affect dissolved organic carbon in two California agricultural soils. Soil Biology and Biochemistry,31:1031-1038
    MacDonald, N.W., Zak, D.R., Pregitzer K.S.,1995. Temperature effects on kinetics of microbial respiration and net nitrogen and sulfur mineralization. Soil Science Society of America Journal.59(1):233-240.
    Magid, J.,Kjargaard, C.Gerissen, A., Kuikman, P.J.,1999. Drying and rewetting of a loamy sand soil did not increase the turnover of native organic matter, but retarded the decomposition of added 14C-labelled plant material. Soil Biology and Biochemistry,31:595-602.
    Mario, E.B.,Bob, D.P., Paul, E.N.,1998. Grazing intensity and ecosystem processes in a northern mixed-grass prairie.USA. Ecological Applications,8:469-479.
    Marschner, B., Noble, A.D.,2000. Chemical and biological processes leading to the neutralisation of acidity in soil incubated with litter materials. Soil Biology and Biochemistry.32:805-813.
    Marschner, Bredow.,2000. Variation in soil net mineralization rates with dissolved organic carbon additions. Soil Biology and Biochemistry,32:597-601.
    Marstorp, H., Guan, X., Gong, P.,2000. Relationship between dsDNA, chloroform labile C and ergosterol in soils of different organic matter contents and pH. Soil Biology and Biochemistry 32,879-882.
    Martin, J.P., Haider, K., Kassim, G,1980. Biodegradation and stabilization after 2 years of specific crop, lignin and polysaccharide Carbons in soils. Soil Science Society of American Journal,44:1250-1255.
    Marumoto, T.,1984. Mineralization of C and N from microbial biomass in paddy soil. Plant and Soil.76:165-173.
    Mary, B., Recous, S., Darwis, D., Robin, D.,1996. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant and Soil 181:71-82.
    McBride, M.B.,1994. Environmental chemistry of soils. Oxford University Press, New York, NY,
    McConkey, B.G., Liang BC,Campbell CA et al.2003. Crop rotation and tillage impact on carbon sequestration in Canadian prairie soils. Soil and Tillage Research,74(1):81-90.
    Merino, A., GarciaRodeja, E.,1997. Heavy metal and aluminium mobilization in soils from Galicia (NW Spain) as a consequence of experimental acidification. Applied Geochemistry, 12(2):225-228.
    Mikha, M.M., Rice, C.W., Milliken, G.A.,2005. Carbon and nitrogen mineralization as affected by drying and wetting cycles. Soil Biology and Biochemistry,37:339-347.
    Miller, A.E., Schimel, J.P., Meixner, T., et al.2005. Episodic rewetting enhances carbon and nitrogen release from chaparral soils. Soil Biology and Biochemistry,37:2195-2204.
    Minamikawa, K., Sakai, N.,2006. The practical use of water management based on soil redox potential for decreasing methane emission from a paddy field in Japan. Agriculture Ecosystems and Environment,116:181-188.
    Miyata, A., Leuning, R., Thomas, D.O., Kim, J., Harazono Y.2000. Carbon dioxide and methane fluxes from an intermittently flooded paddy field. Agricultural and Forest Meteorology,102: 287-303.
    Mladenoff, D.J,1987. Dynamics of nitrogen mineralization and nitrification in hemloch and hardwood treefall gaps. Ecology,68(5):1171-1180.
    Mokolobate, M.S., Haynes, R.J.,2002. Comparative liming effect of four organic residues applied to an acid soil. Biology and Fertility of Soils,35(2):79-85.
    Mondini, C., Contin M, Leita, L., et al.2002. Response of microbial biomass to air-drying and rewetting in soils and com-post. Geoderma,105:111-124.
    Mummey, D.L., Smith, J.L., Bolton, H.,1994. Nitrous oxide flux from a shrub-steppe ecosystem: Sources and regulation. Soil Biology and Biochemistry,26:279-286.
    Murphy, D.V, Macdonald AJ,Stockdale EA,Goulding KW, Fortune S.Gaunt JL,Poulton PR,Wakefield JA,Webster CP, Wilmer WS.2000,Soluble organic nitrogen in agricultural soils. Biology and Fertility of Soils,30:374-385
    Noble, A.D., Randall, P.J.,1999. Alkalinity effects of different tree litters incubated in an acid soil of N.S.W., Australia. Agroforestry Systems,46:147-160.
    Noble, A.D., Zenneck, I., Randall, P.J.,1996. Leaf litter ash alkalinity and neutralisation of soil acidity. Plant and Soil,179,293-302.
    Nommik, H., Vahtras, K.,1982. Retention and fixation of ammonium and ammonia in soils. In: Stevenson F. J. ed., Nitrogen in Agricultural Soils.pp.123-171. American Society of Agronomy, Madison.
    Ocio, J.A., Brookes, P.C.,1990. An evaluation of methods for measuring the microbial biomass in soils following recent additions of wheat straw and the characterization of the biomass that develops. Soil Biology and Biochemistry,22:685-694.
    Ohrui, K., Mitchell, M.J., Bischoff, J.M.,1999. Effect of landscape position on N mineralization and nitrification in a forested watershed in the Adirondack Mountains of New York. Canadian Journal of Forest Research,29:497-508.
    Olfs, H.W., Neu, A., Werner, W.,2004. Soil N transformations after application of 15N-labeled biomass in incubation experiments with repeated soil drying and rewetting. Journal of Plant Nutrition and Soil Science,167:147-152.
    Paul, E. A.,1984. Dynamics of organic matter in soils. Plant and Soil 76:274-286.
    Paul, K.I., Black, A.S., Conyers, M.K.,2001. Development of nitrogen mineralization gradients through surface soil depth and their influence on surface soil pH. Plant and Soil.234: 239-246.
    Paul, K.I., Black, A.S., Conyers, M.K.,2001. Effect of plant residue return on development of surface soil pH gradient. Soil Biology and Biochemistry,33:75-82.
    Paul, E.A., Clark, F.E.,1989 Soil Microbiology and Biochemistry. Academic Press Inc, San Diego, CA, p273.
    Peacock, A.D., Mullem, M.D., Ringelberg, D.B., et al.2001.Soil microbial community responses to dairy manure or ammonium nitrate applications.Scil Biology and Biochemistry,33: 1011-1019.
    Perakis, S.S., Hedin, L.O.,2001. Fluxes and fates of nitrogen in soil of an unpolluted old-growth temperate forest,southern Chile. Ecology,82(8):2245-2260.
    Perakis, S.S., Hedin, L.O.,2002.Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature,415:416-419.
    Peterjohn, W.T., Schlesinger, W.H.,1991. Factors controlling denitrification in a Chihuahuan desert ecosystem. Soil Science Society of America Journal,55:1694-1701.
    Pocknee, S., Sumner, M.E.,1997. Cation and nitrogen contents of organic matter determine its soil liming potential. Soil Science Society of America Journal,61:86-92.
    Poss, R., Smith, C.J., Dunin, F.X., Angus, J. F.,1995. Rate of soil acidification under wheat in a semi-arid environment. Plant and Soil,177:85-100.
    Quemada, M., Cabrera, M.L.,1997. Temperature and moisture effects on C and N mineralization from surface applied clover residue. Plant and Soil,189:127-137.
    Raiesi, F.,2005. Carbon and N mineralization as affected by soil cultivation and crop residue in a calcareous wetland ecosystem in Central Iran. Agriculture Ecosystems and Environment, 112(1):13-20.
    Reddy, C.N., Patrick, W.H.,1977. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. Journal of Environmental Quality,6:259-262.
    Robson, A.D., Abbot, L.K.,1989. The effect of soil acidity on microbial activity in soils. In: Robson, A.D. (Ed.), Soil Acidity and Plant Growth, Academic Press Australia, Sydney, pp. 139-165.
    Roscoe, R., Buurman, P.,2003. Tillage Effects on Soil Organic Matter in Density Fractions of A Cerrado Oxisol. Soil and Tillage Research,70:107-119.
    Rukshana, F., Butterly, C.R., Baldock J. A., Tang, C.X.,2011. Model organic compounds differ in their effects on pH changes of two soils differing in initial pH. Biology and Fertility of Soils, 47:51-62.
    Saetre, P., Stark, J.M.,2005. Microbial dynamics and carbon and nitrogen cycling following re-wetting of soils beneath two semi-arid plant species. Oecologia,142:247-260.
    Sahrawat, K.L.,2004.Organic matter accumulation in submerged soils. Advances in Agronomy, 81:169-201.
    Sajwan, K.S., Lindsay, W.L.,1986. Effects of redox on zinc deficiency in paddy rice. Soil Science Society of American Journal,50:1264-1269.
    Sandra, F., Joann, K.W., Myrna, J., Simpson, H., Henry, J.,2011. Plant lignin and nitrogen contents control carbon dioxide production and nitrogen mineralization in soils incubated with Bt and non-Bt corn residues. Soil Biology & Biochemistry,43:63-69.
    Sebastien, F.,, Andre, M, Luc A.,2003. The priming effect of organic matter:a question of microbial competition? Soil Biology & Biochemistry,35:837-843.
    Seneviratne, R., Wild, A.,1985. Effect of mild drying on the mineralization of soil nitrogen. Plant and Soil,84:175-179.
    Shaffer, M.J., Ma, L.,2001. Carbon and nitrogen dynamics in upland soils. Shaffer MJ, Ma L. Hansen S (eds). Modeling carbon and nitrogen dynamics for soil management. Boca Raton, F L:Lewis Pubbishers,11-26.
    Sitaula, B.K., Bakken, L.R.,1993. Nitrous oxide release from spruce forest soil:Relationships with nitrification, methane uptake, temperature, moisture and fertilization. Soil Biology and Biochemistry,25:1415-1421
    Smith, J.L., Schnabel, R.R., McNeal, B. L., Campbell, GS.,1980. Potential errors in the first-order model for estimating soil nitrogen mineralization potentials. Soil Science Society of America Journal,44:996-1000.
    Smith, paul.,1990. The significance of soil microbial biomass estimations. In Stokzky G, Bollag J M(eds). Soil biochemistry. New York:Marcel Dekker, pp357-396.
    Song, Y., Deng, S.P., Acosta-Martinez V et al.2008. Characterization of redox-related soil microbial communities along a river floodplain continuum by fatty acid methyl ester (FAME) and 16S rRNA genes. Applied Soil Ecology,40:499-509.
    Sorensen, P.,2001. Short-term nitrogen transformations in soil amended with animal manure. Soil Biology and Biochemistry,33:1211-1216.
    Soulides, D.A., Allison, F.E.,1961. Effect of drying and freezing soils on carbon dioxide production available mineral nutrients, aggregation and bacterial population. Soil Science, 91:291-298.
    Stark, J.M., Firestone, M.K.,1995. Mechanisms for soil moisture effects on activity of nitrifying bacteria. Applied and Environmental Microbiology,61:218-221.
    Stevenson, F.L.,1986. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients. New York:John Wiley and Sons,1-44.
    Sun, B., Lin, X.X.,1993, Effects of soil texture and CaCO3 on turnover of organic materials in Chao soil. Pedpsphere,3(2):133-144.
    Takahashi, S., Yamamuro, S.,1994. Effect of air-drying before flooding on nitrogen mineralization. Japanese Journal of Soil Science and Plant Nutrition,65:165-170.
    Tang, C., Yu, Q.,1999. Chemical composition of legume residues and initial soil pH determine pH change of a soil after incorporation of the residues. Plant and Soil,215:29-38.
    Tang, C., McLay, C.D.A., Barton, L.,1997. A comparison of the potential proton excretion of twelve pasture legumes grown in nutrient solution. Australian Journal of Experimental Agriculture 37:563-570.
    Tang, C., Rengel, Z., In:Rengel, Z. (Eds.),2003. Role of plant cation/anion uptake ratio in soil acidification. New York, pp.57-81.
    Tang, C., Sparling, G.P., McLay, C.D.A., Raphael, C.,1999. Effect of short-term legume residue decomposition on soil acidity. Australian Journal of Soil Research 37:561-573.
    Tang, C., Yu, Q.,1999. Impact of chemical composition of legume residues and initial soil pH on pH change of a soil after residue incorporation. Plant and Soil 215:29-38.
    Tanja, A.J., Krift, V.D., Frank, B.,2001. The effect of plant species on soil nitrogen mineralization. Journal of Ecology,89:555-561.
    Tanji KK,Gao S,Scardaci SC, Chow AT.2003. Characterizing redox status of paddy soils with incorporated rice straw. Geoderma,114:333-353.
    Tsutsuki, K., Ponnamperuma, F.N.,1987. Behavior of anaerobic decomposition products in submerged soils:Effects of organic material amendment, soil properties, and temperature. Soil Science and plant Nutrition,33(1) 13-33.
    Turner, B.L., Driessen, J.P, Haygarth, P.M., et al.2003. Potential contribution of lysed bacterial cells to phosphorus solubilisation in two rewetted Australian pasture soils. Soil Biology and Biochemistry,35:187-189.
    Turner, C.L.,Blair, J.M., Schanz, R.J., Neel, J.C.,1997. Soil N and plant responses to fire,topography,and supplement N in tall grass prairie. Ecology,78:1832-1843.
    Tyler, G., Olsson, T.,2001. Plant uptake of major and minor mineral elements as influenced by soil acidity and liming. Plant and Soil,230(2):307-321.
    Van, G.M., Ladd, J.N., Amato, M.,1991. Carbon and nitrogen mineralization from two soils of contrasting texture and microaggregate stability, influence of sequential fumigation, drying and storage. Soil Biology and Biochemistry,23:313-322.
    Van, G M., Merckx, R., Vlassak, K.,1993. Microbial biomass responses to soil drying and rewetting:the fate of fast-and slow-growing microorganisms in soils from different climates. Soil Biology and Biochemistry,25:109-123.
    Van Veen, J.A., Ladd, J.N., Amato, M.,1985.Turnover of carbon and nitrogen through the microbial biomass in a sandy loam and a clay soil incubation with 14C glucose and 15N (NH4)2SO4 under different moisture regimes. Soil Biology and Biochemistry,25:47-55.
    Vanlauwe, B., Nwoke, O.C., Sanginga, N., et al.1996. Impact of residue quality on the C and N mineralization of leaf and root residues of three agroforestry species. Plant and Soil, 183:221-231.
    Vasquez-Murrieta, M.S., Migueles-Garduuno, I., Franco-Hernandez, O., Govaerts, B., Dendooven LC.2006. N mineralization and microbial biomass in heavy-metal contaminated soil. European Journal of Soil Biology,42:89-98.
    Vinther, F.P.,1992. Measured and simulated denitrification activity in a cropped sandy and loamy soil. Biology and Fertility of Soils,14:43-48.
    Vitousek, P.P.,1982. Nutrient cycling and nutrient use efficiency. American Naturalist,119: 553-572.
    Wang, H.Y., Zhou, J.M.,Chen, X.Q., Li, Sh.T.,Du CW, Dong CX.2003, Interaction of NPK fertilizers during their transformation in soils:I. Dynamic changes of soil pH Pedosphere,13(3):257-262.
    Wang, Y., Shen, Q.R., Yang, Z.M., Yu, L.,1996. Size of microbial biomass in soils of China. Pedeosphere,6:265-272.
    Wang, N., Li, J.Y., Xu, R.K.,2009. Use of various agricultural by-products to study the pH effects in an acid tea garden soil. Soil Use and Management 25:128-132.
    Wardle, D. A.,1992. A comparative assessment of factors which influence microbial biomass carbon and nitrogen levels in soil. Biological Review 67:321-358.
    Weslien, P., Klemedtsson, A.K., Borjesson, G, et. al.,2009. Strong pH influence on N2O and CH4 fluxes from forested organic soils. European Journal of Soil Science,60(3):311-320.
    West, T.O., McBride, A.C.,2005. The contribution of agricultural lime to carbon dioxide emissions in the United States:dissolution, transport, and net emissions. Agriculture Ecosystems and Environment,108(2):145-154.
    Williams, S. T., Gray., T. R. G.,1974. Decomposition of litter on the soil surface.611-632. In C.H. Dickinson and Pugh, G.J.F., editors, Biology of plant litter decomposition, volume 2. Academic Press, New York, New York, USA.
    Wolters, V., Joergensen, R.G.,1991. Microbial carbon turnover in beach forest soils at different stages of acidification. Soil Biology and Biochemistry,23:897-902.
    Wong, M.T.F., Nortcliff, S., Swift, R.S.,1998. Method for determining the acid ameliorating capacity of plant residue compost, urban waste compost, farmyard manure and peat applied to tropical soils. Communications in Soil Science and Plant Analysis,29:2927-2937.
    Woods, L.E., Schuman, G.E.,1986. Influence of soil organic matter concentration on carbon and nitrogen activity. Soil Science Society of America Journal,50:1241-1245.
    Wu, J., Brookes, P.C.,2005. The proportional mineralisation of microbial biomass and organic matter caused by air-drying and rewetting of a grassland soil. Soil Biology and Biochemistry, 37:507-515.
    Wu, J., Brookes, P.C., Jenkinson, D.S.,1993. Formation and destruction of microbial biomass during the decomposition of glucose and ryegrass in soil. Soil Biology & Biochemistry 25: 1435-1441.
    Xiang, S.R., Doyle, A., Holden, P.A., et al.2008. Drying and rewetting effects on C and N mineralization and microbial activity in surface and subsurface California grassland soils. Soil Biology and Biochemistry,40:2281-2289.
    Xu, J.M., Tang, C., Chen, Z.L.,2006b. Chemical composition controls residue decomposition in soils differing in initial pH. Soil Biology and Biochemistry 38:544-522.
    Xu, J.M., Tang, C., Chen, Z.L.,2006a. The role of plant residues in pH change of acid soils differing in initial pH. Soil Biology and Biochemistry,38,709-719.
    Xu, R.K., and Coventry, D. R.,2003. Soil pH changes associated with lupin and wheat plant materials incorporated in a red-brown earth soil. Plant and Soil,250:113-119.
    Yan, F., Schubert, S., Mengel, K.,1996a. Soil pH changes during legume growth and application of plant material. Biology and Fertility of Soils,23:236-242.
    Yan, F., Schubert, S.,2000. Soil pH changes after application of plant shoot materials of faba bean and wheat. Plant and Soil,220:279-287.
    Yang CM,Yang LZ, Yan TM.2002. Effects of nutrient and water regimes on paddy soil eco-environment. RuralEco-Environment,18(3):11-15.
    Zelles, L.,1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil:a review. Biology and Fertility of Soils 29: 111-129.
    Zhang, B., Yao, S.H., Hu, F.,2007. Microbial biomass dynamics and soil wettability as affected by the intensity and frequency of wetting and drying during straw decomposition. European Journal of Soil Science,58:1482-1492.
    白震,张明,宋斗妍等.2008.长期施肥对农田黑土微生物群落的影响.中国科学院研究生院学报,25(4):479-486.
    毕于运,王道龙,高春雨,王亚经等.2008.中国秸秆资源评价与利用.中国农业科学出版社.
    蔡祖聪.1999.水分类型对土壤排放的温室气体组成和综合温室效应的影响.土壤学报,36(4):484-491.
    陈全胜,李凌浩,韩兴国,阎志丹.2003.水分对土壤呼吸的影响及机理.生态学报,23(5):972-978.
    陈同斌,陈志军.1998.土壤中溶解性有机质及其对污染物吸附和解吸行为的影响.植物营养与肥料学报,4(3):201-210.
    陈欣等,2000.不同C/N比有机物料中有机氮的分解进程研究-有机氮的分解进程及C/N比的变化.应用生态学报,11(增刊):25-27.
    陈印平,潘开文,吴宁,罗鹏,王进闯,鲜纪绅.2005.凋落物质量和分解对中亚热带栲木荷林土壤氮矿化的影响.应用与环境生物学报,11(2):146-151.
    程励励,文启孝,李洪.1992.稻草还田对土壤氮素和水稻产量的影响.土壤,3:224-237.
    崔萌,李忠佩,车玉,代静玉.2008.不同水分状况下红壤水稻土中有机物料分解及酶活性的变化.安徽农业科学,36(22):9634-9636.
    戴平安,聂军,郑圣先,肖剑.2003.不同土壤肥力条件下水稻控释氮肥效应及其氮利用率的研究.土壤通报,34(2):115-119.
    单玉华,蔡祖聪,韩勇,Sarah, E.J., Roland, J.B.,2006.淹水土壤有机酸积累与秸秆碳氮比及氮供应的关系.土壤学报,43(6):65-73.
    邓祥征等,2010.中国农田土壤有机碳贮量变化预测.地理研究,1:93-101.
    范晓晖.1995.我国几种农田土壤的硝化和反硝化势的研究.中国科学院博士研究生学位论文.
    富宏霖,王生荣,韩士杰等.2009.土壤干湿交替对长白山阔叶红松林土壤微生物活性与区系的影响.东北林业大学学报,37(7):80-81.
    高树芳,王果,方玲.2001.溶解性有机质对水稻生长及元素吸收的影响.福建农业大学学报,30(1):87-90.
    官会林,郭云周,张云峰等.2011.不同复种模式对云南植烟红壤根区有机碳和微生物量碳的影响.农业环境科学学报,30(1):133-138.
    唐彬,郭颐盛,曹卫东等.2011.相同肥料用量紫云英与化肥配施对水稻生长及产量的影响.安徽农业科学,39(14):8405-8407.
    韩冰,王效科,欧阳志云.2005.中国农田生态系统土壤碳库的饱和水平及其固碳潜力.农村生态环境,(4):6-11.
    韩冰等,2008.中国农田土壤生态系统固碳现状和潜力.生态学报,(2):612-619.
    韩成卫,李忠佩,刘丽,车玉萍.2007.去除溶解性有机质对红壤水稻土碳氮矿化的影响.中国农业科学,40(1):107-113.
    韩鲁佳,闫巧娟,刘向阳,胡金有.2002.中国农作物秸秆资源及其利用现状.农业工程学报,18(3):87-91.
    郝瑞军,李忠佩,车玉萍.2010.好气和淹水处理间苏南水稻土有机碳矿化量差异的变化特征.中国农业科学,43(6):1173-1181.
    郝瑞军,李忠佩,车玉萍.2006.水分状况对水稻土有机碳矿化动态的影响.土壤,38(6):750-754.
    胡坤一,喻华,冯文强,秦鱼生,蓝兰一,廖鸣兰,王昌全,涂仕华.2010.淹水条件下不同中微量元素及有益元素对土壤pH和Cd有效性的影响.西南农业学报,23:1188-1193.
    黄昌勇.2000.土壤学.北京:中国农业出版社.
    黄东迈,朱培立,王志明等.1998.旱地和水田有机碳分解速率的探讨与质疑.土壤学报,(11):482-493.
    黄耀,刘世梁,沈其荣等.2002.环境因子对农业土壤有机碳分解的影响.应用生态学报,13(6):709-714.
    黄耀,沈雨,周密等.2003.木质素和氮含量对植物残体分解的影响.植物生态学报,27(2): 183-188.
    黄银燕,陈绍红,杨靖.2003.农业土壤中可溶性有机氮的研究.安徽农业科学,31(4):602-605.
    贾小红 曹卫东,赵永志.2010.有机肥料加工与施用,化学工业出版社.
    姜军,徐仁扣,李九玉,赵安珍.2007.两种植物物料改良酸化茶园土壤的初步研究.土壤,39(2):322-324.
    焦坤,李忠佩.2005.红壤稻田土壤溶解有机碳含量动态及其生物降解特征.土壤,37(3):272-276.
    巨晓棠,李生秀.1998.土壤氮素矿化的温度水分效应.植物营养与肥料学报,4:37-42.
    兰忠明,张辉,吴一群,林新坚.2011.不同紫云英基因型对难溶性磷吸收利用的影响.生态环境学报,20(10):1454-1460.
    李晨华,唐立松,李彦.2007.干湿处理对灰漠土土壤化性质及微生物活性的影响.土壤学报,44(2):364-367.
    李贵才,韩兴国,黄建辉,唐建维.2001.森林生态系统如让氮矿化影响因素研究进展.生态学报,21(7):1187-1195
    李华,陈英旭,梁新强.2006.土壤脲酶活性对稻田田面水氮素转化的影响.水土保持学报,20(1):55-58.
    李辉信,2000.红壤氮素的矿化和硝化作用特征.土壤4:194-214.
    李俊良,韩琅丰,江荣丰,张福锁.1996.C、N比对有机肥料氮素释放和植物吸氮的影响.中厚农业大学学报,1(5):57-61.
    李良漠,潘映华,伍期途等.1988.无定形氧化铁作为嫌气下氧化时电子受体研究.土壤学报,25(2):184-190.
    李良漠.1984.土壤哨化作用研究概况.土壤学进展,(5):1-9.
    李世清,李生秀.2001.有机物料在维持土壤微生物体氮库中的作用,生态学报,21(1):136-142.
    李淑芬,俞元春,何晟.2002.土壤溶解有机碳的研究进展.土褒与环境11(4):422-429.
    李勇先,田光明.2003.不同水分管理模式下水稻土氮素形态转化与N20释放的关系.生态环境,12(2):157-159.
    李昱等,何春梅,杨仁仙等,2010.氮磷钾肥对紫云英产量、养分累积及种植后土壤养分的影响.江西农业学报,22(11):112-114.
    李志安,邹碧,丁永祯等.2005.植物残茬对土壤酸度的影响及其作用机理.生态学报,25(9):2382-2388.
    李忠佩,张桃林,陈碧云.2004.可溶性有机碳的含量动态及其与土壤有机碳矿化的关系.土壤学报,41(4):544-552.
    刘宾.2006.蚯蚓活动对土壤氮素矿化及微生物生物量的影响.硕士学位论文.
    刘承帅陶亮,刘同旭等.2011.水溶性有机物促进土壤氮循环与污染物还原转化的研究进展,曹卫东编,绿肥在现代农业发展中的探索与实践,中国农业科技出版社.237-246.
    刘德燕,宋长春,王丽,王丽丽,李英臣.2008.外源氮输入对湿地土壤有机碳矿化及可溶性有机碳的影响.环境科学,29(12):3525-3530.
    刘威,鲁剑巍,潘福霞等.2011.紫云英的养分释放特性研究曹卫东编,绿肥在现代农业发展中的探索与实践,中国农业科技出版社218-228.
    刘艳丽,张斌,胡锋,乔洁,张卫键.2008.干湿交替对水稻土碳氮矿化的影响.土壤,40(4):554-560.
    卢萍,单玉华,杨林章,韩勇.2006.秸秆还田对稻田土壤溶液中溶解性有机质的影响.土壤学报,43(5):736-741.
    鲁如坤.1999.土壤农业化学分析.北京:中国农业出版社.
    鹿洁忠.1993.不同灌溉方法的温室土壤水量平衡.灌溉排水,12(4):47-48.
    罗家贤,包梅芬,蒋梅茵等.1995.肥力贫瘠化红壤的特点及产生原因.北京:中国农业科技出版社,红壤生态系统研究(第三集),208-214.
    莫淑勋.1986.土壤中有机酸的产生、转化及对土壤肥力的某些影响.土壤学进展,4:1-10.
    欧阳学军,周国逸,魏识广,黄忠良,李炯,张德强.2007.南亚热带森林植被恢复演替序列的土壤有机碳氮矿化.应用生态学报,18(8):1688-1694.
    欧阳学军等.2005.土壤酸化对温室气体排放影响的培育实验研究.中国环境科学,4:465-470.
    潘福霞,鲁剑巍,刘威等.2011.不同种类绿肥翻压对土壤肥力的影响.植物营养与肥料学报,17(6):1359-1364.
    潘根兴,曹建华,周运超.2000.土壤碳及其在地表系统碳循环中的意义.第四纪研究.20(4):325-334.
    潘映华,李良谟,伍期途等.1998.不同利用方式下红壤的硝化和反硝化活性研究.土壤,20(4):184-187.
    彭娜,王开峰,王凯荣,谢小立.2007.不同水分管理下施用稻草对土壤有机酸和养分有效性的影响.土壤通报,38(5):857-862.
    任景明,喻元秀,王如松.2009.中国农业政策环境影响初步分析.中国农学通报,25(15):223-229.
    邵月红潘,剑君,孙波.2006.农田土壤有机碳库大小及周转.生态学杂志,25(1):19-23.
    沈梓培,黄东迈,白纲义,段秀泰.1959.水稻土晒干措施的增产效果及其与土壤性质的关系.土壤学报,7(3-4):124-134.
    宿庆瑞,曹卫东,迟凤琴,等.2010.苜蓿和草木樨腐解及养分释放规律的研究.黑龙江农业科学,8:71-74.
    孙中林,吴金水,葛体达,唐国勇,童成立.2009.土壤质地和水分对水稻土有机碳矿化的影响.环境科学,30(1):214-220.
    唐罗忠,生原喜久雄,户田浩人,黄宝龙.2005.湿地林土壤Fe 2+,Eh及pH值得变化.生签学报,25(1):103-107
    王洪英,王艳丽.2004.水稻秸秆还田技术.土壤肥料,168(2):22-23.
    王建红,曹凯,张贤等.2010.绿肥还田对水稻生长期土壤有机质动态变化的影响.3: 614-616.
    王少平,胡雪峰,高效江等.2001.高强度开发下的上海农业环境问题与对策.城市环境与城市生态,14(2):16-18.
    王婷,包兴国,杨文玉等.2010.河西平川灌区绿肥压青后氮肥最佳减施比例.安徽农业科学,38(23):12516-12517.
    王晓军,于凤芝,宿庆瑞等.2010.不同绿肥品种综合利用价值的比较.黑龙江农业科学,6:55-57.
    王岩,沈其荣,史瑞和.1998.有机无机肥料施用后土壤生物量C、N、P的变化及N素转化.土壤学报,35(2):227-234.
    王岩,杨振明,沈其荣.2000.土壤不同粒级中C、NPK的分配及N的有效性研究.土壤学报,37(1):85-94.
    王元帧,潘廷国,柯玉琴.1994.有机无机氮肥配合施用对土壤和水稻的影响.土壤,(1)48-50.
    吴景贵,姜岩,王明挥,等.1999.非腐解有机物培肥对水田土壤固相有效氮养分含量的影响.吉林农业大学学报,21(1):59-63
    吴景贵,王明辉,任成礼等.1998.非腐解有机物培肥对水田土壤水解酶活性动态变化的影响.土壤通报,29(6):253-256.
    吴龙华,骆永明,黄焕忠.2000.铜污染土壤修复的有机调控研究I:可溶性有机物和EDTA对污染红壤铜的释放作用.土壤,32(2):62-66.
    徐春阳,沈其荣,冉炜.2002.长期免耕与施用有机肥对土壤微生物量碳、氮、磷的影响.土壤学报,39(1):89-96.
    徐建明,何艳.2006.根-土界面的微生态过程与有机污染物的环境行为研究.土壤,4:353-358
    徐丽娜,李忠佩,车玉萍.2009.淹水厌氧条件下腐殖酸对红壤中铁异化还原过程的影响.环境科学,30(1):221-226.
    杨长明,杨林章,颜廷梅,欧阳竹.2004.不同养分和水分管理模式对水稻土质量的影响及其综合评价.生签学报,24(1):63-70.
    杨东方,成瑞喜,李学垣.1989.有机物料对土壤腐殖质性质的影响.华中农业大学学报,8(1):90-93.
    杨继松,刘景双,孙丽娜.2008.温度、水分对湿地土壤有机碳矿化的影响.生签学杂志,27(1):38-42.
    杨景成,韩兴国,黄建辉,潘庆民.2003.土壤有机质对农田管理措施的动态响应.生态学报,23(4):787-796.
    杨丽娟,张玉龙.2000.设施栽培条件下节水灌溉技术.沈阳农业大学学报,31(1):130-132.
    杨绒,周建斌,赵满兴.2007.土壤中可溶性有机氮含量及其影响因素研究.土壤通报,38(1):15-18.
    尧小红.2005.干湿交替强度对旱地土壤结构形成及水稻秸秆分解过程的相互作用的影响.南京农业大学硕士学位论文,
    姚槐应、黄昌勇著.2006.土壤微生物生态学及其实验技术.科学出版社,
    张金波,宋长春.2004.土壤氮素转化研究进展.吉林农业科学,29(1):38-43.
    张金波,宋长春.杨文燕.2005.三江平原土地耕作对土壤氮矿化势和硝化势的影响.土壤通报,1:137-139.
    张璐等.1997.有机物料中有机碳、氮矿化进程及土壤供氮力研究.土壤通报,28(2):71-73.
    张奇春.2005.稻田土壤供氮机理及水稻氮肥优化施用研究.浙江大学博士学位论文,
    张树兰,杨学云,吕殿青,同延安.2002.温度,水分及不同氮源对土壤硝化作用的影响.生签学按22(12):2147-2153.
    张树兰,杨学云,吕殿青等.2000.几种土壤剖面的硝化作用及其动力学特征.土壤学报,37(3):372-379.
    张威,张旭东,何红波,解宏图,白震.2010.干湿交替条件下土壤氮素转化及其影响研究进展.生态学杂志,29(4):783-789
    张薇,王子芳,王辉,郑杰炳,鲍金星,高明.2007,土壤水分和植物残体对紫色水稻土有机碳矿化的影响.植物营养与肥料学报,13(6):1013-1019.
    张祥明,郭熙盛,王文军等.2011.施用氮磷钾肥对紫云英生长·产量的影响.安徽农业科学,39(30):18585-18586,18694.
    张玉玲,2006.长期不同施肥措施对辽河平原水稻土供氮能力影响的研究,沈阳农业大学,博士学位论文。
    赵劲松,张旭东,袁星等.2003.土壤溶解性有机质的特性与环境意义.应用生态学报,14(1):126-130.
    赵娜,赵护兵,鱼昌为等.2011.旱地豆科绿肥腐解及养分释放动态研究.植物营养与肥料学报,17(5):1179-1187.
    赵其国.2002.我国红壤退化的时空变化、机理及调控对策研究.北京:科学出版社.
    郑圣先,聂军,熊金英等.2001.控释肥料提高氮素利用率的作用及对水稻效应的研究.植物营养与肥料学报,7(1):11-16.
    钟华平,岳燕珍,樊江文.2003.中国作物秸秆资源及其利用.资源科学.25(4):62-67.
    周才平,欧阳华.2001.温度和湿度对长白山两种林型下土壤氮矿化的影响.应用生态学舰12(4):505-508.
    周德庆.2002.微生物学教程.北京:高等教育出版社,
    周建斌,陈竹君,郑险峰.2005.土壤可溶性有机氮及其在氮素供应及转化中的作用.土壤通报,36(2):244-248.
    周建斌.1998.土壤微生物体氮的含量、转化及供氧意义.西北农林大学博士学位论文.
    周卫军,王凯荣,张光远.2003.无机有机结合施肥对红壤稻田氮素供应和水稻生产的影响.生态学报,23(5):914-921.
    朱鹤健.1985.水稻土.北京:中国农业出版社,
    朱永官.2003.土壤-植物系统中的微界面过程及其生态环境效应.环境科学学报,23:205-210
    朱兆良,文启孝.1992.中国土壤氮素.南京:江苏科学技术出版社.1-26.
    朱兆良.1979.土壤氮素的转化和移动的研究近况.土壤学进展.2:1-16.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700