用户名: 密码: 验证码:
不同电子供体对水稻土中铁还原的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化铁是土壤中最为丰富的金属氧化物,在土壤的氧化还原反应和土壤形成过程中起着十分重要的作用。淹水又是促进氧化铁形态转化的重要因素之一。土壤淹水后,微生物利用外界的Fe(Ⅲ)作为电子受体,氧化体内的基质(电子供体),从而使Fe(Ⅲ)还原为Fe(Ⅱ)。这种过程被称为异化铁还原作用。他能够直接影响土壤中N、P、K及Si等营养元素的有效性,并且对有机污染物的降解具有重要的意义。因此,研究异化铁还原作用的环境学意义已成为当今土壤环境化学的热点问题。
    水稻土中氧化铁的还原程度受土壤中不同电子供体和受体的制约。通过添加有机物,一方面可以增加电子供体数量,同时也改变土壤中氧化铁的络合与溶解作用能力。利用这种电子竞争的特征,可以作为消除或减少土壤污染物的有效途径。
    本文选用铁的氧化还原周期性发生的水稻土为材料,采用室内淹水密闭恒温培养的方法研究了不同土壤以及不同土壤的不同微团聚体中铁还原特征,通过在不同的培养时间添加醋酸盐、丙酸盐和葡萄糖3种有机物作为电子受体对原土和耗竭有机质后的土壤中铁还原的影响的研究,比较来源于不同水稻土的微生物在异化铁还原过程中对乙酸盐、丙酸盐、葡萄糖利用能力的差异,为更深入地研究该过程及其环境意义提供科学依据。五种水稻土样分别采自吉林、湖南、四川、江西和广东等省区。实验获得以下主要结果:
    1. 不同水稻土中Fe(II)生成的平衡浓度是不同水稻土的重要特征,其数量与土壤中微生物的种类、易还原氧化铁的数量、其它电子受体的种类和数量、电子供体的数量有关。铁还原反应趋于稳定时所产生的Fe(II)的浓度各不相同,大小顺序是:土样1(JL)>土样3(SC)>土样5(GD)>土样4(JX)。
    2. 不同土壤及不同反应阶段的铁还原速率有着明显的区别。土样1(JL)和土样3(SC)没有测出明显的启动期,这与培养温度(30℃)较高有关。江西水稻土和广东水稻土中微生物繁殖具有明显的启动时间。在铁还原反应快速增加阶段,表观平均还原速率大小为:土样3(SC)>土样4(JX)>土样1(JL)>土样5(GD)。在铁还原稳定期,除土样5(GD)以外,其它土壤的平均反应速率差别不大。土样5(GD)的反应速率较大由其土壤中富含氧化铁所致。
    3. 不同土壤及不同团聚体中铁还原差异主要是由不同组分中氧化铁的化学形态及有机质含量,微生物数量及其活性决定。对不同大小的微团聚体来说,除广东的水稻土外,不同大小的微团聚体之间的铁还原程度都表现为:(<0.001mm的微团聚体)>?.001~0.05 mm的微团聚体)>?.05~0.25mm的微团聚体);对于广东水稻土,其<0.001mm和0.05~0.25mm的微团聚体中的有机质数量可能是限制铁还原的关键因素。
    
    4. 淹水土壤中的微生物还原铁的过程同时受到电子供体及电子受体的限制,添加不同有机酸,明显促进了铁的还原。在添加氧化铁处理中,葡萄糖对铁还原的促进作用更为明显。在有机质耗竭的水稻土中,添加乙酸盐(+Ac-)及丙酸盐(Prop)处理对土壤中氧化铁的还原在培养前期有一定的促进作用,但后期的Fe(II)量与对照(CK)比较并无明显的差异,仅在土样3(SC)中添加葡萄糖处理(+Glu)的Fe(II)量与对照(CK)比较有所增大。然而,对添加了易还原氧化铁(+Fe)处理,添加葡萄糖、乙酸盐及丙酸盐均明显增加了Fe(II)的产生量,影响程度表现为:(+Fe+Glu)处理>(+Fe+Ac--)处理>(+Fe+Prop)处理>(CK+Fe)处理。当土壤中易还原氧化铁过量时,有机物缺乏或许成为主要限制因素,此时添加有机物可提供足够的电子供体,有效地促进了氧化铁的还原。
    5. 添加外源有机物可以有效地促进氧化铁的微生物还原过程。从铁的还原量比较,土壤中易还原铁的总量大体为9.23 mg/g(JX)和12.06 mg/g(SC)。添加葡萄糖(+Fe+Glu)处理,两种土壤的铁还原量可达9.910和9.925 mg/g(JX)及12.67和14.55 mg/g(SC),表明添加的氧化铁已被充分的还原。在不加有机物的对照(CK+Fe)处理中,Fe(II)还原量分别为4.875和5.135 mg/g(JX)及7.855和9.295 mg/g(SC),添加的氧化铁在先添加有机物试验中的还原率为17.28%和19.23%,而在培养过程中添加有机物试验的氧化铁还原率为20.79%和47.28%;添加乙酸盐(+Fe+Ac-)处理的外源铁还原效率分别为73.05%和82.97%(JX)及94.04%和91.82%(SC)。
Ferric oxide is the most abundant metal oxide, and it is very important in oxidization- reduction of soil and in soil-shaped process. Inundation is an in important factor in accelerating the invert of ferric oxide conformation. After inundation, microbe can use outside Fe(Ⅲ) as its electron acceptor, oxygenation its matrix(electron donor), thereby Fe(Ⅲ) deoxidize to Fe(Ⅱ).This process go by the name of dissimilatory reduction. It can affect availability of nutrients such as N、P、K and Si in the soil directly, and it is important to degradation of organic pollutant, Iron reduction is likely to a new available approach of soil decontamination. Therefore, the process is turned into a hotspot issue of soil environmental chemistry that studied the significance of dissimilatory reduction.
    The degree of iron reduction is restrained by the different electron acceptor and provider in the paddy slurry. Through adding organic matter, one way can increase the quantity of electron, at the same time, another way can change the ability of iron combination and dissolution. Making use of the characteristic of electron competition, as a valid way, may remove or reduce soil contamination.
    In this study, the soil samples were used in which red-oxy-reaction periodically occurred. The characteristics of iron reduction in different soil samples and different sized aggregates were investigated by flooding incubation in sealed vials at fixed temperature under airtight condition. We also investigated the differences of iron reduction in intact soil and organic exhausted paddy soil sample by adding acetate, propaniate and glucoses as electron donors and the differences of acetate, propaniate and glucose utilities in the dissimilatory iron reduction by microorganism from different soil samples, providing some scientific data and suggestion in dissimilatory iron reduction and its related environmental effects. The five paddy soil samples were collected from JiLin, HuNan, SiChuan, JiangXi, GuangDong.
    The main results in this study were showed as the following:
    1. The equilibrium concentrations of accumulative Fe(II) were differed from these soil samples, which were correlated with microorganism groups, labile iron oxidizes, other electron acceptors and electron donor spices. The accumulative Fe(II) in stable phase were different in these soil samples and followed the order: sample 1 (JL)> sample 3 (SC)>sample 5 (GD)> sample 4 (JX).
    2. Iron reducing rates were distinct in different phase of these soils. No obvious initial phase were found in sample(JL) and sample(SC), maybe for the reasons of higher incubation
    
    
    temperature(30℃). Microbial activities in JX and GD paddy soil samples showed an apparent initial phase. In the rapid reducing phase, the observed mean reducing rates were in the order of sample3(SC)>sample4(JX)>sample1(JL)>sample5(GD). In the stable phase of iron reduction, the mean reducing rates were no notable differences in all samples, but sample5(GD), and the higher reducing rate in sample5(GD) maybe the result of a higher content of Fe(III) oxides in it.
    3. The differences in different soil samples and different soil microaggregate were mainly determined by Fe(III) oxides forms, organic matter microbial groups and activities. The degree of iron reduction in different sized aggregates of all but GD paddy soils followed the similar order: (<0.001mm aggregates)>0.001~0.05mm aggregates)>0.05~0.25mm) aggregates. Iron reduction in the aggregates with the size of less than 0.001mm and 0.05 to 0.25mm in GD soil sample were limited by the availability of organic matter.
    4. The microbial iron reduction in the flooding soil were limited by the availability of electron donor as well as the electron acceptor. Iron reduction were notable stimulated by the addition of organic acid. Glucose showed a more significant stimulation with the addition of Fe(III) oxides. In the organic exhausted paddy soils, addition of acetate and propaniate stimulate the iron reduction in the beginning period but not in the stable period compared to
引文
第一章
    徐琪.水稻土研究的进展[J]. 土壤.1989,21(4):7192-195.
    麦克拉伦A.D.,闵九康,关松荫等译.土壤生物化学[M]. 北京:农业出版社,1984,pp 402-409.
    保学明.铁、锰.见:于天仁,水稻土的物理化学[M]. 北京:科学出版社社,1983,pp 94-108.
    陈家坊.水稻土的氧化物.见:李庆逵,中国水稻土[M]. 北京:科学出版社,1992,pp 155-161.
    川口桂三郎.汲惠吉译.水田土壤学[M]. 北京:农业出版社,1985,pp 25-43,pp 182-207,pp 288-291.
    薛德榕.淹水土壤电化学的变化与水稻生长.水稻生理生态译丛(二)[M]. 北京:农业出版社,1982,pp 67-76.
    薛德榕.水稻土的化学变化.水稻生理生态译丛(二)[M]. 北京:农业出版社,1982,pp 79-83.
    陈家坊,何群,邵宗臣等.土壤中氧化铁的活化过程的探讨[J]. 土壤学报. 1983,20(4):387-392.
    熊 毅.土壤胶体的物质基础[M]. 北京:科学出版社,1983,132-246.
    贾国东,钟佐桑. 铁的地球化学综述[J]. 环境科学进展.1999,7:74-84.
    Yu N. Vodyanitskiy. 施用铁氧化物对土壤团聚作用的影响[J]. 土壤学进展.1989,(1):36-39.
    陈家坊,何群,许祖贻.水稻土发僵原因的初步分析[J]. 土壤通报.1984,15:53-56.
    何群,陈家坊.中性水稻土的铁解及其影响[J]. 土壤学报.1986,23:184-188.
    陈家坊.土壤粘粒中的氧化物.见:于天仁,土壤化学原理[M]. 北京:科学出版社,1987,pp 73-105.
    何念祖. 植物的铁营养[J]. 土壤学进展.1986,14(1):19-23.
    苏玲.水稻土淹水过程中铁化学行为变化对磷有效性影响研究.博士学位论文[D]. 浙江大学.2001.
    陈家坊. 土壤中的氧化铁. 见:于天仁,王振权主编,土壤分析化学[M]. 1988,pp 337-361.
    王胜春,刘可星,游植麟等.不同母质发育的水稻土中铁、锰对甲烷排放的影响[J]. 农村生态环境.1998,14(1):52-54.
    土壤微生物研究会编.叶维青等译.土壤微生物实验法[M]. 北京:科学出版社,1983,pp 376-379.
    刘志光,徐仁扣.几种有机化合物对土壤中的铁和锰的氧化物的还原和溶解[J]. 环境化学.1991,10:43-49.
    徐仁扣.土壤中氧化铁的有机还原溶解动力学[J]. 热带亚热带土壤科学.1994,3(2):71-76.
    于天仁.水稻土的物理化学[M]. 北京:科学出版社,1983,pp 185-192.
    章申,王立军,王同山.土壤水介质中Cr(VI)与Fe(II)氧化还原反应环境动力学的研究[J]. 环境化学.1982,1(2):133-139.
    U. Schwertmann等. 有机物与氧化铁之间的相互作用[J]. 土壤学进展.1988,(4):56.
    刘铮.微量元素的农业化学[M]. 北京:农业出版社,1991,pp 258-268.
    刘志光.水稻土的氧化还原电位.见:李庆逵主编,中国水稻土[M]. 北京科学出版社,1992,pp 208-223.
    何群,陈家坊,许祖诒. 土壤中氧化铁的转化及其对土壤结构的影响[J]. 土壤学报.1981,18:
    
    
    326-333.
    许绣云,姚贤良. 红壤生态站土壤物理性质研究.见:石华,红壤生态系统研究[C]. 北京科学出版社,VOL.1.1992,93-101.
    姚贤良等.赣中丘陵地区红壤性水稻土的结构状况及其肥力意义[J]. 土壤学报.1962,10(3):267-288.
    郝文英.水稻土中的微生物及其在物质转化中的作用.见:李庆逵主编,中国水稻土[M]. 北京:科学出版社,1992,pp 311-329.
    善田富夫.渍水土壤的微生物代谢.见:[美]麦克拉伦A.D.等著.闵九康,关松荫等译.土壤生物化学[M]. 北京:农业出版社,1984,pp 460-464.
    于天仁.土壤发生中的化学过程. 北京:科学出版社,1990.
    张家铭,王明光.台湾红壤及森林土壤之氧化铁[J]. 土壤学报.1995,32(1):14-22.
    Gold,S., 谭正喜.铁铝氧化物与粘土矿物的相互作用及其对土壤物理性质的影响[J]. 土壤学进展.1991,19(2):18-22.
    王建林.土壤中铁形态转化的根际效应[J]. 土壤.1991,22(3):165.
    雷文进.江苏里下河土壤的发生与改良[J]. 土壤学报.1959,7(3-4):227-236.
    沈梓培,陈家坊. 潴育层和潜育层之间化学性质.福建地质调查所年报.1944,4号,23-50.
    于天仁,丁昌璞.红壤性水稻土中代换性盐基的状况及其在发生上的意义[J]. 土壤学报.1958,33:31-43.
    赵安珍,张效年.氧化铁对红壤电荷性质的影响[J]. 土壤.1991,23(5):231-235.
    李良谟,潘映华.无定形氧化铁作为嫌气下NH4+氧化时电子受体的研究[J]. 土壤学报.1988,25(2):184-190.
    张喜群.土壤水分状况对物质移动及作物生长的影响[J]. 土壤学报.1983,20:347-360.
    谢建昌.土壤钾素研究的现状和展望[J]. 土壤学进展.1981,(1):1-16.
    李庆逵.中国水稻土[M].北京:科学出版社,1992,10-20.
    于天仁.水稻土的发生与类型[J]. 土壤.1982,14(2):41-45.
    黄昌勇.水稻土供钾特性与水稻钾素的营养关系及其在诊断上的应用[J]. 浙江农业大学学报.1985,11(3):347-354.
    吴又先.土壤氧化还原过程及其生态效应[J]. 土壤学进展.1995,23(4):32-37.
    谭盈盈,郑平,姜辛.微生物作用下Fe(III)对有机污染物的氧化[J]. 浙江大学学报(农业与生命科学版). 2002,28(3):350-354.
    曲东,Sylvia Schnell.,纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报. 2001,41(6):745-749.
    杨春.不同水稻土中铁的微生物还原特性[D]. 西北农林科技大学硕士学位研究生学位(毕业)论文.2001.
    曲东,张一平,Sylvia. Schnell, et al., 添加氧化铁对土壤中H2、CO2、和CH4形成的影响应用[J].
    
    
    生态学报. 2003,14(8):1311-1313.
    曲东,Sylvia. Schnell,外源氧化铁对水稻土甲烷形成的影响[J]. 环境科学学报.2002,22(1):65-69.
    曲东,曹宁,王保莉. 添加EDTA及黄腐酸对水稻土中有效磷浓度的影响[J]. 西北农林科技大学学报(自然科学版). 2003,31(3):127-130.
    谭中欣.水稻土中铁还原及其电子传递特征的研究[D]. 西北农林科技大学硕士学位研究生学位(毕业)论文. 2003.
    曲东,Sylvia. Schnell, Conrad R.外源氧化铁对水稻土中有机酸含量的影响[J]. 应用生态学报.2002,13(11):1425-1428.
    王银善,曹志方,肖华胜等.异养微生物还原氧化铁的研究[J]. 微生物学通报.1997,24(3):156-158.
    龚子同.水稻土的形成.见:李庆逵主编,中国水稻土[M]. 北京:科学出版社,1992,pp 4-7.
    郎惠卿,白艳,李波等.小兴安岭落叶松苔草沼泽土壤微生物[J]. 东北师大学报自然科学版,4, 1994.
    孔维屏.土壤铁锰氧化物对铜离子富集作用的初步研究[J]. 土壤.1992,24(1):41-42.
    鲍志戎,于湘晖等.铁锰氧化还原细菌研究状况[J]. 微生物学通报.1996,23(1):48-50.
    吴平霄,廖宗文.农药在蒙脱石层间域中的环境化学行为[J]. 环境科学进展.1999,7(3):70-77.
    刘连馥.绿色食品导论[M]. 企业管理出版社,1998,pp 80-94.
    刘天齐,林肇信,刘逸农.环境保护概论[M]. 高等教育出版社,1982,pp 151-165.
    戎秋涛,翁焕新.环境地球化学[M]. 地质出版社,1990,pp 171-186.
    Bloomfield, C. Some observations on gleying [J]. Soil Sci., 1949, 1: 205-211.
    Gotoh, S., and Patrick , W.H. Transformation of iron in a waterlogged soil as influenced by redox potential and pH[J]. Soil Sci., Soc., Am. Proc. 1974,38: 66-71.
    Kumar, S. Changes in some physico-chemical properties and activities of iron and zinc on submergence of some rice soils [J]. J. Indian Soc., Soil Sci., 1981, 29: 204-207.
    Mozaffari, M., Sims J.T. Phosphorus avail ability and sorption in an atlantics coastal plain watershed dominated by animal-based agriculture [J]. Soil Sci., 1994, 157(2): 97-107.
    Mello, J.W.V., Barron, V., Torrent, J. Phosphorus and iron mobilization in flooded soils from Brazil [J]. Soil Sci. 1998, 163:122-132.
    Aristovskaya, T.V., Zavarzin, G.A. Biochemistry of iron in soil. In: Soil Biochemistry [M]. A.D., Mclaren et al. Marcel Decker Inc. New York. 1971, pp 385-408.
    Patrick, W.H., Jr. R.A., Khalid. Phosphate release and sorption by soils and sediments: Effect of aerobic and anaerobic conditions [J]. Science. 1974,186: 53-55.
    Lovley, D.R., Coates, J.D., Blunt-Harris, E L., et al. Humic substances as electron acceptors of microbial respiration [J]. Nature, 1996, 382:445-448.
    Armstrong W, Beckett, P.M. Internal aeration and the development of stellar anoxia in submerged
    
    
    roots: A multi shelled mathematical model combing axial diffusion of oxygen in the cortex radial gasses to the stele, the wall layer and the rhizosphere [J]. New Phytol. 1987,105: 221-245.
    Partrick, W.H., Henderson R.E. Reduction and oxidation cycles of manganese and iron in flood soil and in water solution [J]. Soil Sci., Soc A.m., J. 1981,45: 855-859.
    Schwertmann U. The effect of pedogneic environments on iron oxide minerals [J]. Adv Soil Sci., 1985,1: 172-200.
    Takahashi T., Park C.Y., Nakajima H., et al. Ferric iron transformation in soils with rotation of irrigated rice-upland crops and effect on soil tillage properties [J]. Soil Sci., Plant Nutr., 1999, 45: 163-173.
    Hassin kJ. The capacity of soils to preserve organic C and N by their association with clay and silt [J]. Plant and Soil, 1997, 191: 77-87.
    Pink L.A., and Allison F.E. Maintenance of soil organic matter III. Influence of green manures on the release of native soil carbon [J]. Soil Sci., 1951,71:67-75.
    Theng B.K., Ged. Formation and properties of clay-polymer complexes [M]. Elsevier, Amsterdam, 1979,pp 362.
    Hassin kJ. Preservation of plant residues in soils differing in unsaturated protective capacity [J]. Soil Sci., Soc. Am. J., 1996, 60: 487-491.
    Stucki J.W., Komadel P., Wilkinson HT. Microbial reduction of structural iron(Ⅲ)in smectites[J]. Soil Sci. Am J., 1987,51:1663-1665.
    Wu J., Roth C.B., Low P.F. Biological reduction of structural iron in Na-nontronite [J]. Soil Sci Am J. 1988,52:295-296.
    Gates W.P., Wilkinson HT, tucki J.W. Swelling properties of microbially reduced Ferruginous smectites [J]. Clays and clay Minerals. 1993,41: 360-364.
    Dudal, R., Pseudogley and gley. Transection of Commission V and VI of the Int [J]. Soil Sci., 1973,275-285.
    Joffe, I. S. Soil profile studies VII The glei process [J]. Soil Sci., 1935, 29:391-401.
    Yamane, L. Electrochemical changes in rice soil [J]. Soils & Rice, IRRI, 1979,392-395.
    Ponnamperuma F.N. Chemical kinetics of wetland rice soils relative to soil fertility [M]. In Wetland soils: Characterization, Classification, and utilization.1985, pp 71-89.
    Sah R.N., Mikkelsen D.S., Hafez A.A. Phosphorus behavior in flooded-drained soils. III. Phosphorus adsorptions and availability [J]. Soil Sci.Soc.Am.J.1989a, 53:1729-1732.
    Sah, R.N., Mikkelsen D.S. Phosphorus behaviors in flooded-drained soils. Effects on phosphorus sorption [J]. Soil Sci. Soc. Am. J. 1989, 53:1718-1722.
    Chen Zhicheng et al. On the characteristics of leaching and accumulation of chemical elements in two eutric paddy soils in Taoyuan country, North Hunan Province[C]. Proceedings Symposium on Paddy
    
    
    Soils. Beijing, Science Press, 1980, 449-453.
    Islam, A., and G.M., Ullah. Chemistry of submerged soils and growth and yield of rice II. Effect of additional application of fertilizers on soil [J]. at field capacity. Plant and Soil. 1973, 39:567-579.
    Yamane L. Electrochemical changes in rice soil [J]. Soils & Rice, IRRI, 1979, 392-395.
    Jackel Udo. Die Bedeutung der microbie llen Eisen-reduction in Reisfeldboden. Diplomarbeit von Fachbercich Biologie Microbiologie in Philipps-Universitaet Marburg. 1997.
    Conrad R. Concentration of hydrogen to methane production and control of hydrogen contrations in methanogenic soils and sediments [J]. FEMS. Microbiology Ecology. 1999,28: 193-202.
    Qu Dong, Sylvia Schnell. Effect of iron oxide addition on methanogenesis in paddy soil [J]. Bio-Spectrum. VAAM Jahrestagung Goettingen. 1999,11l-112.
    Stucki, J.W. Redox Processes In Smecties: Soil Environmental Significance [J]. Adv. In GeoEcology.1997, 30:395-406.
    Brennan, E.W., and W.L., Lindsay. Reduction and oxidation effect on the solubility and transformation of iron oxides [J]. Soil Sci. Soc. Am., 1998,62(4): 930-937.
    Lovley, D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction [J]. Ind. Microbial. 1995, 14(2): 85-93.
    Banfield J.F., Nealson K.H. Geomicrobiology: Interactions Between Microbes and Minerals [M]. The Mineralogical Society of America, Washington D.C., U.S.A.1997.
    Lovley, D.K, John. D. Novel forms of anaerobic respiration of environmental relevance [J]. Ecology and industrial microbiology, 2000, 252-256.
    Oates, J.D., Lonergan, D.J. and Lovley D.R. Desulfuromonas palmitatis sp. nov. a long-chain fatty acid oxidizing Fe(III) reducer from marine sediments [J]. Arch. Microbiol. 1995,164:406-413.
    Coates, J.D., Phillips E.J.P., et al. Isolation of Geobacter species from diverse sedimentary environments [J]. Appl. Environ. Microbiol. 1996,62:1531-1536.
    Myers, C. R., and Nealson, K.H. Bacterial manganese reduction and growth with manganese oxide as the sole electron acceptor [J]. Science 1988,240:1319-1321.
    Semple, K. M., and Westlake, D.W.S. Characterization of iron reducing Alteromonas putrefaciens strains from oilfield fluids [J]. Can. J. Microbiol. 1987,33: 366-371.
    Slobodkin, A., Reysenbach, A.L. Strutz, N., et al. Thermoterrabacterium ferrireducens gen. nov., a thermophilic anaerobic dissimilatory Fe(III)-reducing bacterium from a continental hot spring [J]. Int. J. Syst. Bacteriol. 1997,47:541-547.
    Kazem Kashefi, Dawn E. Holmes, John A. Baross, et al. Thermophily in the Geobacteraceae:
    
    
    Geothermobacter ehrlichii gen. nov. sp. nov., a Novel Thermophilic Member of the Geobacteraceae from the “Bag City” Hydrothermal Vent [J]. Appl. Environ. Microbiol. 2003,69: 2985-2993.
    Jeppe Lund Nielsen, Stefan Juretschko, Michael Wagner and et al. Aboundance and phylogenetic affiliation of iron reduction in activated sludge as assessed by fluorescence in situ hybridization and microautoradiaography [J]. Appl. Environ. Micobiol. 2002,68: 4629-4636.
    Chris A. Francis, Anny Y. Obeaztsova, and Bradley M. Tebo Dissimilatory metal reduction by the facultative anaerobe Pantea agglomerans SP1 [J]. Appl. Environ. Microbiol. .2000,66:543-548.
    Jason M. Tor, Kasem Kashefi, and Rerek R. Lovley. Acetate oxidation coupled to Fe(III) reduction in hyper the romorphilic microorganisms [J]. Appl. Environ. Microbiol. 2001,67: 1363-1365.
    Qiang He, and Robert A., Stanford. Characterization of Fe(III) reduction by chlororespiriting Anaeromxyobacter dehalogenans [J]. Appl. Environ. Microbiol. 2003,69: 2721-2718.
    Kieft, T.L. Dissmililatory reduction of Fe(III) and other electronic acceptors by a thermos isolate [J]. Appl. Environ. Microbiol. 1999,65: 1214-1221.
    Ralf Cord-Ruwisch, Lovley, D.R., and Bernhard Schink. Growth of Geobacter sulfurreducens with acetate in syntrophic cooperation with hydrogen-oxidizing anaerobic partners [J]. Appl. Environ. Microbiol. 1998,64: 2232-2236.
    Kirsten Kusel, Tanja Dorsch, Georg Acker, and Erko Stacjevrandt. Microbial reduction of Fe(III) in acidic sediments: isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction Fe(III) to the oxidation of glucose [J]. Appl. Environ. Microbiol. 1999,65: 3633-3640.
    Dawn E. Holmes, Kevin T. Finneran, Regina A. et al. Enrichment of members of the family Geobacteraceae associated with stimulation of dissimilatory metal reduction in uranium-contaminated aquifer sediments [J]. Appl. Environ. Microbiol. 2002,68: 2300-2306.
    Lloyd J. R, V. A. Sole, C. V. G. Van Praagh, and Lovley, D. R. Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria [J]. Appl. Environ. Microbiol. 2000,66: 3743-37490.
    Kazem. Kashefi, Jason M. Tor, Kelly. P. Nevin, and Lovley, D.R. Reductive precipitation of gold by dissimilatory Fe(III)-reducing bacteria and archaea [J]. Appl. Environ. Microbiol.2001, 67: 3275-3279.
    Nealson K.H., et al. Iron and manganese in anaerobic respiration; Environment significance, physiology and regulation [J]. Annu. Rev. Microbial. 1994,48:311-3431.
    Lovely D.R, Phillips EJP. Novel mode of microbial energy metabolism, organic carbon oxidation coupled to dissimilatory reduction of iron or manganese [J]. Appl. Environ Microbial. 1988,54:1472-1480.
    Cummings D.E., March A.W., Bostick B. Evidence for microbial Fe(III)reduction in anoxic, mining-impacted lake sediments (lake coeur d'alene, idaho) [J]. Appl Environ Microbial, 2000,66: 154-162.
    
    Das A, Caccavo F. Jr. Dissimilatory Fe(III)oxide reduction by Shewanella alga Br Y requires adhension [J], Current Microbial,2000,40:344-347.
    Lovley D.R., Stolz J.F., Nord G.L., et al. Nature, 1987, 330:352-354.
    Kelly. P. Nevin, and Lovley D.R. Lack of production of electron-shuttling compounds or solubilization of Fe(III) during reduction of insoluble Fe(III) oxide by Geobacter metallireducens[J]. Appl. Environ. Microbiol. 2000,66: 2248-2251.
    Sabine. Seeliger, Ralf Cord-Ruwisch, and Bernhard Schink. A periplasmic and extracellular c-Type cytochrome of Geobacter sulfurreducens acts as a ferric ion reeducates and as an electron carrier to other acceptors or to partner bacteria [J]. Appl. Environ. Microbiol. 1998,180: 3686-3691.
    Kelly. P. Nevin and Lovely D.R. Mechanism for accessing insoluble Fe(III)oxide during dissimilatory Fe(III) reduction by Geothrix fermentans [J]. Appl.Environ.Microblol. 2002,68: 2294-2299.
    Charles E. Turick, Louis S. Tisa, and Frank Caccavo. Melanin production and use as a soluble electron shuttle for Fe(III) oxide reduction and as terminal electron acceptor by Shewanella algae Br Y [J]. Appl. Environ. Microbiol. 2002,68: 2436-2444.
    Lloyd J.R., Blunt-Harris E. L., and Lovley D.R. The periplasmic 9.6 kilodalton c-type cytochrome is not an electron shuttle to Fe(III) [J]. Bacterol. 1999,181:7647-7649.
    Yao H, Conrad R. Thermodynamics of methane production in different rice paddy soils from China, the Philippines and Italy [J]. Soil Biology & Biochemistry. 1999,31: 463-473.
    Jaeckel U, Sylvia Schnell. Suppression of methane emission from rice paddies by erric iron fertilization [J]. Soil Biology & Biochemistry. 1999, 32: 1700-1714.
    Liesack W. , and Sylvia Schnell. and Peter N. Microbiology of flooded rice paddies[J]. FEMS Microbiology Reviews, 2000, 24:625-645.
    Gates W.P., and WilKinson H.T. Swelling properties of microbially reduced ferruginous smectite [J]. Clay Miner. 1993,41:360-364.
    Komadel, P., and Stucki J.W. Reduction of structural iron in smectites by microorganisms[R]. In: Sixth Meeting of the European Clay Groups. Seville. 1987, pp 322-324.
    Kostka J.E., and Nealson K.H. Reduction of structural Fe(III) in smectite by a pure culture of the Fe-reducing bacterium shewanella putrefaciens strain MR-1 [J]. Clays clay miner. 1996,44: 522-529.
    Stucki, J.W., and Roth C.B. Oxidation-reduction mechanism for structural iron in montronite [J]. Soil Sci. Soc. Am. J. 1977,41:808-814.
    Thamdrup, B. Bacterial manganese and iron reduction in aquatic sediments [J]. Adv. Microb. Ecol. 2000,16:41-84.
    Kostka, J. E., Gribsholt B.E., Petrie, D. et al. The rates and pathways of carbon oxidation in bioturbated saltmarsh sediments [J]. Limnol. Oceanogr. 2002,47:230-240.
    Roden, E. E., and Wetzel R.G., Organic carbon oxidation and suppression of methane production by
    
    
    microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments[J]. Limnol. Oceanogr. 1996,41:1733-1748.
    Michael McCormick,Michael Gerdenich,Lin-Shun Kao and Peter Adriaens. Geochemistry of Hydrous Ferric Oxide Reduction by Geobacter metallireducens: Implications for Sustained Dechlorination of Tetrachloromethane. Journal of Conference Abstracts. Volume 5(2), 685 ? 2000 Cambridge Publications.
    Lovely, D.R, Woodward, J.C. and Chappell, F.H., Stimulated anoxic biodegradation of aromatic hydrocarbons using Fe(Ⅲ) ligands [J]. Nature. 1994,370(6485): 128-131.
    Lovley, D.R., Dissimilatory metal reduction [J]. Annu. Rev. Microbiol. 1993, 47: 263-290.
    Lovley, D.J., and Blunt-Harris, E.L., Role of humic-bound iron as electron transfer agent in dissimilatory Fe(III) reduction [J]. Appl. Environ. Microbiol. 1999, 65(9): 4252-4254.
    Lovley, D.R., and Phillips, E.J.P. Reduction of uranium by Desulfovibrio desulfuricans [J]. Appl. Environ. Microbiol. 1992, 58:850–856.
    Fletcher M. Microbial ecology and bioremediation[C]. In OECD Documents-Bioremediation the Tokyo'94 Workshop, OECD Publications, 1995,109-115.
    Drobnik J. The challenge for bioremediation: A central European perspective [M]. In Skidder S. K(ed) Bioremediation Technologies, Vol III, Technomic Publishing Company, Inc, 1998, pp 117-124.
    Furukawa K. Microbial degradation of PCBs [M]. In Skidder S. K(ed) Bioremediation Technologies, Vol III, Technomic Publishing Company, Inc, 1998, pp 161-165.
    Yagi Osami. Microbial degradation of TCE [ M]. In Skidder S.K (ed) Bioremediation Technologies, Vol III, Technomic Publishing Company, Inc, 1998, pp 137-145.
    Russell D. Use of enzymes in soil ecotoxicology: a case for dehydrogenase and hydrolytic enzymes [M]. In Tar-radellasJ (ed). Soil Ecotoxicology, Lewis Publishers, 1997, pp 179-197.
    第二章
    Krumboech M., Conrad R. Metabolism of position-labelled glucose in anoxic methanogenic paddy soil and lake sediment [J]. FEMS Microbiol. Ecol. 1991,85: 247-256.
    Lovley, D.R. Bioremediation of organic and metal contaminants with dissimilatory metal reduction [J]. J. Ind. Microbiol. 1995,14(2): 85-93.
    Neal son, K.H. and Saffarini, D. Iron and manganese in anaerobic respiration:environmental significance,physiology,and regulation [J]. Annu. Rev. Microbiol. 1994,48:311-343.
    Stucki, J.W. Redox processes in smecties: soil environmental significance [J]. Advances In Geo Ecology. 1997,30:395-406.
    Jaeckel U., Sylvia Schnell. Suppression of methane emission from rice paddies by ferric iron fertilization [J]. Soil Biology&Biochemistry, 2000,32:1811-1814. 
    曲东, Sylvia Schnell.外源氧化铁对水稻土甲烷形成的影响[J]. 环境科学学报.2002,22(1):65-69.
    
    曲东,张一平,Sylvia Schnell.添加氧化铁对土壤中H2、CO2、和CH4形成的影响[J]. 应用生态学报.2003,14(8):1311-1313.
    土壤微生物研究会编,叶维青译,土壤微生物实验法[M]. 北京:科学出版社,1983,pp 376-379.
    刘志光,徐仁扣.几种有机化合物对土壤中的铁和锰的氧化物的还原和溶解[J]. 环境化学.1991,10:43-49.
    徐仁扣.土壤中氧化铁的有机还原溶解动力学[J]. 热带亚热带土壤科学.1994,3(2):71-76.
    于天仁著.水稻土的物理化学[M]. 北京:科学出版社.1983,pp 185-192.
    章申,王立军,王同山.土壤水介质中Cr(VI)与Fe(II)氧化还原反应环境动力学的研究[J]. 环境化学.1982,1(2):133-139.
    曲东,Sylvia Schnell.纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报.2001, 41(6):745-749.
    杨春. 不同水稻土中铁的微生物还原特性. 西北农林科技大学硕士学位研究生学位(毕业)论文.2001.
    第三章
    窦森,王其存,代晓燕. 土壤有机培肥对微团聚体组成及其碳、氮分布和活性的影响[J]. 吉林农业大学学报.1991,13(2):43-48.
    陈恩凤. 土壤肥力研究文集[C]. 沈阳:辽宁科学技术出版社, 1984.
    姚贤良等. 赣中丘陵地区红壤性水稻土的结构状况及其肥力意义. 土壤学报.1962,10(3):267-288.
    Qu D, Sylvia Schnell. Effect of iron addition on methanogenesis in paddy soil [J]. Bio-Spektrum, VAAM Jahrestagung. Gottingen, Germany, 1999, 111-112.
    曲东,Sylvia Schnell. 纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报.2001,41(6):744-749.
    曲东,Sylvia Schnell . 外源氧化铁对水稻土甲烷形成的抑制[J]. 环境科学学报.2002,22(1):65-69.
    熊毅等.土壤胶体(第二册)-土壤胶体研究法[M].北京:科学出版社,1985, pp 10-20.
    Lovley D. R., Coates J.D. Blunt-Harris E.L., et al. Humic substances as electron acceptors of microbial respiration [J]. Nature, 1996, 382:445-448.
    Sylvia Schnell. Ratering S. Simultaneous determinations of iron (III), iron (II), and manganese (II) in environmental samples by ion chromatography [J]. Environ. Sci. Technol. 1998, 32(10): 1530-1537.
    张晓华, 杜丽娟, 文启孝. 几种水稻土不同粒级中的有机质含量和组成[J]. 土壤学报, 1984, 21(4): 418-425.
    谭中欣.水稻土中铁还原及其电子传递特征的研究[D]. 西北农林科技大学硕士研究生学位论文. 2003.
    郝文英.水稻土中的微生物及其在物质转化中的作用. 见:李庆逵主编,中国水稻土[M]. 北京:科学出版社.1992,pp 311-329.
    
    第四章
    Lovley, D.R. Coates J.D. Blunt-Harris E.L. et al. Humic substances as electron acceptors of microbial respiration [J]. Nature, 1996, 382:445-448.
    Stucki J.W. Redox processes in smecties: soil environmental significance [J]. Advances in Geo Ecology.1997, 30:395-406.
    Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soil and sediments [J]. FEMS Microboil. Ecol. 1999,28: 193-20.
    曲东,张一平,Sylvia Schnell. Conrad R. 水稻土中铁氧化物的厌氧还原及其对微生物过程的影响,土壤学报,2003,(6):858-863.
    曲东,Schnell S,Conrad R. 外源氧化铁对水稻土中有机酸含量的影响[J]. 应用生态学报.2002,13(11):1425-1428.
    Schwertmann U, Cornll R. M. Iron oxides in the Laboratory, Peroration. VCH, Weinheom, New York Press.1991, 69-144.
    曲东,Sylvia Schnell. 纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报.2001,41(6):745-749.
    谭盈盈,郑平,姜辛.微生物作用下Fe(III)对有机污染物的氧化[J]. 浙江大学学报(农业与生命科学版). 2002,28(3):350-354.
    第五章
    麦克拉伦A.D.等著,闵九康,关松荫译. 土壤生物化学[M]. 北京:农业出版社,1984,pp 402-409.
    Schwertmann U. 有机物与氧化铁之间的相互作用[J]. 土壤学进展.1988,(4):56.
    刘铮等编著,微量元素的农业化学[M]. 北京:农业出版社,1991,pp 258-268.
    川口桂三郎著.汲惠吉译. 水田土壤学[M]. 北京:农业出版社,1985,pp 25-43,pp 182-207,pp 288-291.
    刘志光.水稻土的氧化还原电位.见:李庆逵主编,中国水稻土[M]. 北京科学出版,1992,pp 208-223.
    于天仁著.水稻土的物理化学[M].北京:科学出版社,1983,pp 185-192.
    HassinkJ. The capacity of soils to preserve organic C and N by their association with clay and silt. Plant and Soil.1997, 191:77-87.
    HassinkJ. Preservation of plant residues in soils differing inunsaturated protective capacity. Soil Sci. Soc. Am. J. 1996, 60:487-491.
    Alexander M. Introduction to soil microbiology (2nd Edition IM). John Wiley & Sons, Inc, New York, 1977. 1-3.
    罗安程.有机肥对水稻根际土壤中微生物和酶活性的影响[J]. 植物营养与肥料学报.1999,5(4):321-327.
    刘更另,金维续.中国有机肥料[M]. 北京:农业出版社.1991,pp 238-241.
    
    Lou An-cheng and Sun Xi. Effect of organic manure on the biological activities associated with insoluble phosphorus release in a blue purple paddy soil [J]. Commun Soil Sic. Plant Anal, 1994, 25(13&14), 2513-2522.
    第六章
    Stucki J.W. Redox processes in smecties: Soil environmental significance [J]. Advances in Geo-Ecology, 1997, 30: 395-406.
    Conrad R. Contribution of hydrogen to methane production and control of hydrogen concentration in methanogenic soil and sediments [J]. FEMS Microboil. Ecol. 1999. 28: 193-20.
    Dong Qu, Ning Cao, Hui Mao. The Effects of Amendments of Chromate and Glucose on Dissimilatory Iron Reduction in Paddy Slurry[R]. Proceedings of the Third International Conference on Contaminants in the Soil Environment in the Australasia-Pacific Region. 2003.11,Beijing,China.
    曲东,曹宁,王保莉. 添加EDTA及黄腐酸对水稻土中有效磷浓度的影响[J]. 西北农林科技大学学报,2003,31(3):127-130.
    苏玲.水稻土淹水过程中铁化学行为变化对磷有效性影响研究[D]. 浙江大学博士学位论文.2001.
    曲东,Sylvia Schnell. 外源氧化铁对水稻土甲烷形成的抑制[J]. 环境科学学报,2002,22(1):65-69.
    曲东,张一平,Sylvia Schnell.Conrad R. 添加氧化铁对水稻土中H2、CO2和CH4形成的影响[J]. 应用生态学报.2003,14(8):1313-1316.
    曲东,Sylvia Schnell. 纯培养条件下不同氧化铁的微生物还原能力[J]. 微生物学报2001,41(6):745-749.
    Qu Dong and Sylvia Schnell.and Stefan R. Microbial Reduction of Poorly Crystalline Iron(III) Oxides and Suppression on Methanogenesis in Paddy Soil[R]. Proceeding of First International Conference on Pollution Eco-chemistry and Ecological Processes, 2002.8, Shenyang, China.
    曲东,Sylvia Schnell.水稻土中铁的微生物还原特征[R]. 海峡两岸微生物资源及应用学术研讨会,2002,台北.
    Qu Dong, Ratering S, Schnell S. Poorly crystalline iron(III) oxides are the dominant electron acceptors for iron reduction in a paddy field[J]. VAAM Jahrestagung, 2001, Oldenburg,Germany.
    Qu Dong and Schnell S. Effect of iron addition on methanogenesis in paddy soil. Bio-Spektrum[J]. VAAM Jahrestagung, 1999, Gottingen, Germany.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700