用户名: 密码: 验证码:
大豆连作对根际土壤生物群落的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了加深理解大豆连作的生物学障碍机理,本文采用高通量测序和末端限制性片段多态性分析(T-RFLP)、聚丙烯酰胺梯度凝胶电泳(DGGE)和定量(qPCR)方法,研究了连作13年的大豆根际细菌、真菌和线虫,以及镰刀菌、大豆疫霉菌的群落结构和丰度的动态。同时,通过与环境因子进行相关性分析,阐明驱动根际生物类群动态变化的关键因子。另外,通过建立微宇宙系统,利用DGGE和qPCR的方法,研究了大豆异黄酮对镰刀菌和大豆疫霉菌的影响,探讨了大豆异黄酮对主要病原菌的生态功能。结果如下:
     (1)连作1-3年根际真菌群落的丰度显著高于连作6-13年,而真菌的香农指数和均匀度在6-13年显著高于1-3年。在连作2-3年内,疾病真菌(Boeremia和Clavariopsis)的相对丰度更高,而有益菌(Bionectria, Melanospora和Hypocrea)的相对丰度较低。另外,根的分泌物如类黄酮、染料木因和pH是调节真菌群落的重要因子。细菌丰度从1-3年迅速减少,之后保持相对稳定。细菌群落组分受可利用性磷(AP)、硝态氮(N03-)和pH的影响。这些结果说明从起初的健康土壤到致病土壤的转化可能主要是由于致病真菌的相对丰度较高,而且真菌群落与细菌比例增加有关。之后,从致病土壤到抑病土壤的转化和土壤抑制特性的可持续性可能与土壤中有益菌的比例提高有关。根系分泌物和土壤性质是驱动微生物群落变化的因子。
     (2)在1到13年,镰刀菌的群落结构和丰度都没有清楚的时间趋势。土壤的异黄酮物质和镰刀菌群落的变化具有明显相关性。另外,大豆疫霉菌的丰度从第1到第3年增加,之后开始减少。大豆疫霉菌与类黄酮的浓度呈负相关。物种少的镰刀菌群落是物种丰富的镰刀菌群落的子集,说明在种库中连续的演替是巢氏和物种的丧失。镰刀菌群落可能由随机和环境过程影响,镰刀菌群落可能不是导致大豆产量降低的主要因子,根际中大豆疫霉菌的密度或许更重要。
     (3)线虫群落结构在连作期间发生了明显变化。线虫的物种丰富度随着连作年限的增加呈逐渐降低的趋势。第1年物种丰富度最高,第3年的丰富度显著低于第1年,之后逐渐降低。大豆根际土中共检测到16个线虫群落T-RF(末端限制性片段),且大多数T-RF能从克隆文库中鉴定。在大豆根际土中,食细菌线虫(Acrobeloides)是最丰富的有机体。在连作2-3年,植物寄生线虫相对丰度增加,而在连作后期,植物寄生线虫相对丰度减少。NMDS分析显示,第1年线虫群落与其余年限分开,而第2和第3年聚集较近,后面9、11和13年聚集较近。另外,线虫群落结构与pH、土壤有机质(SOM)、速效磷(AP)、细菌数量和真菌数量相关。线虫丰度呈先增后降的趋势,最高值出现在第6年。线虫的基因拷贝数与土壤NH4+和染料木因(genisten)浓度呈显著正相关,而与N03-和细菌的基因拷贝数呈显著负相关。说明多个因素驱动着连作过程中线虫群落变化,不仅受到土壤性质的影响,而且受到微生物群落影响。线虫群落的变化,特别是植食性线虫的变化,可能是导致连作障碍的因素之一。
     (4)外源添加黄酮物质改变了镰刀菌群落结构。培养前期(第3天),黄酮溶液对镰刀菌丰度影响最大,随着培养时间的延长,黄酮溶液对镰刀菌丰度的影响较小。可是,在培养第3天,黄酮溶液没有改变大豆疫霉菌的丰度,当培养7天后,高浓度的大豆苷元和染料木因以及混合液对大豆疫霉菌产生了显著的抑制作用。培养14天,只有最高浓度的混合液促进了大豆疫霉菌的数量。大豆苷元和染料木因对镰刀菌和大豆疫霉菌能产生促进或抑制作用,主要取决于培养时间和黄酮物质的浓度。
     通过上述研究得出以下结论(1)长期大豆连作使土壤细菌、真菌、线虫和镰刀菌群落的物种丰富度降低;(2)连作使土壤生物群落的基因拷贝数减少。
Continuous crop monoculture results in a transformation from a conducive to suppressive soil, but we lack a comprehensive understanding of how soil microbiota develop in the process over time. The aim of this study was to investigate whether the dynamic processes in the composition and abundance of rhizosphere bacterial, fungal, nematode, as well as fusarium communities and Phytophthora sojae in the long-term soybean monoculture (up to13years) are linked to the transformation and which the main factor drive shifts in these soil microbial taxa. To determine abundance of bacterial, fungal, nematode, fusarium communities and P. sojae, we used quantitative PCR (qPCR), and to study the structure and diversity of bacterial, fungal and fusarium communities, we used a454-pyrosequencing technique. Furthermore, we used T-RFLP to test the compositions and abundances of nematode community in soils. In addition, to understand the ecological function of root exudates, we established a microcosm system to evaluate the effects of genstein and daidzin as well as their mixture on fusarium communities and P. sojae. The results are as following:
     (1) The abundances of fungal communities were significantly higher from1to3years than those from6to13years. The Shannon index and evenness of fungal communities are higher from6to13years than those from1to3years. Evenness is negative related to fungal abundance. The relative abundance of pathogenic fungi such as Boeremia and Clavariopsis were higher in the second and third cycle, whereas the relative abundance of beneficial fungi such as Bionectria, Melanospora, and Hypocrea were decreased. However, after6-year soybean monoculture, fungal communities were characterized by several beneficial species, while the abundances of pathogenic fungi were lower than year2and3. In addition, the special root exudates such as isoflavones, genstein and soil chemical factors, primarily pH, had a regulatory effect on the fungal communities. Bacterial abundance were rapidly reduced from1to3years and remained constant until the end of experiment. Bacterial community composition was affected by Olsen P, NO3-and pH. Our results suggest that the transformation from initial healthy to conducive soil may be attributed to not only high proportion of fungal pathogen taxa, but also a large fraction of fungal community and a small fraction of bacterial community. Then, the transformation from conducive to suppressive soil and the sustainment of soil suppressive may be due to the high proportion of beneficial taxa in soils.
     (2) No clearly temporal compositional trends in Fusarium community composition and abundance were observed from1to13year. Isoflavonoids concentrations in soils were significantly correlated to Fusarium community shifts. In addition, P. sojae abundance increased from1to3years, whereas, the abundance of P. sojae was negatively correlated to isoflavonoids concentrations. The strong response to isoflavonoids of these two rhizosphere fungi populations highlights that soil microbes depend more on plant physiology than soil chemical parameters. Fusarium communities from species-poor fields were found to be subsets of those in richer fields, indicating nestedness and a progressive 'loss' from the species pool. Our results suggest that Fusarium community is influenced by the combination of deterministic and stochastic processes.that the Fusarium community present in soybean fields might not be the main factor in yield shift, but P. sojae population density might was of an importance.
     (3) The species richness of nematode communities was decreased with the increase of continuous monoculture. Acrobeloides was prevalent in the soil. The relative abundances of plant parasite nematode are higher from2to3years than those from6to13years. NMDS indicated that the nematode communities in rhizophere soil collected from the9,11, and13years closely clustered together, outside of the first three years. Furthermore, nematode community composition was affected by available P, soil organic matter (SOM), pH, bacterial and fungal abundance. The abundance of nematode community was increased from1to6years, and then it was decreased from9to13years. In addition, the abundance of nematode community was positively correlated to NH4and genisten and was negatively correlated to NO3-and bacterial abundance. Our results suggest that nematode community is influenced by soil microbiology and many soil factors, and that nematode community present in soybean fields might be an important factor in yield shift.
     (4) Exogenous daidzin and genistein as well as their mixture resulted in the changes of Fusarium community. The number of the intense bands assayed by DGGE that may represent numerically dominant fusarium species were increased from the third day to the seventh day and then decreased at the forteenth day. Cluster analyses indicated that samples from different treatements could be distinguished from each other. Daidzin, genistein and their mixture have strongly impacted on the abundance of Fusarium community in incubated the third day, but have only weakly affected on it with the increase of incubated days. However, these solutions have no effect on the abundance of P. sojae in incubated the third day, while the high concentrations of these solutions have an inhibitory effect on it in incubated the seventh day. In incubated the forteen days, only the highest concentrations of these solutions increased the abundance of P. sojae. The inhibitory or sitimulatory effects of isoflavones on these two pathogenic fungi depended on incubated time and their concentrations.
     In conclusion, we found that long-term monoculture soybean led to decreases of richness in soil bacterial, fungal and nematode communities and that soil biotic community sizes were decreased by monoculture soybean.
引文
陈宏宇.2005.不同品种和不同茬口大豆根面及根际的微生物群落结构分析(博士学位论文).北京:中国农业大学.
    陈立杰,朱艳,刘彬,等.2007.连作和轮作对大豆胞囊线虫群体数量及土壤线虫群落结构的影响.植物保护学报.34:347-352.
    陈申宽,黄复民,郭桂清,等.2006.大豆连作土壤肥力变化与有害生物发生的关系.中国农学通报.22:373-376.
    傅慧兰,杨振明,邹永久,等.1996.大豆连作对土壤酶活性的影响.植物营养与肥料学报.2:374-377.
    韩丽梅,王树起,鞠会艳,等.2003.吸附树脂提取的大豆根分泌物种类GC-MS分析.大豆科学.22(4):301-305.
    韩丽梅,沈其荣,鞠会艳,等.2002a.大豆地上部水浸液的化感作用及化感物质的鉴定.生态学报.22:1425-1432.
    韩丽梅,沈其荣,王树起,等.2002b.大豆根茬木霉腐解产物的鉴定及其化感作用的研究.应用生态学报.13:1295-1299.
    韩晓增,许艳丽.1998.大豆连作减产主要障碍因素的研究Ⅰ.连作大豆根系腐解物的障碍效应.大豆科学.17:207-212.
    何志鸿,刘忠堂,许艳丽,等.2003.大豆重迎茬减产的原因及农艺对策研究Ⅰ.重迎茬对大豆产量与品质的影响.黑龙江农业科学.22:1-4.
    黄斌.2001.大豆残茬中异黄酮的分离、鉴定与其化感作用的研究(博士学位论文).北京:中国农业大学.
    计钟程,许文艺.1995.重茬大豆减产与土壤环境变化.大豆科学.14:321-329.
    靳学慧,辛惠普,郑雯,等.2006.长期轮作和连作对土壤中大豆胞囊线虫数量的影响.中国油料作物学报.28:189-193.
    蓝江林,刘波,肖荣凤,等.2004.温度对几种作物尖孢镰刀菌菌株生长的影响.厦门大学学报(自然科学版)43:67-70
    李春格,李晓鸣,王敬国.2006.大豆连作对土体和根际微生物群落功能的影响.生态学报.26:1144-1150.
    刘晓冰,于广武,许艳丽,等.1990.大豆连作效应分析.农业系统科学与综合研究.3(3):40-44.
    刘增柱,周玉芝.1990大豆连作、轮作土壤微生物生态分布与大豆孢囊线虫群体动态研究.大豆科学.9:206-212.
    苗淑杰,乔云发,韩晓增.2007.大豆连作障碍的研究进展.中国生态农业学报.15:203-206.
    阮维斌,刘墨涵,黄斌,等.2003.两种羟基苯乙酸对大豆萌发的化感效应研究.应用生态学报.14:785-788.
    阮维斌.2000.大豆连作障碍机理极其调控措施的研究(博士学位论文).北京:中国农业大学.
    邵元虎,傅声雷.2007.试论土壤线虫多样性在生态系中的作用.生物多样性.27:1065-1071.
    隋跃宇,焦晓光,高崇生,等.2009.土壤有机质含量与土壤微生物量及土壤酶活性关系的研究.土 壤通报.40:1036-1039.
    孙磊.2008不同连作年限对大豆根际土壤养分的影响.中国农学通报.24:266-269.
    王金龙,徐冉,陈存来,等.2000.大豆连作下土壤环境条件变化的概述.大豆科学.19:367-371.
    王晶英,郑桂萍,张红燕,等.1997.连作大豆根冠比增大原因的研究.大豆科学.16:136-142.
    王敬国.2011.设施菜田退化土壤修复与资源高效利用.中国农业大学出版社.
    王邵军,蔡秋锦,阮宏华.2008.不同生境柳杉根际线虫群落的生态特征.生态学杂志.27:583-590.
    王树起,韩丽梅,杨振明.2002.不同有机酸对大豆生长的化感效应.大豆科学.21:267-273.
    王兴春,杨致荣,王敏,等.2012.高通量测序技术及其应用.中国生物工程杂志.32:109-114.
    杨火发,鲁君明,姜存仓.2008.施用钾肥对棉花枯萎病、黄萎病及产量的影响.土壤肥料.2:28-29.
    杨庆凯,马占峰,李季文.1994.黑龙江省大豆重迎茬问题及对策.大豆科学.13(2):157-163.
    杨树泉,沈向,毛志泉,等.2010.环渤海湾苹果产区老果园与连作果园土壤线虫群落特征.生态学报.30(16):4445-4451.
    张俊英,王敬国,许永利,等.2007a.氮素对不同大豆品种根系分泌物中有机酸的影响.植物营养与肥料学报.13:398-403。
    张俊英,王敬国,许永利.2007b.不同大豆品种根系分泌物中有机酸和酚酸的比较研究.安徽农业科学.2007:7127-7129。
    张淑香,高子勤,刘海玲.2000.连作障碍与根际微生态研究Ⅲ.土壤酚酸物质及其生物学效应.应用生态学报.11:741-744.
    钟爽,何应对,韩丽娜,等.2012.连作年限对香蕉园土壤线虫群落结构及多样性的影响.中国生态农业学报.20:604-611.
    邹莉,袁晓颖,李玲,等.2005.连作对大豆根部土壤微生物的影响研究.微生物学杂志.25:27-30.
    Alexander JM, Kueffer C, Daehler CC et al.2011. Assembly of nonnative floras along elevational gradients explained by directional ecological filtering. P Natl Acad Sci USA 108:656-661.
    Arias ME, Gonzalez-Perez JA, Gonzalez-Vila FJ et al.2005. Soil health-a new challenge for microbiologists and chemists. In Microbiol 8:13-21.
    Ashelford KE, Chuzhanova NA, Fry JC et al.2005. At least 1 in 2016S rRNA sequence records currently held in public repositories is estimated to contain substantial anomalies. Appl Environ Microb 71:7724-7736.
    Bais HP, Park S, Weir TL et al.2004. How plants communicate using the underground information superhighway. Trends Plant Sci 9:26-32.
    Baker KF, Cook RJ.1974. Biological control of plant pathogens. San Francisco:W.H. Freeman and Company.
    Baldrian P, Voriskova J, Dobiasova P et al.2011. Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338: 111-125.
    Baptista MJ & Siqueira JO.1994. Efeito de flavonoides na germinac a o de esporos e no crescimento assimbio'tico do fungo micorri'zico arbuscular Gigaspora gigantea. Revista Brasileira de Fisiologia Vegetal 6,127-134.
    Bastida F, Hernandez T, Garcia C.2010. Soil degradation and rehabilitation:microorganisms and functionality. In Microbes at Work. From Wastes to Resources. Insam,H., Franke-Whittle, H.I., and Goberna, M. (eds). Berlin, Germany:Springer, pp.253-270.
    Berendsen RL, Pieterse CM, Bakker PA.2012. The rhizosphere microbiome and plant health. Trends Plant Sci 17:478-486.
    Blaalid R, Carlsen T, Kumar S et al.2012. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol Ecol 21:1897-1908.
    Blum U.1998. Effects of microbial utilization of phenolic acids and their phenolic acid breakdown products on allelopathic interactions. J Chem Ecol 24:685-708.
    Bonanomi G, Del Sorbo G, Mazzoleni S et al.2007. Autotoxicity of decaying tomato residues affects susceptibility of tomato to Fusarium wilt. J Pathol 89:219-226.
    Bouskill NJ, Lim HC, Borglin S et al.2012. Pre-exposure to drought increases the resistance of tropical forest soil bacterial communities to extended drought. ISME J 7:384-394.
    Bretag TW, Keane PJ, Price TV.2006. The epidemiology and control of ascochyta blight in field peas: a review. Crop Pasture Sci 57:883-902.
    Briar S S, Grewal P S, Somasekhar N et al.2007. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Appl Soil Ecol 37:256-266.
    Bunemann EK, Steinebrunner F, Smithson PC et al.2004. Phosphorus dynamics in a highly weathered soil as revealed by isotopic labeling techniques. Soil Sci Soc Am J 68:1645-1655.
    Butaye J, Jacquemyn H, Hermy M.2001. Differential colonization causing non?\random forest plant community structure in a fragmented agricultural landscape. Ecography 24,369-380.
    Butler JL, Williams MA, Bottomley PJ et al.2003. Microbial community dynamics associated with rhizosphere carbon flow. Appl Environ Micro 69:6793-6800.
    Caporaso JG, Kuczynski J, Stombaugh J et al.2010. QIIME allows analysis of high-throughput community sequencing data. Nature Methods 7:335-336.
    Castro CE, Belser NO. Mckinney HE.1990. Strong repellency of the root knot nematode, Meloidogyne incognita by specific inorganic ions. J Chem Ecol 16:1199-1205.
    Chabot, S., Bel-Rhlid, R., Che^nevert et al.1992. Hyphal growth promotion in vitro of the VA mycorrhizal fungus. Gigaspora margarita Becker and Hall by the activity of structurally specific flavonoid compounds under CO2 enrichment conditions. New Phytol 122:461-467.
    Chase JM.2007. Drought mediates the importance of stochastic community assembly. P NatlAcad Sci USA 104,17430-17434.
    Chen M, Li X, Yang Q et al.2012. Soil Eukaryotic Microorganism Succession as Affected by Continuous Cropping of Peanut-Pathogenic and Beneficial Fungi were Selected. PloS one 7:e40659.
    Chen S & Dickson DW.2012.Biological control of plant parasitic nematodes. Pp.761-811 in R. H. Manzanilla-Lopez and N. Marban-Mendoza, eds. Practical plant nematology[C]. Guadalajara, Jalisco, Mexico:Colegio de Postgraduados and Mundi-Prensa, Biblioteca Basica de Agricultura.
    Chen SY.2007. Suppression of Heterodera glycines in soils from fields with long-term soybean monoculture. Biocontrol Sci Techn 17:125-134.
    Chen X Y.2012. Nematode response to nitrogen and phosphorus in grasslands, assessed by microscopy and molecular methods. Ireland:PhD dissertation National University of Ireland-Galway.
    Choi GH, Larson TG, Nuss DL.1992. Molecular Analysis of the Laccase Gene from the Chestnut Blight Fungus and Selective Suppression. Mol Plant Microbe Interact 5:119-128.
    Curl EA, Truelove B.1986. The rhizosphere. New York:Springer.
    Curlevski NJA, Xu ZH, Anderson IC et al.2010. Converting Australian tropical rainforest to native Araucariaceae plantations alters soil fungal communities. Soil Biol Biochem 42:14-20.
    Darcy L. A.1987. Study of soybean and lentil root exudates influence of soybean isofavonoids on the growth of rhizobia and some rhizospheric microorganisms. Plant Soil 101:267-272.
    de Goede R G M & Dekker H H.1993. Effects of liming and fertilization on nematode communities in coniferous forest soils. Pedobiologia 37:193-209.
    Demoting F, Figueroa D, Baath E.2007. Comparison of factors limiting bacterial growth in different soils. Soil Biol Biochem 39:2485-2495.
    Donn S, Griffiths BS, Neilson R et al.2008. DNA extraction from soil nematodes for multi-sample community studies. Appl Soil Ecol 38:20-26.
    Doran JW & Zeiss MR.2000. Soil health and sustainability:managing the biotic component of soil quality. Appl Soil Ecol.15:3-11.
    Doran JW, Sarrantonio M, Liebig MA.1996. Soil health and sustainability. Adv in Agron 56:1-54.
    Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A et al.2011. Trichoderma:the genomics of opportunistic success. Nature Rev Microb 9:749-759.
    Duineveld BM, Rosado AS, Van Elsas JD et al.1998. Analysis of the dynamics of bacterial communities in the rhizosphere of the chrysanthemum via denaturing gradient gel electrophoresis and substrate utilization patterns. Appl Environ Micro 64:4950-4957.
    Dumbrell AJ, Nelson M, Helgason T et al.2009 Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J 4:337-345.
    Dumont MG, Murrell JC.2005. Stable isotope probing-linking microbial identity to function. Nature Rev Microb 3:499-504.
    Edel-Hermann V, Gautheron N, Alabouvette C et al.2008. Fingerprinting methods to approach multitrophic interactions among microflora and microfauna communities in soil. Biol Fert Soils 44: 975-984.
    Feinstein LM & Blackwood CB 2012. Taxa-area relationship and neutral dynamics influence the diversity of fungal communities on senesced tree leaves. Environ Microbiol 14:1488-1499.
    Fenice M, Selbmann L, Zucconi L et al.1997. Production of extracellular enzymes by Antarctic fungal strains. Polar Biol 17:275-280.
    Ferris H.2010. Form and function:Metabolic footprints of nematodes in the soil food web. Eur J Soil Biol 46:97-104.
    Fierer N, Jackson JA, Vilgalys R et al.2005. Assessment of soil microbial community structure by use of taxon-specific quantitative PCR assays. Appl Environ Microb 71:4117-4120.
    Fierer N, Nemergut D, Knight R et al.2010. Changes through time:integrating microorganisms into the study of succession. Res Microbiol 161:635-642.
    Floyd R, Abebe E, Papert A et al.2002. Molecular barcodes for soil nematode identification. Mol Ecol 11:839-850.
    Freckman DW.1998. Bacterivorous nematodes and organic-matter decomposition. Agric Ecosyst Environ 24:195-217.
    Gao X, Jackson TA, Lambert KN et al.2004. Detection and quantification of Fusarium solani f. sp. glycines in soybean roots with real-time quantitative polymerase chain reaction. Plant Dis 88, 1372-1380.
    Garbeva P, van Veen JA, van Elsas JD.2004. Microbial diversity in soil:selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu Rev Phytopathol 42:243-270.
    Gaulin E, Jacquet C, Bottin A et al.2007. Root rot disease of legumes caused by Aphanomyces euteiches. Mol Plant Pathol 8:539-548.
    Gelsomino A, Keijzer Wolters AC, Cacco G et al.1999. Assessment of bacterial community structure in soil by polymerase chain reaction and denaturing gradient gel electrophoresis. J Microbiol Meth 38: 1-15.
    Genin S & Boucher C.2004. Lessons learned from the genome analysis of Ralstonia solanacearum. Annu Rev Phytopathol 42:107-134.
    Gianinazzi S, Gollotte A, Binet M et al.2010. Agroecology:the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20:519-530.
    Girvan MS, Bullimore J, Pretty JN et al.2003. Soil type is the primary determinant of the composition of the total and active bacterial communities in arable soils. Appl Environ Micro.69:1800-1809.
    Gomez-Montano L, Jumpponen A, Gonzales MA et al 2013. Do bacterial and fungal communities in soils of the Bolivian Altiplano change under shorter fallow periods? Soil Biol Biochem 65:50-59.
    Goncalves VN, Vaz A, Rosa CA et al.2012. Diversity and distribution of fungal communities in lakes of Antarctica. FEMS Microbiol Ecol 82:459-471.
    Gordon TR & Martyn RD.1997. The evolutionary biology of Fusarium oxysporum. Annu Rev Phytopathol 35,111-128.
    Goud JC & Termorshuizen AJ.2003. Quality of methods to quantify microsclerotia of Verticillium dahliae in soil. Eur J Plant Pathol 109:523-534.
    Graham TL, Kim JE, Graham MY.1990. Role of constitutive isoflavone conjugates in the accumulation of glyceollin in soybean infected with Phytophthora megasperma. Molplant microbe in 3:157-166
    Grayston SJ, Vaughan D, Jones D.1997. Rhizosphere carbon flow in trees, in comparison with annual plants:the importance of root exudation and its impact on microbial activity and nutrient availability.Appl Soil Ecol 5:29-56.
    Griffiths B S, Bengough A G, Neilson R, et al.2002. The extent to which nematode communities are affected by soil factors e a pot experiment. Nematology 4:943-952.
    Guo Z, Kong C, Wang J et al.2011. Rhizosphere isoflavones (daidzein and genistein) levels and their relation to the microbial community structure of mono-cropped soybean soil in field and controlled conditions. Soil Biol Biochem 43:2257-2264.
    Halbrendt J M.1996. Allelopathy in the management of plant parasitic nematodes. J Nematol.28:8-14.
    Hartmann M, Niklaus PA, Zimmermann S et al.2013. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 1-19.
    Harveson RM, Kimbrough JW, Hopkins DL.2002. Novel use of a pyrenomycetous mycoparasite for management of Fusarium wilt of watermelon. Plant Dis 86:1025-1030.
    Hasna M K, Lagerlof J, Ramert B.2008. Effects of fungivorous nematodes on corkyroot disease of tomato grown in compost-amended soil. Acta Agric Scand B 58:145-153.
    Hayward AC, Fegan N, Fegan M et al.2010. Stenotrophomonas and Lysobacter:ubiquitous plant-associated gamma-proteobacteria of developing significance in applied microbiology. J Appl Microbiol 108:756-770.
    He JZ, Xu ZH, Hughes J.2005. Analyses of soil fungal communities in adjacent natural forest and hoop pine plantation ecosystems of subtropical Australia using molecular approaches based on 18S rRNA genes. FEMS Microbiol Lette 247:91-100
    Inceoglu O, van Overbeek LS, Salles JF et al.2013. Normal Operating Range of Bacterial Communities in Soil Used for Potato Cropping. Appl Environ Microb 79:1160-1170.
    Ingham RE, Trofymow JA, Ingham ER et al.1985. Interactions of bacteria, fungi, and their nematode grazers:effects on nutrient cycling and plant growth. Ecol Monog 55(1):119-140.
    Ishak HD, Miller JL, Sen R et al.2011. Microbiomes of ant castes implicate new microbial roles in the fungus-growing ant Trachymyrmex septentrionalis. Sci reports 1,204; DOI:10.1038/srep00204.
    Iwai S, Chai B, Jesus EC et al.2011. Gene-targeted metagenomics (GT Metagenomics) to explore the extensive diversity of genes of interest in microbial communities. In:de Bruijn FJ, ed. Handbook of molecular microbial ecology I:metagenomics and complementary approaches. Hoboken, New Jersey, USA:John Wiley & Sons. Inc.,235-243.
    Jabot F, Etienne RF, Chave J.2008. Reconciling neutral community models and environmental filtering: theory and an empirical test. Oikos 111:1308-1320.
    Jangid K, Whitman WB, Condron LM et al.2013. Soil bacterial community succession during long-term ecosystem development. Mol Ecol 22:3415-3424.
    Janvier C, Villeneuve F, Alabouvette C et al.2007. Soil health through soil disease suppression:which strategy from descriptors to indicators? Soil Biol Biochem 39:1-23.
    Jeon YH, Kim SG, Hwang I et al.2010. Effects of initial inoculation density of Paenibacillus polymyxa on colony formation and starch-hydrolytic activity in relation to root rot in ginseng. J Appl Microbiol 109:461-470.
    Karlen DL, Mausbach MJ, Doran JW et al.1997. Soil quality:a concept, definition, and framework for evaluation. Soil Sci Soc Amer J 61:4-10.
    Kerry BR & Crump DH.1998. The dynamics of the decline of the cereal cyst nematode, Heterodera avenae, in four soils under intensive cereal production. Fundam. Appl. Nematol 21:617-625.
    Kowalchuk GA, Stephen JR, DeBoer W et al.1997. Analysis of ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in coastal sand dunes by denaturing gradient gel electrophoresis and sequencing of PCR-amplified 16S ribosomal DNA fragments. Appl Environ Micro 63,1489-1497.
    Kyselkova M, Almario J, Kopecky J et al.2013. Evaluation of rhizobacterial indicators of tobacco black root rot suppressiveness in farmers'fields. Environ Microbiol Rep doi:10.1111/1758-2229.12131.
    Kyselkova M, Kopecky J, Frapolli M et al.2009. Comparison of rhizobacterial community composition in soil suppressive or conducive to tobacco black root rot disease. ISME J 3:1127-1138.
    Lambers H, Mougel C, Jaillard B et al.2009. Plant-microbe-soil interactions in the rhizosphere:an evolutionary perspective. Plant Soil 321:83-115.
    Latala P.1986. Biological control of plant-parasitic nematodes. Ann Rev Phytopathol. Z4:453-489.
    La timer AM, Silander JA, Cowling RM.2005. Neutral ecological theory reveals isolation and rapid speciation in a biodiversity hot spot. Science 309,1722-1725.
    Lauber C L, Hamady M, Knight R et al.2009. Pyrosequencing-based assessment of soil pH as a predictor of soil bacterial community structure at the continental scale. Appl Environ Micro 75: 5111-5120.
    Lauber CL, Strickland MS, Bradford MA et al.2008. The influence of soil properties on the structure of bacterial and fungal communities across land-use types. Soil Biol Biochem 40:2407-2415.
    Lawton J H, Bignell D E, Bolton B et al.1998. Biodiversity inventories, indicator taxa and effects of habitat modification in tropical forest. Nature.391:72-76.
    Lekberg Y, Schnoor T, Kjller R et al.2012.454-sequencing reveals stochastic local reassembly and high disturbance tolerance within arbuscular mycorrhizal fungal communities. J Ecol 100, 151-160.
    Leslie JF, Summerell BA.2006. The Fusarium laboratory manual (p.388). Oxford, UK:Blackwell Publishing Ltd.
    Li C, Li X, Kong W et al.2010. Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330,423-433.
    Li S, Hartman GL, Domier LL et al.2008. Quantification of Fusarium solani f. sp. glycines isolates in soybean roots by colony-forming unit assays and real-time quantitative PCR. Theor Appl Genet 117:343-352
    Li Y, Zhang L, Wang C et al.2013 Antagonistic mechanism and control e ffect of Bacillus subtilis Y2 against Fusarium oxysporum causing soybean root rot. Afr J Microb Res 7,652-656.
    Li YG & Ma FM.2012. Antagonistic Mechanism of Fusarium Oxysporum of soybean root rot by Bacillus subtilis. Appl Mech Mate 108,127-131.
    Ling N, Xue C, Huang Q et al.2010. Development of a mode of application of bioorganic fertilizer for improving the biocontrol efficacy to Fusarium wilt. Biocontrol 55:673-683.
    Liu WT, Marsh TL, Cheng H et al.1997. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl Environ Microb 63:4516-4522.
    Liu X & Herbert SJ.2002. Fifteen years of research examining cultivation of continuous soybean in northeast China:A review. Field Crop Res 79:1-7.
    Lozovaya V, Lygin A V, Zernova O V et al.2004. Isoflavonoid accumulation in soybean hairy roots upon treatment with Fusarium solani. Plant Physiol Biochem 42:671-679.
    Lu L, Yin S, Liu X, Zhang W et al.2013. Fungal networks in yield-invigorating and-debilitating soils induced by prolonged potato monoculture. Soil Biol Biochem 65:186-194.
    Lu Y H & Conrad R.2005. In Situ Stable Isotope Probing of Methanogenic Archaea in the Rice Rhizosphere. Science.309:1088-1090.
    Lu YH, Rosencrantz D, Liesack W et al.2006. Structure and activity of bacterial community inhabiting rice roots and the rhizosphere. Environ. Microbiol 8:1351-1360.
    Lynch J.1990. The rhizosphere. Wiley, London, UK, p 458.
    Manici LM & Caputo F.2009. Fungal community diversity and soil health in intensive potato cropping systems of the east Po valley, northern Italy. Ann Appl Biol 155:245-258.
    Maramune T, Anetai M, Takasugi M et al.1982. Isolation of a natural hatching stimulus, glycinoeclepin. Nature 297:495-496.
    Mazzola M.2004. Assessment and management of soil microbial community structure for disease suppression. Annu Rev Phytopathol 42:35-59.
    Melke J.2007. Characteristics of soil filamentous fungi communities isolated from various micro-relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Pol Polar Res 28:57-73.
    Meriles J M, Vargas Gil S, Conforto C et al.2009. Soil microbial communities under different soybean cropping systems:Characterization of microbial population dynamics, soil microbial activity, microbial biomass, and fatty acid profiles. Soil Till Res 103:271-281.
    Miletto M, Bodelier PL, Laanbroek HJ.2007. Improved PCR-DGGE for high resolution diversity screening of complex sulfate-reducing prokaryotic communities in soils and sediments. J Microbiol Meth 70:103-111.
    Mo YY, Geibel M, Bonsall RF et al.1995. Analysis of sweet cherry (Prunus avium L.) leav es for plant signal molecules that activate the syrB gene required for synthesis of the phytotoxin, syringomycin, by Pseudomonas syringae pv. syringae. Plant Physiol 107:603-612.
    Morkunas I, Marczak L, Stachowiak J et al.2005. Sucrose-induced lupine defense against Fusarium oxysporum Sucrose-stimulated accumulation of isoflavonoids as a defense response of lupine to Fusarium oxysporum. Plant Physiol Biochem 43:363-373.
    Morris PF, Bone E, Tyler BM.1998. Chemotropic and Contact Responses of Phytophthora sojae Hyphae to Soybean Isoflavonoids and Artificial Substrates. Plant Physiol 111:1171-1178.
    Nbel U, Engelen B, Felskea A. et al.1996. Sequence heterogeneities of genes encoding 16S rRNAs in paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178: 5636-5643
    Neher DA & Campbell CL.1994. Nematode communities and microbial biomass in soils with annual and perennial crops. Appl Soil Ecol 1:17-28.
    Neher DA.2001. Role of nematodes in soil health and their use as indicators. J Nematology 33:161-168.
    Neher DA.2010. Ecology of plant and free-living nematodes in natural and agricultural soils. Anna. Rev.Phytopathology 48:371-394.
    Nemergut DR, Townsend AR, Sattin SR et al.2008. The effects of chronic nitrogen fertilization on alpine tundra soil microbial communities:implications for carbon and nitrogen cycling Environ Microb10:3093-3105
    Nourozian J, Etebarian HR, Khodakaramian G.2006. Biological control of Fusarium graminearum on wheat by antagonistic bacteria. Songklanakarin J Sci Tech 28:29-38.
    Ofieru ID, Lunn M, Curtis TP et al.2010. Combined niche and neutral effects in a microbial wastewater treatment community. P Natl Acad Sci USA 107,15345-15350.
    Orrock JL & Watling JI.2010. Local community size mediates ecological drift and competition in metacommunities. P Roy Soc B-Biol Sci 277:2185-2191.
    Osborn AM, Moore ERB, Timmis KN.2000. An evaluation of terminal-restriction fragment length polymorphism (T-RFLP) analysis for the study of microbial community structure and dynamics. Environ Microb 2:39-50.
    Palomares-Rius J E, Castillo P, Montes-Borrego M et al.2012. Nematode community populations in the rhizosphere of cultivated olive differsaccording to the plant genotype. Soil Biol Biochem 45:168-171.
    Papatheodorou EM, Argyropoulou MD, Stamou GP.2004. The effects of large-and small-scale differences in soil temperature and moisture on bacterial functional diversity and the community of bacterivorous nematodes. App Soil Ecol 25:37-49.
    Paul F M, Elizabeth B, Tyler BM.1998. Chemotopic and contact responses of phytophthora sojae hyphae to soybean isflavonoids and artificial substrates. Phant Physiol 117:1171-1178.
    Qu XH & Wang JG.2008. Effect of amendments with different phenolic acids on soil microbial biomass, activity, and community diversity. Appl Soil Ecol 39:172-179.
    Raaijmakers JM, Paulitz TC, Steinberg C et al.2009. The rhizosphere:a playground and battlefield for soilborne pathogens and beneficial microorganisms. Plant Soil 321:341-361.
    Radajewski S, Ineson P, Parekh NR et al.2000. Stable isotope probing as a tool in microbial ecology. Nature 403:646-649.
    Raghavendra Rao J & Cooper JE.1995. Soybean nodulating rhizobia modify nod gene inducers daidzein and genistein to yield aromatic products that con influence gene-inducing activity MPMI 8:855-862.
    Rangel-Castro J I, Killham K, Ostle N et al.2005. Stable isotope probing analysis of the influence of liming on root exudates utilization by soil microorganisms. Environ. Microbiol.7:828-838.
    Ricklefs RE & Lovette IJ 1999. The roles of island area per se and habitat diversity in the species-area relationships of four Lesser Antillean faunal groups. JAnim Ecol 68,1142-1160.
    Rivers AR, Sharma S, Tringe SG et al.2013.Transcriptional response of bathypelagic marine bacterioplankton to the Deepwater Horizon oil spill. ISME J 7:2315-2329.
    Robertson GP & Paul EA.2000. Decomposition and soil organic matter dynamics. In:Sala OE, Jackson RB, Mooney HA, Howarth RW, eds. Methods in ecosystem science. New York, USA: Springer-Verlag,104-116.
    Rousk J, Baath E, Brookes PC et al.2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J 4:1340-1351.
    RuanYJ, Kotraiah V, Straney DC.1995. Flavonoids stimulate spore germination in Fusarium solani Pathogenic on legumes in a manner sensitive to inhibitors of cAMP-dependent protein kinase. MPMI 8:929-938
    Ruess L & Funke W.1992. Effects of experimental acidification on nematode populations in soil cultures. Pedobiologia 36:231-239.
    Sanchez-Moreno S, Minoshima H, Ferris H et al.2006. Linking soil properties and nematode community composition:effects of soil management on soil food webs. Nematol 8:703-715.
    Sanguin H, Sarniguet A, Gazengel K et al.2009. Rhizosphere bacterial communities associated with disease suppressiveness stages of take-all decline in wheat monoculture. New Phytol 184:694-707.
    Sayre R M & Starr M P.1989. Genus Pasteruria Metchinikoff,1888. pg.2601-2615 in S.T. Willaims, ME. Sharpe and JG Holt, eds. Bergey's manual of systematic bacteriology Baltimore,MD:Willianms and Wilkins.
    Schabereiter-Gurtner C, Pinar G, Lubitz W et al.2001. Analysis of fungal communities on historical church window glass by denaturing gradient gel electrophoresis and phylogenetic 18S rDNA sequence analysis. J Microbiol Meth 47:345-354.
    Schisler DA, Slininger PJ, Behle RW et al.2004. Formulation of Bacillus spp. for biological control of plant diseases. Phytopathology 94:1267-1271.
    Schloss PD, Westcott SL, Ryabin T et al.2009. Introducing mothur:open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microb75:7537-7541.
    Schreiner K, Hagn A, Kyselkova M et al.2010. Comparison of barley succession and take-all disease as environmental factors shaping the rhizobacterial community during take-all decline. Appl Environ Microb 76:4703-4712.
    Shaw LJ & Hooker JE.2008. The fate and toxicity of the flavonoids naringenin and formononetin in soil. Soil Biol Biochem 40:528-536.
    Shen C, Xiong J, Zhang H et al.2012. Soil pH drives the spatial distribution of bacterial communities along elevation on Changbai Mountain. Soil Biol Biochem 65:186-194.
    Shendure J & Ji HL.2008. Next-generation DNA sequencing. Nature Biotech26:1135-1145.
    Singh BK, Millard P, Whiteley AS et al.2004. Unravelling rhizosphere-microbial interactions: opportunities and limitations. Trends in Microb 12:386-393.
    Skadhauge B, Thomsen K, vonWettstein D.1997. The role of barley testa layer and its flavonoid content in resistance to Fusarium infections. Hereditas 126:147-160.
    Sloan WT, Lunn M, Woodcock S et al.2006. Quantifying the roles of immigration and chance in shaping prokaryote community structure. Environ Microbiol 8:732-740.
    Smithson PC & Giller KE.2002. Appropriate farm management practices for alleviating N and P deficiencies in low-nutrient soils of the tropics. Plant Soil 245:169-180.
    Song C, Chi Z, Li J et al.2010.β-Galactosidase production by the psychrotolerant yeast Guehomyces pullulans 17-1 isolated from sea sediment in Antarctica and lactose hydrolysis. Bioproc Biosyst Eng 33:1025-1031.
    Stevenson F J.1994. Humus chemistry:genesis, composition, reactions. John Wiley & Sons Inc.
    Stubner S.2002. Enumeration of 16S rDNA of Desulfotomaculum lineage 1 in rice field soil by real-time PCR with SybrGreenTM detection. J Microbiol Meth 50:155-164.
    Sun MH & Liu XZ.2000. Suppressive soils of soybean cyst nematode in China. Acta. Phytopathologica Sinica.30:353-356.
    Sutton DA, Fothergill AW, Rinaldi MG. (Eds.). (1998). Guide to clinically significant fungi (1st ed.).Baltimore:Williams & Wilkins.
    Tamura K, Peterson D, Peterson N et al.2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28,2731-2739.
    Tate RL.2000. Soil microbiology. New York:John Wiley & Sons, Inc.
    Team RC.2010. R:A language and environment for statistical computing..:ISBN 3-900051-07-0. R Foundation for Statistical Computing. Vienna, Austria,2013. url:http://www. R-project. org.
    Treutter D.2006. Significance of flavonoids in plant resistance:a review. Environ Chem Letters 4:147-157.
    Trosvik P, Rudi K, N?s T et al.2008. Characterizing mixed microbial population dynamics using time-series analysis. ISME J.2:707-715.
    Tyler BM, Wu MH, Wang JW et al.1996. Chemostatic preferences and atrain variation in the response of Phytophthora sojae zoospore to host isoflavones. Appl Environ Microb 62:2811-2817.
    Van Elsas JD, Chiurazzi M, Mallon CA et al.2012. Microbial diversity determines the invasion of soil by a bacterial pathogen. Proc Natl Acad Sci USA 109:1159-1164.
    Van Elsas JD. (1997). Modern soil microbiology.:CRc Press.
    Van Veen JA, Van Overbeek LS, Van Elsas JD.1997. Fate and activity of microorganisms introduced into soil. Microbiol Mol Biol R 61:121-135.
    Vandenkoornhuyse P, Baldauf SL, Leyval C et al.2002. Extensive fungal diversity in plant roots. Science 295:2051.
    Verbruggen E, Van Der Heijden MG, Weedon JT et al.2012. Community assembly, species richness and nestedness of arbuscular mycorrhizal fungi in agricultural soils. Mol Ecol 21:2341-2353.
    Vierheilig H, Bago B, Albrecht C, Poulin M J, Piche'Y.1998. Flavonoids and arbuscular-mycorrhizal fungi. In:Buslig, B., Manthley, J. (Eds.), Flavonoids in the Living System. Plenum Press, New York, pp.9-32.
    Voriskova J & Baldrian P.2012. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477-486.
    Waite I S, O'Donnell A G, Harrison A et al.2003. Design and evaluation of nematode 18S rDNA primers for PCR and denaturing gradient gel electrophoresis (DGGE) of soil community DNA. Soil Biol Biochem.35:1165-1173.
    Wakelin S, Mander C, Gerard E et al.2012. Response of soil microbial communities to contrasted histories of phosphorus fertilisation in pastures. Appl Soil Ecol 61:40-48.
    Wakelin SA, Warren RA, Kong L et al.2008. Management factors affecting size and structure of soil Fusarium communities under irrigated maize in Australia. Appl Soil Ecol 39,201-209.
    Wang J, Li X, Zhang J, Yao T et al.2012. Effect of root exudates on beneficial microorganisms-evidence from a continuous soybean monoculture. Plant Ecol 213:1883-1892.
    Wang Y, Zhang W, Wang Y et al.2006. Rapid and sensitive detection of Phytophthora sojae in soil and infected soybeans by species-specific polymerase chain reaction assays. Phytopathology 96, 1315-1321.
    Wardle D A, Williamson W M, Yeates G W et al.2005. Trickle-down effects of aboveground trophic cascades on the soil food web. Oikos. 111:348-358.
    Weller D M, Raaijmakers J M, Gardener BBM et al.2002. Microbial populations responsible for specific soil suppressiveness to plant pathogens. Annu Rev Phytopath.40:309-348.
    Whipps JM.2004. Prospects and limitations for mycorrhizas in biocontrol of root pathogens. Can J Bot 82:1198-1227.
    Widmer T L, Mitkowski NA, Abawi G S.2002. Soil organic matter and management of plant-parasitic nematodes.J Nematol.34:289-295.
    Wittebolle L, Marzorati M, Clement L et al.2009. Initial community evenness favours functionality under selective stress. Nature 458:623-626.
    Wood TE & Silver WL.2012. Strong spatial variability in trace gasdynamics following experimental drought in a humid tropical forest. Global Biogeochem Cy 26:GB3005, doi:10.1029/2010GB004014.
    Wu F, Wang X, Xue C.2009. Effect of cinnamic acid on soil microbial characteristics in the cucumber rhizosphere. Eur J Soil Biol 45:356-362.
    Xiang MC, Xiang PA, Jiang XZ et al. 2010. Detection and quantification of the nematophagous fungus Hirsutella minnesotensis in soil with real-time PCR.Appl Soil Ecol.44:170-175.
    Xu L, Ravnskov S, Larsen J et al.2012. Soil fungal community structure along a soil health gradient in pea fields examined using deep amplicon sequencing. Soil Biol Biochem 46:26-32.
    Xu YX, Wang GH, Jin J et al.2009. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage. Soil Biol Biochem.41:919-925.
    Yang H & Lou K.2011. Succession and growth strategy of a spring microbial community from kezhou sinter in China. Braz J Microbiol 42:41-45.
    Yeates GW & Bongers T.1999. Nematode diversity in agroecosystems. Agric Ecosyst Environ.74: 113-135.
    Yergeau E, Filion M, Vujanovic V.2005. A PCR-denaturing gradient gel electrophores is approach to assess Fusarium diversity in asparagus. J Microbiol Meth 60,143-154.
    Yergeau E, Labour K, Hamel C et al.2010. Patterns of Fusarium community structure and abundance in relation to spatial, abiotic and biotic factors in soil. FEMS Microbiol Ecol 71,34-42.
    Yin B, Valinsky L, Gao XB et al.2003. Bacterial rRNA genes associated with soil suppressiveness against the plant-parasitic Nematode Heterodera schachtii.Appl Environ Microb; 69:1573-1580.
    Yu P & Chou C.2005. Factors affecting the growth and production of milk-clotting enzyme by Amylomyces rouxii in Rice liquid medium. Food Technol Biotechnol 43:283-288.
    Zahar Haichar F, Marol C, Berge O et al.2008. Plant host habitat and root exudates shape soil bacterial community structure. ISME J 2:1221-1230.
    Zhou X & Wu F.2012. Dynamics of the diversity of fungal and Fusarium communities during continuous cropping of cucumber in the greenhouse. FEMS Microbiol Ecol 80:469-478.
    Zhou X, Yu G, Wu F.2012. Soil phenolics in a continuously mono-cropped cucumber (Cucumis sativus L.) system and their effects on cucumber seedling growth and soil microbial communities. Eur J Soil Sci 63:332-340.
    Zhu Y, Tian J, Shi F, et al.2013. Rhizosphere bacterial communities associated with healthy and Heterodera glycines-infected soybean roots. Eur J Soil Biol 58,32-37.
    Zhu YB, Shi FY, Tian JQ et al.2013. Effect of Soybean Monoculture on the Bacterial Communities Associated with Cysts of Heterodera glycines.J Nematol.45:228-235.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700