用户名: 密码: 验证码:
三峡水库消落带土壤有机质、氮、磷分布特征及通量研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
消落带作为水域和陆域生态系统的交错带,是生态系统中物质、能量输移和转化的活跃地带。在三峡水库周期性蓄水期间,淹没区土壤中的有机质(SOM)、氮、磷可以通过间隙水与上覆水进行物理的、化学的和生物的交换作用,影响上覆水的水质。因此,研究三峡水库消落带土壤有机质、氮、磷含量分布及其对水环境的影响对于阐明消落带土壤有机质、氮、磷的生物地球化学循环具有重要意义。本论文主要分析了三峡水库重庆主城-巫山区段消落带区域土壤理化特征,调查了消落带土壤有机质、氮、磷污染负荷时空分布特征,并利用收支平衡法构建了消落带土壤有机质、氮、磷的通量模型,利用简化后的模型估算了其在淹水和落干条件下的交换通量。同时结合三峡水库消落带的实际环境条件,在室内通过柱状实验模拟研究了有机质、氮、磷在不同环境条件下的扩散通量,结果如下:
     ①三峡水库重庆主城-巫山段消落带土壤呈中性偏弱碱性;氧化还原电位偏低,整体上呈还原性;体积含水率较高。电导率的变化范围大部分在0.25-0.75ms/cm之间。不同采样点位消落带土壤电导率有一定差异;土壤粒径组成表现为粉砂粒>砂粒>粘粒;土壤化学组成主要由SiO_2构成,其占土壤化学组成比例为41.13%-74.88%。
     ②不同土壤类型的有机质含量整体上表现为黄壤>冲积潮土>紫色土;不同流域的有机质含量整体上看来,三峡水库支流流域的有机质含量高于长江干流流域(甘井河流域除外);2010年落干期消落带土壤有机质含量变化不大,2011年落干期消落带土壤有机质含量增加,2010年9月-2011年4月淹水期间消落带土壤有机质含量增加。
     ③不同土壤类型的消落带土壤全氮(TN)含量表现为黄壤>紫色土>冲积潮土;不同流域全氮含量除龙溪河流域的全氮含量较高外,其余各流域无显著性差异;2010年落干期间,消落带土壤全氮含量变化不大,2011年落干期间消落带土壤全氮含量减少,2010-2011三峡水库蓄水期间,消落带土壤全氮含量减少。各形态氮整体上看来,在落干期间,可转化态氮(TF-N)、离子交换态(IEF-N)、弱酸可浸取态氮(WAEF-N)、铁锰氧化态氮(IMOF-N)、有机硫化物结合态氮(OSF-N)含量减少,但IEF-N和OSF-N整体下降幅度不大。非可转化态氮(NTF-N)含量在2010年落干期间增加,在2011年落干期间略有下降。淹水期间,TF-N、IEF-N、WAEF-N、IMOF-N和OSF-N含量增加,但OSF-N增加较少。而NTF-N含量有降低。TN与OSF-N的相关性最显著;WAEF-N与OSF-N相关性极显著;TN,OSF-N与SOM呈显著性正相关;全磷(TP)与IEF-N呈显著性正相关,与IMOF-N呈显著性负相关;pH与IEF-N呈显著性负相关,含水率与OSF-N呈显著性正相关。
     ④研究范围内不同土壤类型全磷含量表现为黄壤>冲积潮土>紫色土。不同流域全磷含量除甘井河流域的全磷含量较高外,其余各支流流域全磷含量均低于长江干流流域。2010年落干期间,消落带土壤全磷含量变化不大。2011年落干期间,消落带土壤全磷含量增加。在2010年-2011年淹水期间,消落带土壤全磷含量减少。各形态磷整体上看,落干期间,除了2011年无机磷(IP)和有机磷(OP)含量有增加外,其余IP、铁铝结合态磷(Fe/Al-P)、钙结合态磷(Ca-P)和OP含量变化均不明显。淹水期间,IP、Fe/Al-P含量降低,而Ca-P和OP含量变化不明显。消落带土壤Ca-P与TP和IP相关性显著,Fe/Al-P和OP的相关性较显著,TN与OP,SOM与OP,SOM与Fe/Al-P之间具有显著相关性,OP同pH呈正相关,同氧化还原电位(ORP)呈负相关,消落带土壤磷的释放量和Fe/Al-P、OP呈显著性正相关。
     ⑤消落带土壤磷的吸附主要发生在前12h,而后达到平衡;磷吸附速率主要受粒径小于50μm所占土壤组成比例的影响,其所占土壤组成比例越大,其磷的吸附速率越大。消落带土壤磷最大吸附能力变化范围在137.79-1975.59mg/kg之间,吸附效率的变化范围在47.34-230.88L/kg之间。
     ⑥落干期交换通量估算结果为:全氮通量FN落干期=-43845t,全磷通量FP落干期=2025t,有机质通量FSOM落干期=42208t。淹水期交换通量估算结果为:全氮通量FN淹水期=48764t,全磷通量FP淹水期=7932t,有机质通量FSOM淹水期=-62117t。在一个淹水-落干周期中,消落带全氮含量减少了4919t,有机质含量增加了19909t,全磷含量减少了9957t。
     ⑦消落带土壤TOC随着上覆水浓度增加先表现为源后表现为汇;随着pH增加交换通量呈倒“U”型;随着温度增加先表现汇后表现为源。消落带土壤氨氮、硝态氮、无机氮随着上覆水浓度增加实现由源到汇的转变;随着pH增加氨氮交换通量呈倒“U”型,硝态氮和无机氮实现由汇到源的转变;随着温度增加氨氮交换通量逐渐增加,硝态氮交换通量逐渐减少,无机氮实现由汇到源的转变。磷酸盐随着上覆水浓度增加先表现为源后变现为汇;随着pH增加磷酸盐交换通量呈“U”型;随着温度增加磷酸盐交换通量先表现为汇后表现为源。不同氮、磷含量条件下硝态氮和磷酸盐交换通量与土壤有机质含量呈显著正相关(P<0.05, R=0.75)。经过2003年-2011年几年的淹水落干,消落带土壤表现为有机质和全磷的释放源,全氮的累积汇。
With regard to cohesion zone between the water and land area, complicatedmaterial and energy exchange and transformation processes would occur in thewater-level-fluctuating zone (WLFZ) of Three Gorges Reservoir (TGR). Duringperiodical impoundment and flooding in TGR area, organic matter, nitrogen andphosphorous in the submerged soil of WLFZ can have physical, chemical and biologicalexchanges through interstitial water and overlying water. Therefore, the study of organicmatter, nitrogen and phosphorous distribution characteristics in the soil of WLFZ andtheir impact on water environment has great significance in illustrating biogeochemicalcycles. The physical and chemical indicators and the contents of organic matter,nitrogen and phosphorus in the center (from Wushan County to Chongqing city) ofWLFZ in TGR area are studied in this paper. Organic matter, nitrogen and phosphorusflux model by the break-even method are also built, and exchang fluxes in inundatedsoils and non-inundated soils of WLFZ using the simplied model are calculated. At last,combined with the actual environmental conditions of TGR, organic matter, nitrogenand phosphorus diffusion fluxes under different environmental conditions are simulatedby the experiment. The results are as follows:
     ①The pH in the soils of WLFZ is mainly neutrality and alkalescency. ORP is low,showing reduction. Water content is high. Conductivity in the soils is vaired from0.25to0.75ms/cm, which is different among different sampling sites. The silt fraciton is themajor fraction in the study area. The clay fraction is the minor fraction. The chemicalcomposition of the soils in WLFZ is mainly made up of SiO_2, accounting for41.13%-74.88%of the total.
     ②The average value of SOM in the soil of WLFZ could be ordered as yellowsoil>Fluvo-aquic soil>purple soil. The average contents of SOM in different basins areas follows: Tributaries basin>Yangtze River basin (excepting Ganjing River). Duringnon-inundated period in2010, the content of SOM has little change. While Duringnon-inundated period in2011, the content of SOM has increased. During inundatedperiod from September2010to April2011, the concentration of SOM has increased,too.
     ③The average value of TN was in the descending order of yellow soil>purplesoil>Fluvo-aquic soil. The average contents of TN in Longxi River are highest among different basins and there was no significant difference in the others. Duringnon-inundated period in2010, the content of TN has little change. While Duringnon-inundated period in2011, the content of TN has decreased. During inundatedperiod from2010to2011, the concentration of TN has also decreased. The contents ofvarious of nitrogen indicate that TF-N, IEF-N, WAEF-N, IMOF-N and OSF-N havedecreased during non-inundated, while IEF-N and OSF-N have declined a little. Thecontents of NTF-N have increased during non-inundated period in2010, but decreasedin2011. During inundated period, TF-N, IEF-N, WAEF-N, IMOF-N and have increased;NTF-N has declined. Positive correlation exists among the contents of TN, OSF-N andSOM, between WAEF-N and OSF-N, between TP and IEF-N, water content and OSF-N.TP is negatively correlated to IMOF-N, and pH is negatively correlated to IEF-N too.
     ④The order of the average value of TP is as follow: Yellow soil>Fluvo-aquicsoil>Purple soil. In this study, the average contents of TP in different basins are asfollows: Yangtze River basin> Tributaries basin (excepting Ganjing River). Duringnon-inundated period in2010, the content of TP has a little change. While Duringnon-inundated period in2011, the content of TP has increased. During inundated periodbeween2010and2011, the value of TP has decreased. The value of several of nitrogenindicates that IP, Fe/Al-P, Ca-P and OP have little change during non-inundated, whileIP and OP in2011have increased. During inundated period, IP and Fe/Al-P haveincreased; Ca-P and OP have changed a little. Positive correlation exists among thecontents of Ca-P, TP and IP, between Fe/Al-P and OP, among TN, OP and SOM, SOMand Fe/Al-P, between OP and pH. The contents of P released from the soils havepositive correlations with Fe/Al-P and OP. OP is negatively correlated to ORP.
     ⑤The phosphate sorption on soils mainly occurs within12h and then reaches todynamic equilibrium. Its sorption rates are obviously affected by the volume percentageof fine particles less than50μm. The sorption rates increase rapidly with the percentageof fine particles increasing. The maximum phosphate sorption capacity of the soils isranged from137.79to1975.59mg/kg and the phosphate sorption efficiency of the soilsfrom47.34to230.88L/kg.
     ⑥During the non-inundated period, the results of the flux of TN, TP and SOM inWLFZ are-43845t,2025t and42208t, respectively. During the inundated period, theresults of the flux of TN, TP and SOM in WLFZ are48764t,7932t and-62117t,respectively. After a cycle, the decrease of TN, TP content are4919t and9958t, theincrease of SOM content is19909t, and, respectively.
     ⑦TOC of the soil in WLFZ varied from source to sink with the concentration ofTOC in the overlying water increased; The exchange fluxes content of TOC expressedas inverted “U” curve under different pH; and the exchange fluxes value of TOC rangedfrom sink to source with the temperature increased. Ammonia, nitrate and inorganicnitrogen varied from source to sink under the different concentration of ammonia,nitrate and inorganic nitrogen in the overlying water, respectively; the exchange fluxescontent of ammonia described as inverted “U” curve and nitrate, inorganic nitrogenvaried from sink to source under different pH; the exchange fluxes value of ammoniaincreased, the fluxes value of nitrate decreased and inorganic nitrogen ranged from sinkto source with the temperature increased. Phosphate varied from source to sink underthe different concentration of phosphate in the overlying water; the exchange fluxescontent of phosphate characterised as “U” curve under different pH; and phosphateranged from sink to source with the increase of temperature. Positive correlation existsamong the contents of SOM and the exchange fluxes of nitrate and phosphate underdifferent content of nitrogen and phosphorus.
引文
[1]刘峰,高云芳,王立欣,等.水域沉积物氮磷赋存形态和分布的研究进展[J].水生态学杂志,2011,32(4):137-144.
    [2]武天云, Schoenau J J,李凤民,等.土壤有机质概念和分组技术研究进展[J].应用生态学报,2004,15(4):717-722.
    [3]朱光伟,陈英旭.沉积物中有机质的环境行为研究进展[J].湖泊科学,2001,13(3):272-279.
    [4]易文利,王圣瑞,金相灿,等.去除轻组有机质对湖泊沉积物磷释放速率的影响研究[J].南开大学学报(自然科学版),2008,41(4):1-7.
    [5] Wang S H, Jin X C, Zhao H C, et al. Effects of organic matter on phosphorus release kinetics indifferent trophic lake sediments and application of transition state theory[J]. Journal ofEnvironmental Management,2008,88:845–852
    [6]陈文新.土壤和环境微生物学[M].北京:北京农业大学出版社,1990.75-78.
    [7] Gale P M, Reddy K R. Carbon flux between sediment and water column of a shallow,subtropical, hydroeutrophic lake[J]. Journal of Environmental Quality,1994,23(5):965-972.
    [8] Albuquerque A L S, Mozeto A A. C:N:P ratios and stable carbon isotope compositions asindicators of organic matter sourcesin a riverine wetland system (Moji-guacu river, SaoPaulo-Brazil)[J].Wetlands,1997,17(1):1-9.
    [9]金相灿.沉积物污染化学[M].北京:中国环境科学出版社,1992:26-27,72-74.
    [10]李振宇,朱荫湄.西湖沉积物有机质特征[J].环境化学,1999,18(2):122-126.
    [11] Marmonier P, Fontvielle D, Gibert J, et al. Distribution of dissolved organic carbon andbacteria at the interface between the Rhone River and its alluvial aquifer[J]. Journal of theNorth American Benthological Society,1995,14(3):382-392.
    [12] Riise G. Transport of NOM and trace metals through macropores in the lake Skjervatjerncatchment[J]. Environ Intern,1999,25(2-3):325-334.
    [13]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000:146-165.
    [14]刘波,周锋,王国祥,等.沉积物氮形态与测定方法研究进展[J].生态学报,2011,31(22):6947-6958.
    [15]朱维琴,章永松,林咸永.土壤矿物固定态铵研究进展[J].土壤与环境,2000,9(4):333-335.
    [16] Shigemitsu M, Watanabe Y W, Narita H. Time variations of delta δ15N of organic nitrogen indeep western subarctic Pacific sediment over the last145ka [J]. Geochemistry GeophysicsGeosystems,2008,9: Q10012, doi:10.1029/2008GC001999.
    [17] Song J M, Ma H B, Lü X X. Nitrogen forms and decomposition of organic carbon in thesouthern Bohai Sea core sediments[J]. Acta Oceanologica Sinica,2002,(1):125-133.
    [18] Denis L, Grenz C, Alliot E, Rodier M. Temporal variability in dissolved inorganic nitrogenfluxes at the sediment-water interface and related annual budget on a continental shelf (NWMediterranean)[J]. Oceanologica Acta,2001,24(1):85-97.
    [19] Liu S M, Zhu B D, Zhang J, Wu Y, Liu G S, Deng B, Zhao M X, Liu G Q, Du J Z, Ren J L,Zhang G L. Environmental change in Jiaozhou Bay recorded by nutrient components insediments[J]. Marine Pollution Bulletin,2010,60(9):1591-1599.
    [20] Mathews L, Chandramohanakumar N, Geetha R. Nitrogen dynamics in the sediments of awetland coastal ecosystem of southern India[J]. Chemistry and Ecology,2006,22(1):21-28.
    [21]何桐,谢健,余汉生,等.大亚湾表层沉积物中氮的形态分布特征[J].热带海洋学报,2009,28(2):86-91.
    [22]岳维忠,黄小平,孙翠慈.珠江口表层沉积物中氮、磷的形态分布特征及污染评价[J].海洋与湖沼,2007,38(2):111-117.
    [23]王圣瑞,焦立新,金相灿,等.长江中下游浅水湖泊沉积物总氮、可交换态氮与固定态铵的赋存特征[J].环境科学学报,2008,28(1):37-43.
    [24]王雨春,万国江,尹澄清,等.红枫湖、百花湖沉积物全氮、可交换态氮和固定铵的赋存特征[J].湖泊科学,2002,14(4):301-309.
    [25]陈国元,李建秋,李清曼,等.武汉月湖沉积物不同形态氮含量与转换途径的垂直变化[J].湖泊科学,2008,20(4):463-469.
    [26]范成新,杨龙元,张路.太湖底泥及其间隙水中氮磷垂直分布及相互关系分析[J].湖泊科学,2000,12(4):359-366.
    [27]焦立新,王圣瑞,金相灿,等.长江中下游浅水湖泊沉积物固定态铵特征及影响因素[J].环境科学研究,2007,20(4):57-63.
    [28]张雷,秦延文,郑丙辉,徐德星.三峡入库河流大宁河回水区浸没土壤及消落带土壤氮形态及分布特征[J].环境科学,2009,30(10):2884-2890.
    [29]贾晓珊,徐昕荣,李适宇,等.珠江流域河网底泥的氮磷污染特征及释放机理[J].中山大学学报(自然科学版),2005,44(2):107-110.
    [30]魏荣菲,庄舜尧,戎静,等.苏州河网区河道上覆水与底泥中氮素形态分布特征[J].环境科学研究,2009,22(12):1433-1439.
    [31] Kelley K R, Stevenson F J. Forms and nature of organic N in soil[J]. Nutrient Cycling inAgroecosystems,1995,42(1/3):1-11.
    [32] Bremner J M. Organic forms of nitrogen∥Black C A, ed. Methods of Soil Analysis. Madison:American Society of Agronmy,1965:1148-1178.
    [33] Wang S R, Jin X C, Niu D, Wu F C. Potentially mineralizable nitrogen in sediments of theshallow lakes in the middle and lower reaches of the Yangtze River area in China[J]. AppliedGeochemistry,2009,24(9):1788-1792.
    [34]宋金明,马红波,吕晓霞,等.渤海沉积物氮的生物地球化学功能[J].海洋科学集刊,2003,45:86-100.
    [35]马红波,宋金明,吕晓霞,等.渤海沉积物中氮的形态及其在循环中的作用[J].地球化学,2003,1(1):48-54.
    [36]焦立新.浅水湖泊表层沉积物氮形态特征及在生物地球化学循环中的功能[D].呼和浩特:内蒙古农业大学,2007.
    [37] Wang S R, Jin X C, Jiao L X, Wu F C. Nitrogen fractions and release in the sediments fromthe shallow lakes in the middle and lower reaches of the Yangtze River Area, China[J]. Water,Air, and Soil Pollution,2007,187(1/4):5-14.
    [38]古小治.湖泊基底植物适生性改良及对氮磷营养盐的控释机制研究[D].南京:中国科学院南京地理与湖泊研究所,2010.
    [39]王禄仕,柴蓓蓓,刘虹.水源水库沉积物中氮的形态分布特征研究[J].西安建筑科技大学学报(自然科学版),2010,42(5):734-740.
    [40]吕晓霞,宋金明,袁华茂,等.南黄海表层沉积物中氮的潜在生态学功能[J].生态学报,2004,24(8):1635-1643.
    [41] Zheng G X, Song J M, Sun Y M, Dai J C, Zhang P. Characteristics of nitrogen forms in thesurface sediments of southwestern Nansha Trough, South China Sea[J]. Chinese Journal ofOceanology and Limnology,2008,26(3):280-288.
    [42]钟立香,王书航,姜霞,金相灿.连续分级提取法研究春季巢湖沉积物中不同结合态氮的赋存特征[J].农业环境科学学报,2009,28(10):2132-2137.
    [43]王书航,姜霞,钟立香,金相灿,孙世群.巢湖沉积物不同形态氮季节性赋存特征[J].环境科学,2010,31(4):946-953.
    [44]李悦,薛永先.沉积物中不同形态磷提取方法的改进及其环境地球化学意义[J].海洋环境科学, l998,17(l):15-20.
    [45]黄清辉,王磊,王子健.中国湖泊水域中磷形态转化及其潜在生态效应研究动态[J].湖泊科学,2006,18(3):199-206.
    [46]刘素美,张经.沉积物中磷的化学提取分析方法[J].海洋科学,2001,25(1):22-25.
    [47]朱广伟.浅水湖泊沉积物中磷的地球化学特征[J].水科学进展,2003,14(6):714-719.
    [48]刘峰,高云芳,王立欣,等.水域沉积物氮磷赋存形态和分布的研究进展[J].水生态学杂志,2011,32(4):137-144.
    [49] Daiatl R C. Soil organic phosphorus[J]. Advnaces in Agornomy,1997,29:83-117.
    [50]付永清,周易勇.沉积物磷形态的分级分离及其生态学意义[J].湖泊科学,1999,11(4):376-381.
    [51]翁焕新.滨海沉积物和间隙水中的磷研究闭[J].环境科学学报,1997,17(2):148-153.
    [52] Golterman H L. Sediments, modifying and equilibrating factors in the chemistry of freshwater[J]. Verh Int Ver Limnol,1984,22:23-59.
    [53] Williams J D H, Shear H, Thomas R L. Availability to Scenedesmus quadricauda of differentforms of phosphorus in sedimentary materials from the Great Lakes[J]. Limnol Oceanogr,1980,25:1-11.
    [54] Logan T J. Mechanisms for release of sediment bound phosphate to water and the effects ofagricultural land management on fluvial transport of particulate and dissolved phosphate[J].Hydrobiologia,1982,92:519-530.
    [55] Golterman H L. The sequential extraction of Ca-and Fe-bound phosphates[J]. Verh Int VerLimnol,1988,23:904-909.
    [56] Golterman H L. Fractionation of sediment phosphate chelating compounds simplication, andcomparison with other method[J]. Hydrobiologia,1996,335:87-95.
    [57] Ruttenburg K. Development of a sequential extraction method for different forms of P inmarine sediments[J]. Linmol Oceanogr,1992,37:1460-1482.
    [58] Ruttenburg K. Authigenic apatite form ation and burial in sediments from non-upwellingcontinental margin enviroments[J]. Geochim Cosmochim Acta,1993,57(5):991-1007.
    [59] Berner R A. Phosphorus in sediments of the Amazon River and Estuary: Implications for theglobal flux of phosphorus to the sea[J]. Geochim Cosmochim Acta,1994,58(10):2333-2340.
    [60] Ruban V, Brigault S, Demare D. An investigation of the origin and mobility of phosphorus infreshwater sediments from Bort-Les-Orgues Reservoir, France[J]. Journal of EnvironmentalMonitoring,1999,1:403-407.
    [61] Ruban V, López-Sánchez J F, Pardo P, et al. Harmonized protocol and certified referencematerial for the etermination of extractable contents of phosphorus in freshwater sediments;A synthesis of recent works[J]. Fresenius Journal of Analytical Chemistry,2001,370:224-228.
    [62]黄清辉,王东红,王春霞,等.太湖梅梁湾和五里湖沉积物磷形态的垂向变化[J].中国环境科学,2004,24(2):147-150.
    [63] Tuominen L, Hartikainen H, Kairesalo, T. Increased bioavailability of sediment phosphorusdue to silicate enrichment[J]. Water Research,1998,32(7):2001-2008.
    [64]薛杨,王而力,邱素芬.沉积物中磷的吸附和释放研究进展[J].辽宁工程技术大学学报(增刊),2009,28:146-148.
    [65] Jin X C, Wang S R, Pang Y, et al. The adsorption of phosphate on different trophic lakesediments[J]. Colloids and Surfaces A: Physicochem. Eng. Aspects,2005,254:241-248.
    [66] Wang S R, Jin X C, Bu Q Y, et al. Effects of particle size, organic matter and ionic strength onthe phosphate sorption in different trophic lake sediments[J]. Journal of Hazardous MaterialsA,2006,128:95-105.
    [67]石晓勇,史致丽.黄河口磷酸盐缓冲机制的探讨[J].海洋与湖沼,1999,30(2):192-197.
    [68] Jiang X, Jin X C, Yao Y, et al. Effects of biological activity, light, temperature and oxygen onphosphorus release processes at the sediment and water interface of Taihu Lake, China[J].Water Research,2008,42:2251-2259.
    [69] Kamita, H., Ishitobi, Y., et al. Effluxes of dissolved organic phosphorus(DOP) and phosphatefrom the sediment to the overlying water at high temperature and low dissolved oxygenconcentration conditions in an ertrophic brackish lake[J].Japanese Journal of Limnology,2001,62(1):11-21.
    [70] Jonas, H., Kasper, R., Henning, S., et al. Effects of aluminum, iron oxy gen and nitrateadditions on phosphorus release from the sediment of a Danish softwater lake[J].Hydrobiologia,2003,492:139-149.
    [71] Michael, H., Anja, D. Immobilisation of phosphorus by iron-coated roots of submergedmacrophytes[J]. Hydrobiologia,2003,506-509:635-640.
    [72] S ndergaard M, Jensen J P, Jeppesen E. Role of sediment and internal loading of phosphorusin shallow lakes[J]. Hydrobiologia,2003,506-509:135-145.
    [73] Jin, X.C., Wang, S.R., Pang, Y., Wu, F. C. Phosphorus fractions and the effect of pH on thephosphorus release of the sediments from different trophic areas in Taihu Lake,China[J].Enveronmental Pollution,2006,139:288-295.
    [74] Peng J F, Wang, B. Z., Song, Y. H., et al. Adsorption and release of phosphorus in the surfacesediment of a wastewater stabilization pond[J]. Ecological Engineering,2007,31:92-97.
    [75]袁和忠,沈吉,刘恩峰,等.模拟水体pH控制条件下太湖梅梁湾沉积物中磷的释放特征[J].湖泊科学,2009,21(5):663-668.
    [76] Kim L H, Choi E, Stenstrom M. Sediment characteristics, phosphorus types and phosphorusrelease rates between river and lake sediments[J]. Chemosphere,2003,50:53-61.
    [77] Watts C J. Seasonal phosphorus release from exposed, re-inundated littoral sediments of twoAustralian reservoirs[J]. Hydrobiologia2000,431:27-39.
    [78] Fabre, A. C. Inorganic phosphate in exposed sediments of the River Garonne[J].Hydrobiologica,1992,228:37-42
    [79] Anu, K., Peeter, N. Sediment phosphorus release in phytoplankton dominated versusmacrophyte dominated shallow lakes: importance of oxygen conditions[J]. Hydrobiologia,2003,506-509:129-133.
    [80] Zhang L, Gu X Z, Fan C X, et al. Impact of different benthic animals on phosphorusdynamics across the sediment-water interface [J]. Journal of Environmental Sciences2010,22(11)1674-1682.
    [81] Biswas J K, Rana S, Bhakta J N, et al. Bioturbation potential of chironomid larvae for thesediment–water phosphorus exchange in simulated pond systems of varied nutrientenrichment [J]. Ecological Engineering,2009,35:1444–1453.
    [82]郜芸,卢少勇,远野,等.扰动强度对钝化剂抑制滇池沉积物磷释放的影响[J].中国环境科学,2010,30(Suppl.):75-78.
    [83]丁艳青,朱广伟,秦伯波,等.浪扰动对太湖底泥磷释放影响模拟[J].水科学进展,2011,22(2):273-278.
    [84] Dominic M D. Sediment Flux Modeling[M]. USA: A John Wiley&Sons Inc,2001
    [85]刘登国.上海陈行水库自净规律研究[D].东华大学,2004.
    [86] Callender E., Hammond D. E. Nitrogen exchange across the sediment water interface in thePotomac river estuary[J]. Estuarine Coastal Shelf Science,1982,15:395-413.
    [87] Corredor J. E., Morell. J. M. Inorganic nitrogen fluxes across the sediment-water interface in atropical lagoon[J]. Estuarine Coastal Shelf Science,1989,25:339-345.
    [88] Antonio A. Mozeto, Pareicia F. Silverio, et al. Estimates of benthic fluxes of nutrients acrossthe sediment-water interface (Guarpiranga reservoir, Sao Paulo, Brazil)[J].The Science ofthe Total Enviroment,2001,266:135-142.
    [89] Roose N., Riise J. C. Benthic metabolism and the effect of bioturbation in a fertilizedpolyculture fish pond in northeast Thailand [J]. Aquaculture,1997,150:46-52.
    [90]宋金明,李鹏程.南沙群岛海域沉积物—海水界面营养物质的扩散通量[J],海洋科学,1996,5:43-50.
    [91]刘素美,张经,于志刚,等.渤海莱州湾沉积物-水界面溶解无机氮的扩散通量[J].环境科学,1999,20(2):12-16.
    [92]戚晓红,刘素美,张经,等.黄海沉积物-水界面营养盐交换速率的研究[J].海洋科学,2006,30(3):9-15.
    [93]郭劳动,洪华生,庄继浩.闽东罗源湾沉积物—水界面磷、硅的交换[J].热带海洋,1989,8(3):60-67.
    [94]吕莹,陈繁荣,杨永强,等.春季珠江口内营养盐剖面分布和沉积物-水界面交换通量的研究[J].地球与环境,2006,34(4):1-6.
    [95]潘建明,周怀阳,张美,等.夏季珠江口沉积物中营养盐剖面分布和界面交换通量[J],海洋学报,2002,24(3):52-59.
    [96]孙耀.丁字湾沉积物间隙水N、P营养盐的分布及其在沉积物—水界面的扩散通量研究[J].海洋水产研究,1993,14:105-111.
    [97]王少梅.武汉东湖沉积物N、P、释放实验[J].水生生物学报,1991,15(4):390-397.
    [98]孙耀,崔毅,李健,等.虾塘沉积物—水界面营养盐扩散通量及其在个繁殖季节的变化[J].海洋水产研究,1997,18(1):60-66.
    [99]蒋增杰,崔毅,陈碧鹃.唐岛湾网箱养殖区沉积物-水界面溶解无机氮的扩散通量[J].环境科学,2007,28(5):1001-1004.
    [100] Seiki T., Hirofumi I., Etsuji D. Benthic nutrient remineraliztion and oxygen consumption inthe coastal area of Hiroshima Bay [J]. Water Research,1989,23(2):219-228.
    [101] Sundby B.C., Gobeil N., Silverberg N. et al. The phosphorus cycle in costal marinesediments[J]. Limnological Oceanographer.1992,37:1129-1145.
    [102]刘培芳,陈振楼,刘杰.盐度和pH对崇明东滩沉积物中氨氮释放的影响研究[J],上海环境科学,2002,21(5):271-273.
    [103]金相灿,王圣瑞,庞燕.太湖沉积物磷形态及pH值对磷释放的影响[J].中国环境科学,2004,24(6):707-711.
    [104] Aller.R.C., James E.M., William J., et al. Early chemical digenesis sediment-water soluteexchange and storage of reactive organic matter near the mouth of the Changjiang, EastChina Sea[J]. Continental Shelf Research,1985,4(2):227-251.
    [105] Hall P. O. J., Hulth S., Hulth G., et al. Benthic nutrient fluxes on a basin-wide scale in theSkagerrak[J]. Journal of Sea Research,1996,35:123-137.
    [106] Lerat Y., Lasserre P., Corre P. Seasonal changes in pore water concentration of nutrients andtheir diffusive fluxes at the sediment-water interface[J]. Journal Experiment Marine BiologyEcology,1990,135:135-160.
    [107]刁承泰,黄京鸿.三峡水库水位涨落带土地资源的初步研究[J].长江流域资源与环境,1999,8(1):75-80.
    [108] Wantzen K M, Rothhaupt K O, Cantonati M, et al. Ecological effects of water-levelfluctuations in lakes: an urgent issue[J]. Hydrobiologia,2008,613(1):1-4.
    [109]王晓荣,程瑞梅,肖文发,等.三峡库区消落带初期土壤养分特征[J].生态学杂志,2010,29(2):281-289.
    [110]常超,谢宗强,熊高明,等.三峡库区不同植被类型土壤养分特征[J].生态学报,2009,29(11):5978-5985.
    [111]钟远平,唐将,王力.三峡库区土壤有机质区域分布及影响因素[J].水土保持学报,2006,20(5):73-76.
    [112]石孝红.三峡库区消落区土壤磷素释放与富营养化[J].土壤肥料,2004:40-43.
    [113]张敏,徐耀阳,邵美玲,等.三峡水库香溪河库湾底泥中总氮、总磷含量的时空分布[J].应用生态学报,2009,20(11):2799-2805.
    [114]郭劲松,贺阳,付川,等.三峡库区腹心地带消落区土壤氮磷含量调查[J].长江流域资源与环境,2010,19(3):311-317.
    [115]郑志伟,邹曦,安然,等.三峡水库小江流域消落区土壤的理化性状[J].水生态学杂志,2011,32(4):1-6.
    [116]吉芳英,曹琳,林茂,等.三峡库区新生消落区沉积物磷形态分析[J].环境科学研究,2009,22(8):882-886.
    [117]马志敏,傅瓦利,胡宁,等.三峡库区消落带土壤无机磷组分的变化及其对有效磷的影响[J].水土保持学报,2009,23(3):107-111.
    [118]徐德星,秦延文,张雷,等.三峡入库河流大宁河回水区沉积物和消落带土壤磷形态及分布特征研究[J].环境科学,2009,30(5):1337-1344.
    [119]曹琳,吉芳英,林茂,等.三峡库区干湿交替消落区土壤磷形态[J].长江流域资源与环境,2011,20(1):101-106.
    [120]张雷,秦延文,贾静,等.三峡入库河流澎溪河回水区消落带与岸边土壤磷形态及其分布特征研究[J].环境科学学报,2011,31(9):1999-2007.
    [121]张彬,方芳,陈猷鹏,李哲,郭劲松,黄轩民.三峡水库消落区土壤理化特征及磷赋存形态研究.环境科学学报,2012,32(3):713-720.
    [122]张彬,陈猷鹏,方芳,李哲,郭劲松,郭松松.三峡库区淹没消落区土壤氮素形态及分布特征.环境科学学报,2012,32(5):1126-1133.
    [123]石孝洪,魏世强,谢德体,等.三峡水库消落区土壤磷吸附特征[J].西南农业大学学报(自然科学版),2004,26(3):331-335.
    [124]詹艳慧,王里奥,焦艳静.三峡库区消落带土壤氮素吸附释放规律[J].重庆大学学报(自然科学版),2006,29(8):10-13.
    [125]王里奥,黄川,詹艳慧,等.三峡库区消落带淹水-落干过程土壤磷吸附-解吸及释放研究[J].长江流域资源与环境,2006,15(5):593-597.
    [126]付长营,陶敏,方涛,等.三峡水库香溪河库湾沉积物对磷的吸附特征研究[J].水生生物学报,2006,30(1):31-36.
    [127]贾海燕,雷阿林,叶闽,等.三峡水库水位消落区典型土壤磷释放特征及其环境效应[J].水科学进展,2007,18(3):433-438.
    [128]袁辉,黄川,崔志强,等.三峡库区消落带与水环境响应关系预测[J].重庆大学学报(自然科学版),2007,30(9):134-138.
    [129]袁辉,王里奥,胡刚,等.三峡库区消落带受淹土壤氮和磷释放的模拟实验[J].环境科学研究,2008,21(1):103-106.
    [130]马志敏,傅瓦利,胡宁.三峡库区紫色土磷吸附及解吸特性研究[J].人民长江,2009,40(7):24-26.
    [131] Wang Y., Shen Z.Y., Niu J.F., Adsorption of phosphorus on sediments from the Three-GorgesReservoir (China) and the relation with sediment compositions[J]. Journal of HazardousMaterials,2009,162:92-98.
    [132]曹琳,吉芳英,林茂,等.三峡库区消落区表层沉积物磷吸附特征[J].水科学进展,2011,22(1):89-96.
    [133] Zhang bin, Fang fang, Guo jinsong,et al. Phosphorus fractions and phosphatesorption-release characteristics relevant to the soil compositions of water-level-fluctuatingzone of Three Gorges Reservoir[J]. Ecological Engineering,2012,40:153-159.
    [134]唐海燕.有机酸对三峡库区消落区土壤-水界面磷释放的影响及机理研究[D].重庆:西南农业大学,2005.
    [135]胡刚,王里奥,袁辉,等.三峡库区消落带下部区域土壤氮磷释放规律模拟实验研究[J].长江流域资源与环境,2008,17(5):780-784.
    [136]马利民,唐燕萍,滕衍行,等.三峡库区消落区土壤磷释放的环境影响因子[J].地学前沿,2008,15(5):235-241.
    [137]马利民,张明,滕衍行,等.三峡库区消落区周期性干湿交替环境对土壤磷释放的影响[J].环境科学,2008,29(4):1035-1039.
    [138]王颖,沈珍瑶,呼丽娟,等.三峡水库主要支流沉积物的磷吸附/释放特性[J].环境科学学报,2008,28(8):1654-1661.
    [139]田娟,刘凌,丁海山,等.淹水土壤土-水界面磷素迁移转化研究[J].环境科学,2008,29:1818-1822.
    [140]林玉海,王楠,赵秀兰,等.三峡库区澎溪河流域消落区土壤氮磷释放研究[J].水土保持学报,2010,24(2):131-140.
    [141]于航,张蕾,王刚,等.光照强度和温度对三峡水库消落区典型土壤磷释放的影响[J].安徽农业科学,2011,39(19):11539-11541,11546.
    [142]曹琳,吉芳英,林茂,等.有机质对三峡库区消落区沉积物磷释放的影响[J].环境科学研究,2011,24(2):185-190.
    [143]宋金明.中国近海生物地球化学[M].济南:山东科学技术出版社,2004.
    [144] Lopez P., Lluch X.M., Vidal M., et al. Adsorption of Phosphorus on Sediments of theBalearic Islands (Spain) Related to Their Composition[J]. Estuarine Coastal Shelf Science,1996,42(2):185-196.
    [145]郑忠明.刺参养殖池塘沉积物-水界面营养盐通量的研究[D].青岛:中国海洋大学,2009.
    [146] Cowan J.L., Walter R., Boynton. Sediment-water oxygen and nutrient exchange along thelongitudinal axis of Chesapeake Bay: seasonal pattern, controlling factors and ecologicalsignificance[J]. Estuaries,1996,19:562-580.
    [147]石峰.营养盐在东海沉积物-海水界面交换速率和交换通量的研究[D].青岛:中国海洋大学,2003.
    [148]石孝红.三峡水库消落区土壤磷素释放与富营养化[J].土壤肥料,2004,1:41-44.
    [149]常超,谢宗强,熊高明,等.三峡水库蓄水对消落带土壤理化性质的影响[J].自然资源学报,2011,26(7):1236-1244.
    [150]肖国生,胡廷章,唐华丽,等.三峡水库消落带淹没前后土壤微生物生态分布及优势菌群的鉴定[J].江苏农业科学,2011,39(4):493-496.
    [151] Wang S.R, Jin X.C, Pang Y. Phosphorus fractions and phosphate sorption characteristics inrelation to the sediment compositions of shallow lakes in the middle and lower reaches ofYangtze River region, China. Journal of Colloid and Interface Science,2005,289(2):339-346.
    [152]孟凡德,姜霞,金相灿.长江中下游湖泊沉积物理化性质研究[J].环境科学研究(Suppl),2004,17:24-29.
    [153] Kemp A L W. Organic carbon and nitrogen in the surface sediments of Lakes Ontario Erieand Huron[J]. Journal of Sedimentary Research,1971,41(2):537-548.
    [154]叶琛,程晓莉,张全发.三峡库区消落区蓄水前土壤养分分布特征[J].土壤通报,2011,42(6):1404-1410.
    [155]苏维词,张军以.河道型消落带生态环境问题及其防治对策-以三峡库区重庆段为例[J].中国岩溶,2010,29(4):445-450.
    [156]唐将,李勇,邓富银,等.三峡库区土壤营养元素分布特征研究[J].土壤学报,2005,42(3):473-478.
    [157]赵一阳,鄢明才.中国浅海浸没土壤地球化学[M].北京:科学出版社,1994,179-200.
    [158]王圣瑞,金相灿,焦立新.不同污染程度湖泊沉积物中不同粒级可转化态氮分布[J].环境科学研究,2007,20(3):52-57.
    [159] Wang P F, Zhao L, Wang C, et al. Nitrogen Distribution and Potential Mobility in Sedimentsof Three Typical Shallow Urban Lakes in China[J]. Environmental engineering science,2009,26(10):1511-1521.
    [160] Usero J, Gamero M, Morillo J, et al. Comparative study of three sequential extractionprocedures for metals in marine sediments[J]. Environment International,1998,24:487.
    [161]吕晓霞,宋金明,袁华茂,等.南黄海表层不同粒级沉积物中氮的地球化学特征[J].海洋学报,2005,27(1):64-69.
    [162] Panda D, Subramanian V, Panigrahy R C. Geochemical fractionation of heavy metals inChilka Lake (east coast of India)-a tropical coastal lagoon[J]. Environmental Geology,1995,26:199.
    [163] Kazi T G, Jamali M K, Kazi G H. Evaluating the mobility of toxic metals in untreatedindustrial astewater sludge using a BCR sequential extraction procedure and a leachingtest[J]. Analytical and Bioanalytical Chemistry,2005,383(2):297-304.
    [164]吕晓霞,宋金明,袁华茂,等.南黄海表层沉积物中氮的分布特征及其在生物地球化学循环中的功能[J].地质论评,2005,51(2):212-218.
    [165]张宪伟,潘纲,陈灏,等.黄河沉积物磷形态沿程分布特征[J].环境科学学报,2009,29(1):191-198.
    [166] Zhou A, Tang H, Wang D. Phosphorus adsorption on natural sediments: Modeling andeffects on Ph and sediment composition[J]. Water Research,2005,39(7):1245-1254.
    [167]韩勇.三峡库区消落带污染特性及水环境影响研究[D].重庆:重庆大学,2007.
    [168]章婷曦,王晓蓉,金相灿.太湖不同营养水平湖区沉积物中磷形态的分布特征[J].农业环境科学学报,2007,26(4):1207-1213.
    [169] Rydin E. Potentially mobile phosphorus in Lake Erken sediment[J].Water Research,2000,34(7):2037-2042.
    [170] Andrieux-Loyer F, Aminot A. Phosphorus forms related to sediment crain size andgeochemical characteristics in French coastal areas, Estuarine[J]. Coastal and Shelf Science,2001,52:617-629.
    [171] Ostrofsky M L. Phosphorus species in the surficial sediments of lakes of Eastern NorthAmerica[J]. Canadian Journal of Fisheries and Aquatic Sciences,1987,44:960-966.
    [172]金相灿,庞燕,王圣瑞,等.长江中下游浅水湖沉积物磷形态及其分布特征研究[J].农业环境科学学报,2008,27(1):279-285.
    [173] Holtan H, Kamp-Nielsen L, Stuanes A O. Phosphorus in soil, water and sediment: anoverview[J]. Hydrobiologia,1988,170:19–34.
    [174] Kastelan-Macan M, Petrovic M. The role of fulvic acids in phosphorus sorption and releasefrom mineral particles[J]. Water Sci Technol,1996,34:259–265.
    [175] Slomp C.P., Raaphorst W.V. Phosphate adsorption in oxidized marine sediments[J].Chemical Geology,1993,107(3/4):477-480.
    [176]刘敏,侯立军,许世远,等.长江河口潮滩表层沉积物对磷酸盐的吸附特征[J].地理学报,2002,57(4):397-406.
    [177] Sun S.J., Huang S.L., Sun X.M., et al. Phosphorus fractions and its release in the sedimentsof Haihe River, China[J]. Journal of environmental sciences,2009,21:291-295.
    [178] Van D.P., Verhoeven J.T. A model of carbon, nitrogen and phosphorus dynamics and theirinteractions in river marginal wetlands [J]. Ecological Modeling,1999,118:95-130.
    [179]仝川,曾从盛.湿地生态系统碳循环过程及碳动态模型[J].亚热带资源与环境学报,2006,1(1):84-92.
    [180]唐国勇,黄道友,童成立,等.土壤氮素循环模型及其模拟研究进展[J].应用生态学报,2005,16(11):2208-2212.[181]裴廷权,王里奥,韩勇等.三峡库区消落带土壤剖面中重金属分布特征[J].环境科学研究,2008,21(5):72-78.
    [182]钟明杰,乐观宗,徐永健.青蟹养殖池沉积物无机氮释放通量及其影响因素[J].宁波大学学报,2009,22(3):322-325.
    [183]范成新,张路,秦伯强,等.太湖沉积物-水界面生源要素迁移机制及定量化-1.铵态氮释放速率的空间差异及源-汇[J].湖泊科学,2004,16(1):10-20.
    [184]张洁帆.渤海湾沉积物和水界面间营养盐的交换通量研究[D].重庆:天津大学,2007.
    [185] Boatman C D, Murray J W. Modeling exchangeable NH4+adsorption in sediments: Processand controls of adsorption[J].Limnol Oceanog,1982,27:99-110.
    [186] Trimmmer M,Nedwell D B. Nitrogen fluxes through the lower estuary of the Great England:The role of the bottom sediments[J]. Marine Ecology Process Series,1998,16:109-122.
    [187]付春平.三峡库区氮磷沉积与释放规律试验研究[D].重庆:重庆大学,2004.
    [188]龚春生,姚琪,范成新,等.城市浅水型湖泊底泥释磷的通量估算—以南京玄武湖为例[J].湖泊科学,2006,2:179-183.
    [189]苏丽丹,林卫青,杨漪帆.上海环境科学淀山湖底泥氮磷释放通量研究[J].上海环境科学,2010,5:197-201.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700