用户名: 密码: 验证码:
果园信息获取现代传感方法及装置研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
果树在种植业中属高效农业。果树的生长状况与果树生长环境和果园管理密切相关。实时获取果树的生长环境信息及营养状况,可以为果园精细管理提供依据。无线传感器网络可以用来监测果树的生长环境信息及营养状况,避免了果园内布线的困扰。光谱技术可以对果树(苹果、冬枣等)的营养状况进行监测,避免了化学试验引起的人力和物力的浪费。高光谱图像可以同时获得空间信息和光谱信息,因而可以用来检测苹果采摘的机械损伤。因此,本论文开展了以下的主要研究内容:
     [1]基于无线传感器网络的果园信息采集系统
     基于无线传感器网络,开发了果园信息采集系统,主要用来采集空气温湿度、土壤温度、土壤水分等环境信息及表征作物长势的植被指数。系统由三部分组成:(1)集成ZigBee协调器、GPS模块、GPRS模块、RFID模块的PDA;(2)基于ZigBee的环境信息采集移动节点,用来采集空气温湿度、土壤温度、土壤水分等信息;(3)基于ZigBee的作物长势监测仪。PDA主要功能包括:采集GPS定位信息,采集RFID信息,与移动传感器节点间双向通信,将采集到的经纬度信息与果园信息(如土壤水分值)绑定后通过GPRS上传至远程上位机。环境信息采集移动节点的主要功能是:在刚加入到ZigBee网络以及加入到网络后接收到PDA的采集命令时,开启传感器电源并采集相应的传感器信息,然后向PDA里的ZigBee协调器发送数据,随后自动关闭传感器电源。作物长势监测仪的主要功能是实时采集8通道光强信息,以便后期组合处理成植被指数。
     硬件开发,主要包括PDA的集成与环境信息采集节点的硬件设计。软件开发,主要包括PDA的程序设计、自定义的通信协议、协调器与路由节点间的程序设计以及对实验室已有的作物长势监测仪的程序修改。
     系统进行了无线性能测试、温度传感器测试以及应用测试。试验表明,该系统能实时采集果园信息,保存并上传数据。
     [2]基于光谱技术的苹果与冬枣叶片营养元素检测
     应用光谱分析技术对苹果叶片的叶绿素含量和全氮含量,冬枣叶片的全氮含量进行了研究。讨论了不同预处理方法对模型的影响。应用全波段偏最小二乘回归(PLSR),特征波段偏最小二乘回归(PLSR)和支持向量机(SVM),建立了苹果叶片叶绿素含量和全氮含量的预测模型、冬枣叶片全氮含量的预测模型。
     讨论了样本集划分、异常样本判别与剔除、消除光谱噪声和其它因素干扰、小波与小波包降噪参数等预处理方法。讨论了5种样本集划分方法:随机抽样法(Random Sampling, RS)、含量梯度法(Content Gradient Method, CGM)、KS算法(Kennard-Stone Algorithm)、Duplex算法(Duplex Algorithm)、SPXY算法(Sample set Partitioning based on joint x-y distances Algorithm)。其中,SPXY划分方法和KS方法使PLSR模型预测精度最高。讨论了4种判别与剔除异常样本的方法:主成分得分图、正态分布箱型图、残差平方与杠杆值的关系图、基于蒙特卡洛的交叉验证法。除了主成分得分图法,其余3种方法剔除异常样品均能使PLSR-LOO-CV模型的RMSECV降低。讨论了反射率及其相应的吸光度在不同预处理方式下的PLSR模型。预处理方法有:归一化、Savitzky-Golay平滑(SG)、多元散射校正(MSC)、变量标准化校正(SNV)、去趋势(Detrending)、阶求导(1st derivative)。在这6种预处理方法中,无论是在KS样本集划分方法还是SPXY划分方法下,无论是剔除样本前还是剔除异常样本后光谱数据最佳预处理方式为归一化。讨论了小波与小波包降噪中的小波基函数、分解层数、默认阈值。综合考虑RMSECV与操作步骤,后续处理采用db4小波5层分解默认全局阈值。为了提高模型的预测精度,预处理可以采用(1)蒙特卡洛的交叉验证法或残差平方与杠杆值的关系图剔除异常样本;(2)归一化;(3)db4小波5层分解默认全局阈值去噪;(4)KS法或SPXY法划分样本集。
     测量了不同时间的苹果叶片叶绿素含量和全氮含量。采用SPXY样本集划分法,利用小波去噪、归一化、直接正交信号校正(DOSC)、连续投影算法(SPA)提取特征波长等预处理对苹果叶片叶绿素含量、全氮含量进行了全波段PLSR、特征波段SPA-PLSR、SVM建模。
     对于苹果叶片叶绿素含量的预测,线性方法DOSC-SPA-PLSR方法最佳。其在新梢生长期、花芽分化期、果实成熟期中,对新梢生长期的苹果叶片叶绿素含量预测效果最佳,模型的Rc、 RP、RMSEC、RMSEP、预测RPD分别为0.9980、0.9991、0.9704、0.7238、18.1841。而归一化后用全波段PLSR建模,其Rc、Rp、预测RPD分别为0.5345、0.6705、1.1665。
     对于苹果叶片全氮含量的预测,全波段PLSR模型和SPA-PLSR模型在新梢生长期与花芽分化期的建模与预测精度高于果实成熟期。因而,新梢生长期和花芽分化期为利用反射光谱检测叶片全氮含量的最佳时期。DOSC-SPA-PLSR方法最佳,其对新梢生长期的苹果叶片全氮含量预测效果最佳,Rc、Rp、预测RPD分别为0.9968、0.9969、11.1241。而归一化后用全波段PLSR建模,其Rc、RP、预测RPD分别为0.7420、0.5177、1.0433。
     对于冬枣叶片全氮含量的预测,DOSC-SPA-PLSR模型与原始冠层叶片反射率PLSR模型和DOSC-PLSR模型相比,减少了输入变量个数及建模潜变量LV个数,降低了模型的复杂度;同时,DOSC-SPA-PLSR模型的RMSEP比DOSC-PLSR模型的RMSEP小,预测精度有所提高。[3]基于高光谱图像的苹果采摘过程机械损伤检测
     苹果采摘过程机械损伤检测是开发采摘机器人的重要一环。采用机械手、压力传感器、NI数据采集卡等构建施力系统,用机械手夹持苹果并施加不同的压力,然后在不同的贮存时间拍摄高光谱图像。应用MATLAB对高光谱图像进行处理,提取了压力传感器与苹果接触区域和非接触区域的灰度平均值,并转化成光谱值。分析了红富士苹果偏红一侧与偏黄一侧的接触区域与非接触区域的光谱值随时间和压力的变化。计算了红富士苹果偏红一侧与偏黄一侧的接触区域与非接触区域的平均灰度值的标准偏差,从中提取波峰波谷值对应的多个单色图像进行比值、差值运算来实现对采摘过程中的苹果机械损伤的检测。该方法只适用于施加压力较小的苹果损伤检测,而在施加压力过大的情况下,则不能正确识别正常和受损区域。
Fruit industry is efficient in planting industry. The growth of fruit trees is closely related to their growth environment and asscociated with orchard management. Real-time accessing to environmental information and the nutritional status of fruit trees could offer an approach to orchard management. Wireless sensor networks could be used to monitor environmental information and nutritional status of fruit trees, avoiding the wiring in the orchard. The nutritional content of fruit trees could be monitored by spectroscopy, avoiding the time comsuption of chemical diagnosis. The hyperspectral image could obtain the spatial and spectral information at the same time, thus could be used to detect the bruise on apples. The main content of the thesis are as follows:
     [1] Orchard information acquisition based on wireless sensor networks
     The orchard information acquisition system was developed based on the wireless sensor networks to gather the air temperature and humidity, soil temperature, soil moisture, and vegetation index, etc. The system consisted of three parts:(1) PDA integrated with a ZigBee coordinator, GPS module, GPRS module, and RF1D module;(2) Environmental information acquisition nodes based on ZigBee, to gather the air temperature and humidity, soil temperature, soil moisture, etc.;(3) Crop growth status detection device based on ZigBee. The PDA was mainly used to collect the GPS information, RFID information, the ZigBee sensor node information, and then bind the orchard information (such as the soil moisture) and the GPS information to upload to the remote PC. The environmental information acquisition nodes were manily used to turn on the sensor power supply and gather the sensor information when receiving the gather command from the PDA. The crop growth status detection device was used to gather8-channel light intensity information, which could be processed to vegetation index later.
     Hardware design included the integration of PDA and the design of the environmental information acquisition nodes. Software design included the programming for PDA, the custom communication protocols, the programming for ZigBee coordinator and the Zigbee router, and the modification of the existing crop growth status detection device.
     The system test consisted of the test for the wireless performance, the test for the temperature sensor, and the application test. The application test showed that the system could get the realtime orchad information, save and then upload the data.
     [2] Nutrient content monitoring of apple leaves and jujube leaves using reflectance
     The chlorophyll content and nitrogen content of apple leaves and the nitrogen content of jujube leaf were measureed. The effects of different preprocessing methods on the models were discussed. Partial least squares regression (PLSR) through the full wavebands and characteristic wavebands PLSR and support vector machine (SVM) were built for a prediction of apple leaf chlorophyll content, apple leaf nitrogen content, and jujube leaves nitrogen content. Preprocessing methods such as sample set partitioning methods, outlier identification and elimination methods, noise elimination methods, and wavelet and wavelet packet noise denoising methods were discussed. Sample set partitioning methods such as random sampling method (RS), the content gradient method (CGM), Kennard-Stone Algorithm (KS), Duplex algorithm, sample set partitioning based on joint x-y distances algorithm (SPXY) were discussed. The SPXY partition method and KS method had the highest prediction accuracy. Identification and elimination methods such as principal component score map, boxplot, leverage versus squared residual plot, and the Monte Carlo cross-validation method were discussed. Except for the principal component score map, the other three methods could reduce the root mean square error of cross-validation (RMSECV). Preprocessing methods such as normalization, Savitzky-Golay smoothing (SG), multiplicative scatter correction (MSC), variable standardization correction (SNV), detrending, and first order derivative (1st derivative) were discussed. Normalization is the best one among all these six preprocessing methods Wavelet and wavelet packet de-noising were discussed, including the wavelet basis function, decomposition layers, and the default threshold. Considering the RMSECV and operation steps, db4wavelet5layer decomposition with default global threshold was chosen.
     Therefore, in order to improve the prediction accuracy, the following steps could be adopted:(1) Outlier detection by leverage versus squared residual plot or the Monte Carlo cross-validation method;
     (2) Normalization;(3) db4wavelet5layer decomposition with default global threshold;(4) KS or SPXY method to partition the sample set.
     The chlorophyll content and nitrogen content of apple leaf in different time were measured. SPXY algorithm was used to partition sample set. Wavelet denoising, normalization, direct orthogonal signal correction (DOSC), continuous projection algorithm (SPA) were used as the preprocessing methods for the full waveband PLSR, the selected wavebands PLSR, and the SVM modeling.
     For predicting apple leaf chlorophyll content, DOSC-SPA-PLSR modeling was the best modeling methods in its growing stages. In sprouting period, the Rc, Rp, RMSEC, RMSEP, RPD were0.9980,0.9991,0.9704,0.7238, and18.1841, respectively. During the same period, the Rc, RP, and RPD for normalized full waveband PLSR modeling were0.5345,0.6705, and1.1665, respectively.
     For predicting apple leaf nitrogen content, the full waveband PLSR modeling and SPA-PLSR modeling got better results in sprouting period and flower bud differentiation period. In sprouting period, Rc, Rp, RPD were0.9968,0.9969,11.1241, respectively. During the same period, Rc, RP, RPD for normalized full waveband PLSR modeling were0.7420,0.5177,1.0433, respectively.
     For predicting jujube leaf nitrogen content, DOSC-SPA-PLSR modeling reduced the input variables and the number of latent variables (LV). Meanwhile, DOSC-SPA-PLSR modeling reduced RMSEP, and improved the prediction accuracy.
     [3] Detection of apple bruises caused by picking with the manipulator based on hyperspectral images
     Different forces were applied on apples by a manipulator, and then hyperspectral images were taken after different storing days. As the Red Fuji apples were bi-color with red and yellow, the red side and yellow side of the apples were chosen to be the contacted area with the manipulator. Hyperspectral images (Hypercube data size600×1004×881) were processed in MATLAB. Average gray values of pixels selected from the contacted region and non-contacted region on both red and yellow side were extracted. They were then calibrated to obtain the reflectance respectively. The reflectance from hyperspectral images of the apples applied with different forces at the same time was compared. The reflectance from different storing time was also compared to observe changes over time after the forces applied by the manipulator. The standard deviation of the average gray value in contacted area and non-contacted area was calculated. The peak and valley wavelengths were seletcted. Then monochrome images at these wavelengths were selected to combine by ratio and difference operator to detect the apple bruices.
引文
[1]石元春.20世纪中国学术大典:农业科学.福建:福建教育出版社,2002.
    [2]中华人民共和国农业部中国农业年鉴编辑委员会.中国农业年鉴2012.北京:中国农业出版社,2013.
    [3]影响果树生长发育的环境.(2003-06-10) http://www.zao.com.cn/article/printpage.asp?id=4837.
    [4]果树与环境的关系.http://zy.swust.net.cn/07/1/yyzwgczp/g2-5.htm.
    [5]李文庆,张民,束怀瑞.氮素在果树上的生理作用.山东农业大学学报(自然科学版),2002,33(01):96-100.
    [6]解玉选.果树缺素症的诊断.中国林业,1997(05):40.
    [7]氮素营养与氮肥.http://202.118.167.67/eol/data/res/shucaiyingyang/chl/chl2.htm.
    [8]汪懋华,赵春江,李民赞,等.数字农业.北京:电子工业出版社,2012.
    [9]孙利民.无线传感器网络.北京:清华大学出版社,2005.
    [10]钱士匀.生物化学和临床生物化学检验实验教程.北京:清华大学出版社,2005.
    [1 1]徐广通,袁洪福.现代近红外光谱技术及应用进展.光谱学与光谱分析,2000,20(2):134-142.
    [12]李伟,肖爱平,冷鹃.近红外光谱技术及其在农作物中的应用.中国农学通报,2009,25(03):56-59.
    [13]王雷,乔晓艳,董有尔,等.高光谱图像技术在农产品检测中的应用进展.应用光学,2009,30(04):639-645.
    [14]李江波,饶秀勤,应义斌.农产品外部品质无损检测中高光谱成像技术的应用研究进展.光谱学与光谱分析,2011,31(08):2021-2026.
    [15]冯广龙,刘昌明,王立.土壤水分对作物根系生长及分布的调控作用.生态农业研究,1996,4(3):5-9.
    [16]Wang N, Zhang N, Wang M. Wireless sensors in agriculture and food industry-Recent development and future perspective. Computers and electronics in agriculture,2006,50(1):1-14.
    [17]Damas M, Prados A M, Gomez F, et al. HidroBus@ system:fieldbus for integrated management of extensive areas of irrigated land. Microprocessors and Microsystems,2001,25(3):177-184.
    [18]Morais R, Fernandes M A, Matos S G, et al. A ZigBee multi-powered wireless acquisition device for remote sensing applications in precision viticulture. Computers and electronics in agriculture, 2008,62(2):94-106.
    [19]Morais R, Matos S G, Fernandes M A, et al. Sun, wind and water flow as energy supply for small stationary data acquisition platforms. Computers and electronics in agriculture, 2008,64(2):120-132.
    [20]Pardossi A, Incrocci L, Incrocci G, et al. Root zone sensors for irrigation management in intensive agriculture. Sensors,2009,9(4):2809-2835.
    [21]Hwang J, Shin C, Yoe H. Study on an agricultural environment monitoring server system using wireless sensor networks. Sensors,2010,10(12):11189-11211.
    [22]Hwang J, Shin C, Yoe H. A wireless sensor network-based ubiquitous paprika growth management system. Sensors,2010,10(12):11566-11589.
    [23]Hwang J, Yoe H. Study on the context-aware middleware for ubiquitous greenhouses using wireless sensor networks. Sensors,2011,11 (5):4539-4561.
    [24]Aquino-Santos R, Gonzalez-Potes A, Edwards-Block A, et al. Developing a new wireless sensor network platform and its application in precision agriculture. Sensors,2011,11(1):1192-1211.
    [25]Kim Y, Evans R G, Iversen W M. Remote sensing and control of an irrigation system using a distributed wireless sensor network. Instrumentation and Measurement, IEEE Transactions on, 2008,57(7):1379-1387.
    [26]Pierce F J, Elliott T V. Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and electronics in agriculture,2008,61(1):32-43.
    [27]Fukatsu T, Nanseki T. Monitoring system for farming operations with wearable devices utilized sensor networks. Sensors,2009,9(8):6171-6184.
    [28]刘卉,汪懋华,王跃宣,等.基于无线传感器网络的农田土壤温湿度监测系统的设计与开发.吉林大学学报:工学版,2008,38(3):604-608.
    [29]刘卉.基于无线传感器网络的农田环境监测关键技术研究:[博士学位论文]北京:中国农业大学,2008.
    [30]张瑞瑞,赵春江,陈立平,等.农田信息采集无线传感器网络节点设计.农业工程学报,2009,25(11):213-218.
    [31]蒋鼎国,徐保国,王明胜.基于GPRS的远程温室监控系统设计.广东农业科学,2011,38(13):160-162.
    [32]付金勇,郭爱文.基于ZigBee网络与GPRS的数据采集传输系统设计.电子设计工程,2011,19(14):163-165.
    [33]余晓波,宋良图.农田信息采集系统的软硬件设计.仪表技术,2011(1):19-21.
    [34]李楠,刘成良,李彦明,等.基于3S技术联合的农田墒情远程监测系统开发.农业工程学报,2010,26(4):169-174.
    [35]钟以崇,卢博友.基于GSM的土壤水分监测与决策支持系统.农机化研究,2009,31(6):174-176.
    [36]Ding F, Song G, Yin K, et al. A GPS-enabled wireless sensor network for monitoring radioactive materials. Sensors and Actuators A:Physical,2009,155(1):210-215.
    [37]徐新强,李正明,张继军,等.基于GPRS和-GPS的便携式农田信息采集器.农机化研究,2008(8):163-166.
    [38]李燕君,王智,孙优贤.传感器网络基于两跳邻居信息的实时路由设计.软件学报,2009,20(7):1931-1941.
    [39]Huircan J I, Munoz C, Young H, et al. ZigBee-based wireless sensor network localization for cattle monitoring in grazing fields. Computers and electronics in agriculture,2010,74(2):258-264.
    [40]Garcia-Sanchez A, Garcia-Sanchez F, Garcia-Haro J. Wireless sensor network deployment for integrating video-surveillance and data-monitoring in precision agriculture over distributed crops. Computers and Electronics in Agriculture,2011,75(2):288-303.
    [41]Thomas J R, Oerther G F. Estimating nitrogen content of sweet pepper leaves by reflectance measurements. Agronomy Journal,1972,64(1):11-13.
    [42]Al-Abbas A H, Barr R, Hall J D, et al. Spectra of normal and nutrient-deficient maize leaves. Agronomy Journal,1974,66(1):16-20.
    [43]Hinzman L D, Bauer M E, Daughtry C. Effects of nitrogen fertilization on growth and reflectance characteristics of winter wheat. Remote Sensing of Environment,1986,19(1):47-61.
    [44]Li F, Gnyp M L, Jia L, et al. Estimating N status of winter wheat using a handheld spectrometer in the North China Plain. Field Crops Research,2008,106(1):77-85.
    [45]Stone M L, Solie J B, Raun W R, et al. Use of spectral radiance for correcting in-season fertilizer nitrogen deficiencies in winter wheat. Transactions of the ASAE,1996,39(5):1623-1631.
    [46]刘良云,王纪华,黄文江,等.利用新型光谱指数改善冬小麦估产精度.农业工程学报,2004,20(1):172-175.
    [47]朱艳,李映雪,周冬琴,等.稻麦叶片氮含量与冠层反射光谱的定量关系.生态学报,2006,26(10):3463-3469.
    [48]唐延林,王纪华,黄敬峰,等.利用水稻成熟期冠层高光谱数据进行估产研究.作物学报,2004,30(8):739-744.
    [49]Gamon J A, Field C B, Goulden M L, et al. Relationships between NDVI, canopy structure, and photosynthesis in three Californian vegetation types. Ecological Applications,1995,5(1):28-41.
    [50]Zhang J, Zhang J. Response of the spectral reflectance to different pigments of summer maize. Acta Agriculturae Boreali-Occidentalis Sinica,2010,4(19):19.
    [51]金林雪,李映雪,徐德福,等.小麦叶片水分及绿度特征的光谱法诊断.“中国农业气象,2012,33(01):124-128.
    [52]Slaton M R, Hunt E R, Smith W K. Estimating near-infrared leaf reflectance from leaf structural characteristics. American Journal of Botany,2001,88(2):278-284.
    [53]Tsay M, Gjerstad D H, Glover G R. Tree leaf reflectance:a promising technique to rapidly determine nitrogen and chlorophyll content. Canadian Journal of Forest Research, 1982,12(4):788-792.
    [54]Penuelas J, Filella I, Lloret P, et al. Reflectance assessment of mite effects on apple trees. International Journal of Remote Sensing,1995,16(14):2727-2733.
    [55]Delalieux S, Somers B, Verstraeten W W, et al. Hyperspectral indices to diagnose leaf biotic stress of apple plants, considering leaf phenology. International Journal of Remote Sensing, 2009,30(8):1887-1912.
    [56]Delalieux S, van Aardt J, Keulemans W, et al. Detection of biotic stress (Venturia inaequalis) in apple trees using hyperspectral data:Non-parametric statistical approaches and physiological implications. European Journal of Agronomy,2007,27(1):130-143.
    [57]Bhatt N, Mehta N S. Apple orchard characterization using remote sensing and DEM-A case study for the Kotkhai block of the Shimla District. Journal of the Indian Society of Remote Sensing, 2005,33(1):127-130.
    [58]Kumar A, Singh K N, Lal B, et al. Mapping of apple orchards using remote sensing techniques in cold desert of Himachal Pradesh, India. Journal of the Indian Society of Remote Sensing, 2008,36(4):387-392.
    [59]Viau A A, Jang J, Payan V, et al. The use of airborne Lidar and multispectral sensors for orchard trees inventory and characterization. Information and Technology for Sustainable Fruit and Vegetable Production FRUTIC,2005,5:12-16.
    [60]Bartlett M K, Ollinger S V, Hollinger D Y, et al. Canopy-scale relationships between foliar nitrogen and albedo are not observed in leaf reflectance and transmittance within temperate deciduous tree species. Botany,2011,89(7):491-497.
    [61]朱西存,赵庚星,王凌,等.基于高光谱的苹果花氮素含量预测模型研究.光谱学与光谱分析,2010,30(2):416-420.
    [62]朱西存,赵庚星,雷彤,等.苹果花期的冠层高光谱特征研究.光谱学与光谱分析,2009,,29(10):2708-2712.
    [63]李丙智,李敏夏,周璇,等.苹果树叶片全氮含量高光谱估算模型研究.遥感学报,2010,14(4):761-773.
    [64]李敏夏,张林森,李丙智,等.苹果叶片高光谱特性与叶绿素含量和SPAD值的关系.西北林学院学报,2010,,25(2):35-39.
    [65]朱西存,赵庚星,王瑞燕,等.苹果叶片的高光谱特征及其色素含量监测.中国农业科学,2010,43(6):1189-1197.
    [66]朱西存,赵庚星,姜远茂,等.基于高光谱红边参数的不同物候期苹果叶片的SPAD值估测.红外,2012,32(12):31-38.
    [67]朱西存,赵庚星,隋学艳,等.基于光谱分析技术的苹果花钾素含量估测研究.红外,2010,31(8):19-23.
    [68]樊景超,周国民.苹果近红外光谱采集影响因素研究.安徽农业科学,2011,39(1):464-467.
    [69]Das P T, Tajo L, Goswami J. Assessment of citrus crop condition in umling block of Ri-Bhoi district using RS and GIS technique. Journal of the Indian Society of Remote Sensing, 2009,37(2):317-324.
    [70]Lu R. Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions-American Society of Agricultural Engineers,2003.46(2):523-530.
    [71]Ariana D P, Lu R, Guyer D E. Near-infrared hyperspectral reflectance imaging for detection of bruises on pickling cucumbers. Computers and electronics in agriculture,2006,53(1):60-70.
    [72]ElMasry G, Wang N, Vigneault C, et al. Early detection of apple bruises on different background colors using hyperspectral imaging. LWT-Food Science and Technology,2008,41(2):337-345.
    [73]Mehl P M, Chen Y, Kim M S, et al. Development of hyperspectral imaging technique for the detection of apple surface defects and contaminations. Journal of Food Engineering, 2004,61(1):67-81.
    [74]Xing J, Bravo C, Jancsok P T, et al. Detecting bruises on'Golden Delicious'apples using hyperspectral imaging with multiple wavebands. Biosystems Engineering,2005,90(1):27-36.
    [75]江磊.基于高效率LED驱动器及ZigBee网络的智能照明控制系统:[硕士学位论文]上海:复旦大学,2010.
    [76]潘大宇.ZigBee技术在农业自动化监控系统中的研究与应用:[硕士学位论文]曲阜:曲阜师范大学,2009.
    [77]金纯,罗祖秋,罗凤,等.ZigBee技术基础及案例分析.北京:国防工业出版社,2008.
    [78]贺文,金向东.基于IEEE802.15.4/ZigBee的无线传感器网络研究:[硕士学位论文]杭州:浙江大学,2006.
    [79]李刚,张志宏.蜜蜂的舞蹈—Zigbee的无线网络技术和应用.电子产品世界,2006(03):84-87.
    [80]田忠.基于IEEE802.15.4的无线传感器网络验证系统的设计与实现:[硕士论文论文]南京:东南大学,2006.
    [81]陈玲.基于ZigBee的土壤电导率监测系统研究:[硕士学位论文]北京:中国农业大学,2009.
    [82]贺文.基于IEEE802.15.4/ZigBee的无线传感器网络研究:[硕士学位论文]杭州:浙江大学,2006.
    [83]胡科路.IEEE 802.15.4仿真研究与性能分析:[硕士学位论文]武汉:华中科技大学,2006.
    [84]胡晓东.基于ZigBee技术的家居智能控制系统设计:[硕士学位论文]长沙:湖南大学,2007.
    [85]李民赞.光谱分析技术及其应用.北京:科学出版社,2006.
    [86]严衍禄,赵龙莲,韩东海,等.近红外光谱分析基础与应用.北京:中国轻工业出版社,2005.
    [87]孙红.光谱分析及多光谱图像技术在农作物生长监测中的应用研究:[博士学位论文]北京:中国农业大学,2011.
    [88]郑立华.基于光谱学的土壤参数快速分析方法研究:[博士学位论文]北京:中国农业大学,2007.
    [89]刘翠玲,孙晓荣,吴静珠,等.基于NIR的小麦粉异常样本剔除方法研究.农机化研究,2014(04):46-48.
    [90]Weisberg S. Applied Linear Regression. New York:Wiley,2005.
    [91]Daszykowski M, Kaczmarek K, Vander Heyden Y, et al. Robust statistics in data analysis — A review:Basic concepts. Chemometrics and Intelligent Laboratory Systems,2007,85(2):203-219.
    [92]Devlin S J, Gnandesikan R, Kettenring J R. Robust estimation of dispersion matrices and principal components. Journal of the American Statistical Association,1981,76(374):354-362.
    [93]Zhang M H, Xu Q S, Massart D L. Robust principal components regression based on principal sensitivity vectors. Chemometrics and Intelligent Laboratory Systems,2003,67(2):175-185.
    [94]Hubert M, Rousseeuw P J, Verboven S. A fast method for robust principal components with applications to chemometrics. Chemometrics and Intelligent Laboratory Systems, 2002,60(1):101-111.
    [95]Croux C和R A. High breakdown estimators for principal components: the projection-pursuit approach revisited. Journal of Multivariate Analysis,2005,95(1):206-226.
    [96]Walczak B 和 M D. Multiple outlier detection revisited. Chemometrics and Intelligent Laboratory Systems,1998,41(1):1-15.
    [97]Serneels S, Croux C, Filzmoser P, et al. Partial robust M-regression. Chemometrics and Intelligent Laboratory Systems,2005,79(1):55-64.
    [98]Vanden Branden K, Hubert M. Robustness properties of a robust partial least squares regression method. Analytica Chimica Acta,2004,515(1):229-241.
    [99]李水芳,单杨,范伟,等.基于MCCV奇异样本筛选和CARS变量选择法对蜂蜜pH值和酸度的近红外光谱检测.食品科学,2011,32(8):182-185.
    [100]郑咏梅,张铁强,张军,等.平滑,导数,基线校正对近红外光谱PLS定量分析的影响研究.光谱学与光谱分析,2005,24(12):1546-1548.
    [101]Savitzky A, Golay M J. Smoothing and differentiation of data by simplified least squares procedures. Analytical chemistry,1964,36(8):1627-1639.
    [102]施英妮,张亭禄,魏雅利,等.光谱微分技术在高光谱遥感浅海海底底质中的应用初探.遥感信息,2010,03:21-25.
    [103]王硕,徐可欣.牛奶成分近红外光谱数据的预处理研究.红外,2006,27(11):27-30.
    [104]徐荣荣.基于近红外光谱的绿茶品质成分快速检测技术的研究:[硕士学位论文]安徽农业大学,2012.
    [105]胡昌华,张军波,军夏,等.基于Matlab的系统分析与设计—小波分析.西安:西安电子科技大学出版社,1999.
    [106]盛英.基于小波变换的语音信号降噪研究:[硕士学位论文]哈尔滨:哈尔滨工程大学,2007.
    [107]潘泉,孟晋丽,张磊,等.小波滤波方法及应用.电子与信息学报,2007,29(1):236-242.
    [108]胡广书.现代信号处理教程.北京:清华大学出版社,2004.
    [109]潘泉.小波滤波方法及应用.北京:清华大学出版社,2005.
    [110]刘素美,李书光.超声检测信号处理的小波基选取.无损探伤,2004,28(6):12-15.
    [111]李月琴,栗苹,闫晓鹏,等.无线电引信信号去噪的最优小波基选择.北京理工大学学报,2008,28(8):723-726.
    [112]单剑锋,崔占忠,司怀吉.小波变换去噪方法在无线电引信信号处理中应用的研究.北京理工大学学报,2005,25(3):256-259.
    [113]张华,陈小宏,杨海燕.地震信号去噪的最优小波基选取方法.石油地球物理勘探,2011,46(1):70-75.
    [114]高玉宝,查代奉,江金龙.一种新的最优小波基选择准则及其应用.通信技术2008(11):185-187.
    [115]程发斌.面向机械故障特征提取的混合时频分析方法研究:[博士学位论文]重庆:重庆大学,2007.
    [116]Donoho D L, Johnstone I M. Ideal spatial adaptation by wavelet shrinkage. Biometrika, 1994,81(3):425-455.
    [117]Lavielle M. Detection of multiple changes in a sequence of dependent variables. Stochastic Processes and their Applications,1999,83(1):79-102.
    [118]郭计云,王福明.基于小波包变换的信号去噪方法研究.现代电子技术,2007(19):55-56.
    [119]Westerhuis J A, de Jong S, Smilde A K. Direct orthogonal signal correction. Chemometrics and Intelligent Laboratory Systems,2001,56(1):13-25.
    [120]褚小立,袁洪福,陆婉珍.近红外分析中光谱预处理及波长选择方法进展与应用.化学进展,2004,16(4):528-542.
    [121]李玉军,汤晓君,刘君华.直接正交信号校正算法在烷烃类多组分气体定量分析中的应用.光谱学与光谱分析,2012,32(04):1038-1042.
    [122]朱向荣,单杨,李高阳,等.近红外光谱法快速测定液态奶中蛋白质和脂肪含量.食品科学,2011,32(12):191-195.
    [123]吴静珠,王一鸣,张小超,等.近红外光谱分析中定标集样品挑选方法研究.农业机械学报,2006,37(04):80-82.
    [124]Stone R W, Kennard L A. Computer aided design of experiments. Technometrics, 1969,11(1):137-148.
    [125]廖宜涛,樊玉霞,伍学千,等.猪肉pH值的可见近红外光谱在线检测研究.光谱学与光谱分析,2010,30(03):681-684.
    [126]潘国锋.基于K-S算法的水质硝酸盐含量光谱检测方法研究.光谱实验室,2011,28(5):2700-2704.
    [127]李庆波,张广军,徐可欣,等.DS算法在近红外光谱多元校正模型传递中的应用.光谱学与光谱分析,2007,27(05):873-876.
    [128]Snee R D. Validation of regression models:methods and examples. Technometrics, 1977,19(4):415-428.
    [129]Galvao R, Araujo M, Jose G, et al. A method for calibration and validation subset partitioning. Talanta,2005,67(4):736-740.
    [130]展晓日,朱向荣,史新元,等.SPXY样本划分法及蒙特卡罗交叉验证结合近红外光谱用于橘叶中橙皮苷的含量测定.光谱学与光谱分析,2009,29(04):964-968.
    [131]陈斌,孟祥龙,王豪.连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报,2007,26(1):66-69.
    [132]Araujo M C U, Saldanha T C B, Galvao R K H, et al. The successive projections algorithm for variable selection in spectroscopic multicomponent analysis. Chemometrics and Intelligent Laboratory Systems,2001,57(2):65-73.
    [133]高洪智,卢启鹏,丁海泉,等.基于连续投影算法的土壤总氮近红外特征波长的选取.光谱学与光谱分析,2009,29(11):2951-2954.
    [134]王惠文.偏最小二乘回归方法及其应用.北京:国防工业出版社,1999.
    [135]Li H D, Xu Q S, Liang Y Z. An Integrated Library for Partial Least Squares Regression and Discriminant Analysis. PeerJ PrePrints 2:e190v1.
    [136]Vapnik V. The nature of statistical learning theory. Berlin:springer,2000.
    [137]史峰,王小川,郁磊,等.MATLAB神经网络30个案例分析.北京:北京航空航天大学出版社,2010.
    [138]王继刚,胡永辉,孔令杰.基于最小二乘支持向量机的区域GPS高程转换组合.大地测量 与地球动力学,2009,29(5):99-102.
    [139]郑立华,李民赞,安晓飞,等.基于近红外光谱和支持向量机的土壤参数预测.农业工程学报,2010,26(S2):81-87.
    [140]Chang C, Lin C. LIBSVM:a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST),2011,2(3):27.
    [141]Geisser S. A predictive approach to the random effect model. Biometrika,1974,61(1):101-107.
    [142]邵峰晶,于忠清.数据挖掘原理与算法.北京:中国水利水电出版社,2003.
    [143]崔向军.酿酒酵母组蛋白修饰的组合模式分析:[博士学位论文]呼和古特:内蒙古大学,2012.
    [144]交叉验证.http://blog.csdn.net/shaoz/article/details/6846550.
    [145]交叉验证(Cross Validation)方法思想简介.http://www.matlabsky.com/forum.php?mod=viewt-hread&action=printable&tid= 10567.
    [146]王怀伟.统计学教程.北京:清华大学出版社有限公司,2004.
    [147]王海华.高光谱及光谱成像技术用于洋葱内部品质检测的研究:[博士学位论文]北京:中国农业大学,2012.
    [148]Burns D A, Ciurczak E W. Handbook of Near-Infrared Analysis. Boca Raton:Taylor & Francis, 2007.
    [149]安晓飞.基于光谱学的便携式土壤全氮快速检测仪开发与研究:[博士学位论文]北京:中国农业大学,2013.
    [150]高光谱成像技术及应用介绍.http://www.zolix.com.cn/techcon_358_407_834.html.
    [151]童庆禧,张兵,郑兰芬.高光谱遥感一原理、技术与应用.北京:高等教育出版社,2006.
    [152]张春光,基于超光谱成像系统的声光可调滤波技术研究:[博士学位论文]哈尔滨:哈尔滨工业大学,2008.
    [153]Hyperspectral Processing and Data Fusion, http://www.ee.gatech.edu/research/pica/hyperspe-ctral.html.
    [154]Lu G, Fei B. Medical hyperspectral imaging:a review. Journal of biomedical optics, 2014,19(1):10901.
    [155]温湿度光照度对植物生长的影响.http://blog.sina.com.cn/s/blog_83728fde01011o6o.html.
    [156]张慧,乌兰巴干.生态环境对植物生长的影响及其环境的监测.农村牧区机械化,2011(04):47-48.
    [157]空气湿度.http://blog.sina.com.cn/s/blog_3f6af1410100vnvp.html.
    [158]土 壤 水 分 含 量 对 施 肥 效 果 有 什 么 影 响 ?http://www.nongwang.net/keji/show.php?itemid=59023.
    [159]赵浪涛,赵永花.DS18B20芯片在温度测量系统中的应用.兰州工业高等专科学校学报,2009,16(04):4-7.
    [160]段开勇.仓库安全监控系统中的控制总线及其通讯体系研究:[硕士学位论文]武汉:武汉理工大学,2008.
    [161]朱剑,赵海,张希元,等.基于LQI量度的无线链路质量评估模型.东北大学学报:自然科 学版,2008,29(9):1262-1265.
    [162]Cao Q, He T, Fang L, et al. Efficiency Centric Communication Model for Wireless Sensor Networks:25th IEEE International Conference on Computer Communications, Barcelona, Spain, 2006. IEEE,2006.
    [163]土壤温度.]http://8.80008.cn/80008/bk/1001/2008/200805111478793.html.
    [164]杜澍.红富士苹果早果、丰产、优质栽培.西安:陕西科学技术出版社,1997.
    [165]郭宝林,于树胜.经济林木高效栽培/致富金钥匙.石家庄:河北人民出版社,2001.
    [166]安贵阳.苹果土肥水巧管理.西安:陕西科学技术出版社,1999.
    [167]王斌,张月华,王玉奎,等.氮磷钾施肥比例对枣幼树生长和结果的影响.园艺学报,2007,34(02):473-476.
    [168]薛香,吴玉娥.小麦叶片叶绿素含量测定及其与SPAD值的关系.湖北农业科学,2010,49(11):2701-2702.
    [169]李修华.基于光谱学和遥感技术的作物生长实时检测研究:[博士学位论文]北京:中国农业大学,2012.
    [170]Singh B N, Tiwari A K. Optimal selection of wavelet basis function applied to ECG signal denoising. Digital Signal Processing,2006,16(3):275-287.
    [171]刘雪华.环境遥感原理与应用.北京:清华大学出版社,2006.
    [172]Huynh-Thu Q, Ghanbari M. Scope of validity of PSNR in image/video quality assessment. Electronics letters,2008,44(13):800-801.
    [173]Paiva H M, Soares S F C, Galvao R K H, et al. A graphical user interface for variable selection employing the Successive Projections Algorithm. Chemometrics and Intelligent Laboratory Systems,2012,118:260-266.
    [174]Xing J, Van Linden V, Vanzeebroeck M, et al. Bruise detection on Jonagold apples by visible and near-infrared spectroscopy. Food Control,2005,16(4):357-361.
    [175]Feng Y, Sun D. Application of hyperspectral imaging in food safety inspection and control:a review. Critical Reviews in Food Science and Nutrition,2012,52(11):1039-1058.
    [176]Lu R. Detection of bruises on apples using near-infrared hyperspectral imaging. Transactions of the ASAE,2003,46(2):523-530.
    [177]Chiu Y C, Chen M T, House G. A study of apple bruise detection by using chlorophyll fluorescence image. http://bmte.niu.edu.tw/files/writing_seminar/5/352_7facl549.pdf.
    [178]Baranowski P, Mazurek W, Wozniak J, et al. Detection of early bruises in apples using hyperspectral data and thermal imaging. Journal of Food Engineering,2012,110(3):345-355.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700