用户名: 密码: 验证码:
基于基质湿润和根系生长特性的温室生菜灌溉技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机基质栽培已经成为设施园艺中避免连作障碍的一种有效技术。但是对于基质的水分特性及其检测方法还少有研究,这就导致基质栽培中的水分灌溉尚达不到合理和精确的程度,影响作物生长及产量提高。如何能够精确地监测基质中的水分含量,优化基质栽培的水分灌溉量,并实现智能化节水灌溉,是基质栽培高产高效迫切需要解决的一个问题。针对存在的问题,本文从基质水分监测传感器的选择、基质湿润体变化特征到温室基质栽培的生菜根系与基质湿润体的匹配等方面进行了系统而深入的研究,并提出了基质栽培的灌溉控制策略、开发了智能灌溉控制系统。主要研究工作有:
     1)通过对现有土壤水分传感器的优缺点分析,根据设施基质栽培的特点选取EC-5电容传感器作为基质含水率的检测设备,分析了基质类型、基质温度、基质容重和基质电导率等因素对EC-5传感器检测基质含水率精度的影响,确定主要影响因素并提出了简单易行的传感器修正方法。通过对基质剖面含水率的动态变化监测以及对不同深度基质层含水率的变异性和相关性分析,采用聚类分析法确定EC-5传感器的布设位置。
     2)研究了滴灌情况下滴灌流量、滴灌历时、滴灌量和基质初始含水率对基质湿润体和基质水分分布的影响。结果表明:滴灌各基质的湿润体的形状近似于旋转抛物体,其水平入渗半径最大的地方不在基质表面,而是在基质表面下3-6cm处。滴灌流量、基质初始含水率和滴灌历时均相同时,基质湿润体积大小为T4(醋糟+泥炭25%+蛭石25%)>T3(醋糟+泥炭25%)>T2(醋糟+泥炭50%)>T1(T1醋糟)。相同灌溉量,不同滴灌流量情况下,滴灌流量为0.15L/h时基质水平入渗距离至少比0.5L/h的大23.3%,垂直入渗距离最多比0.5L/h的大5.5%,且形成的基质湿润体积较流量为0.5L/h大,滴箭8cm以下相同位置基质的平均含水率至少比0.5L/h的高20%。相同灌溉历时情况下,不同滴灌流量情况下,滴灌历时60min,滴灌流量为0.5L/h时基质水平入渗距离至少为0.15L/h的1.04倍,垂直入渗距离至少为0.15L/h的1.34倍,且形成的基质湿润体积较流量为0.15L/h大,各基质的最大基质含水率比滴灌流量为0.15L/h的高9%-13.5%。相同滴灌流量,不同灌溉量情况下,基质的垂直入渗距离至少比水平入渗距离大62%,滴灌历时为198min时,距滴箭水平方向3cm处基质含水率至少比滴灌历时为60min的高30%。相同滴灌历时,随基质初始含水率的增加,基质垂直入渗距离至少减小13%,水平入渗距离至少增加31%,基质表层下方含水率等值线愈加弯曲。
     3)研究了微喷灌情况下基质初始含水率和微喷灌量对基质垂直入渗距离和基质水分分布的影响。结果表明:各基质处理均出现中间层,约在垂直方向4-10cm范围内,基质含水率在该层变化较大;相同基质初始含水率,基质水分的垂直入渗距离随灌溉量的增加而增大,喷灌历时为30min时的中间层平均基质含水率至少比15min的大22%。相同灌溉量,随基质初始含水率的增加,复配基质T2,T3和T4水分垂向平均运移速率增加56%,而基质T1在低基质初始含水率时的水分垂向运移速率较大,比复配基质水分平均运移速率大58%,中间层平均基质含水率至少增加7.4%,但其基质含水率等值线密度则随基质初始含水率的增加而降低。
     4)采用无量纲分析法,建立了微灌情况下基质湿润体特征模型,并在此基础上建立了基质湿润体半经验模型,通过试验数据进行验证,结果表明,滴灌情况下,4种基质的水平入渗距离和垂直入渗距离的预测值与实际值之间相关系数R2均达0.8以上,回归估计标准误差RMSE和平均误差ME最大分别为1.06cm和1.18cm和-0.154和-0.53cm;微喷灌情况下,4种基质的垂直入渗距离的预测值与实际值之间相关系数R2均达0.9以上,RMSE和ME最大分别为1.06cm和1.3cm,表明该模型能较准确的模拟微灌情况下基质湿润体变化。
     5)分析了影响生菜根系生长和分布的主要因素。以积温作为定量发育进程的尺度,构建了预测生菜根长和根深的模拟模型,以积温和根深为自变量,建立了根区半径动态变化模型。结果表明:通过对不同采样期的生菜根长、根深和不同根深处的根区半径进行方差分析,最小的P值均大于0.05,没有显著差异性,可以忽略本实验所用栽培基质种类的影响;不同灌溉方式下,生菜根长密度主要集中在0-6cm基质层内,约占总根长密度70%以上。所建的生菜根长、根深和根区半径动态模型对滴灌和微喷灌生菜的根长、根深和根区半径的预测值与实际值之间回归估计标准误差RMSE和相对误差RE最大分别为290cm、0.81cm、0.63cm和15%、12%、13%,模型能较好的预测生菜营养生长阶段根系的生长情况。
     6)分析了影响灌溉控制的影响因素并进行蒸散量估算,提出了基于蒸散量、生菜根系与基质湿润体剖面面积重叠度的滴灌控制策略、匹配原则,以及基于蒸散量、生菜根深与基质垂直湿润锋的微喷灌控制策略。对设施基质栽培灌溉控制系统进行需求分析,提出系统设计原则,采用ZigBee网络技术设计了一种基于ZigBee技术的设施基质栽培智能灌溉控制系统,并进行了灌溉试验,达到优化控制目标。
     结合前文灌溉开始后基质湿润体变化预测,根据生菜定植后的生长时间对生菜根系变化的预测,采用本灌溉控制策略决策是否灌溉以及灌溉的量,以达到精确优化灌溉的目的。
The organic matrix cultivation has become an effective technique to avoid continuous cropping obstacle in protected horticulture. But there is little research for the matrix moisture characteristic and its detecting method, this leads to the water irrigation in matrix is not reasonable and accurate, effects the crop growth and yield. How to monitor the moisture content in the matrix accurately and realize intelligent water-saving irrigation is an urgent problem to solve. In view of the existing problems, we deeply study the matrix moisture monitoring sensor, the matrix wetting body variation characteristics, the matching of the wetting body and the lettuce root, Put forward the irrigation control strategies in matrix cultivation and development of intelligent irrigation control system. The main research works are:
     1) Through the analysis of the existing soil moisture sensor,and features of facilities substrate cultivation,the article selected EC-5capacitive sensor to detect the moisture content of the substrate. Analysis the type of substrate, substrate temperature, substrate density and conductivity of the substrate effecting on detecting precision of EC-5moisture sensor, determine the main factors and proposes a simple correction method of sensor. Through the dynamic monitoring of moisture of cross-section substrate and the variability and correlation analysis of matrix moisture at different depths, the article uses cluster analysis to determine the final layout position of EC-5sensor.
     2) Study on the influence of irrigation flow, drip lasted, drip irrigation initial water content of the matrix on matrix wetting body and water distribution under drip irrigation. The results show that:the wetting body shape of the matrix is similar to the paraboloid of revolution under drip irrigation. The maximum radius of level infiltration is not on the substrate surface, but3-6cm under the surface of the matrix. The size of the wetting body is T4>T3>T2>T1when drip flow, matrix initial water content and drip duration are the same. The horizontal infiltration distance at0.15L/h is more23.3%than at0.5L/h at least,the vertical infiltration distance is more5.5%than at0.5L/h at most under the same irrigation amount and different drip flow. The horizontal infiltration distance at0.5L/h is1.04times of0.15L/h at at least, and the vertical infiltration distance is1.34times of0.15L/h at at least under the same irrigation duration (60min)and different drip flow, the maximum matrix moisture increased9%-13.5%. The vertical infiltration distance is more62%than the horizontal infiltration distance at least, and the matrix water content is increased30%under the same drip flow and different irrigation duration (60min and198min). The horizontal infiltration distance increased31%and the vertical infiltration distance decreased13%with the matrix initial water content increase under the same irrigation duration.
     3) This paper studies the effects of the initial moisture content of matrix and micro sprinkler irrigation amount on vertical infiltration distance and water distribution of matrix in micro-sprinkler case. The results showed that:each matrix treatment appear the middle layer in the vertical direction about4~10cm range,and the matrix moisture content changes larger in the layer. In the same matrix intial water content, the vertical infiltration distance increases with the amount of irrigation, the average matrix water content in the layer at the irrigation perod (30min) was more22%than at15min at least. In the same micro-sprinkler irrigation amount, the average vertical migration rate of T2,T3and T4increased56%with the increase of the matrix initial water content, but the vertical migration rate of T1was more56%than compound matrixs at the low matrix initial water content,but the matrix moisture content contour density decrease with the initial water content increase.
     4) The matrix characteristic value model and matrix wetting body semi empirical model were established using dimensionless analysis method. The results show that the correlation coefficient between the prediction value and the actual value of the horizontal infiltration distance and vertical infiltration distance for4kinds of matrixs were was more than0.8, the RMSE and the ME were were1.06cm,1.18cm and-0.154,-0.53cm for drip irrigation; The correlation coefficient between the prediction value and the actual value of the vertical infiltration distance for4kinds of matrixs were was more than0.9, the RMSE and the ME were were1.06cm and1.3cm for micro-irrigation; It show that the models have high accuracy for prediction the matrix wetting front.
     5) Analysis the factors of influence the root growth and distribution characteristics for lettuce. Models for lettuce root length, root growth and root zone were established using the accumulated temperature. The results show that the effects of matrix types can be ignored; Under different irrigation methods, lettuce root length density is mainly concentrated in the0-6cm matrix layer and accounting for more than70%of the total, and the microsprinkler irrigation is advisable under the high temperature season for lettuce cultivation with matrix. The RMSE and RE between predictive value and actual value for lettuce root length, root depth and root zone radius were290cm,0.81cm0.63cm and15%,12%,13%, The model can predict the root growth of lettuce well.
     6) According the requirement of the irrigation control system using in the matrix cultivation to present the design principle. Using visual studio as the software development tool, c#as the programming language, sqlserver as database, design a irrigation control system using in the matrix cultivation based on ZigBee technology, analysis of the factors influencing the irrigation control and estimation the evapotranspiration. Prent the matching principle and the drip irrigation strategy based on the evapotranspiration,the overlap of section area of lettuce root and wetting body, and the microspray irrigation strategy based on the evapotranspiration,the overlap of the lettuce root depth and matrix vertical wetting front, then start the comprehensive irrigation control.
     As a consequence, according the flow information to estimate the change of the matrix wetting body after irrigation began and the growth time after lettuce planting to estimate the changes of lettuce root. Using the preset irrigation control strategy to decision whether irrigation and irrigation quantity in order to achieve the purpose of accurate irrigation.
引文
[1]蒋卫杰,余宏军,朱德蔚,等.基质高产栽培番茄氮磷钾优化施肥方案研究[J].中国农业科技导报,2006,8(5):45-49.
    [2]李萍萍,胡永光,王纪章,等.醋糟和苇末有机基质的理化性状及配套栽培技术研究[J].江苏农业科学,2010(2):207-208.
    [3]刘超杰,郭世荣,束胜,等.醋糟基质粉碎程度对辣椒幼苗生长和光和能力的影响[J].农业工程学报,2010,26(1):330-334.
    [4]L.Incrocci, F.Malorgio,A.Della Bartola,et al. The influence of drip irrigation or subirrigation on tomato grown in closed-loop substrate culture with saline water[J]. Scientia Horticulturae 107(2006)365-372.
    [5]O.Marfa,F.Lemaire,R.Caceres,et al. Relationships between growing media fertility,percolate composition and fertigation strategy in peat-substitute substrates used for growing ornamental shrubs[J]. Scientia Horticulturae 94(2002)309-321.
    [6]蒋卫杰.设施蔬菜生态基质无土栽培技术[EB/OL].http://www.caas.net.cn/zt/bxzdtgcg/xjz/74253.shtml,2013-07-03.
    [7]刘志刚.电容传感器在栽培基质含水量检测中的应用研究[D].江苏大学,2011.
    [8]张云舒,张殿宇,徐万里,等.蘑菇渣复合基质特性及对番茄幼苗生长的影响[J].西北农业学报,2008,17(3):242-245.
    [9]赵青松,李萍萍,王纪章,等.不同灌水下线对黄瓜穴盘苗生长及生理指标的影响[J].农业工程学报,2011,27(6):31-35.
    [10]刘志刚,李萍萍,胡永光,等.电介质型水分传感器测定栽培基质含水率的标定模型[J].农业工程学报,2011,27(2):199-202.
    [11]Yang Gao, Aiwang Duan, Xinqiang Qiu, et al. Distribution of roots and root length density in a maize/soybean strip intercropping system[J]. Agricultural Water Management, 2010,98:199-212.
    [12]E.Salgado, R.Cautin. Avocado root distribution in fine and coarse-textured soils under drip and microsprinkler irrigation[J]. Agricultural Water Management,2008,95:817-824.
    [13]A.L.Smit, Alessandra Zuin. Root growth dynamics of Brussels sprouts (Brassica olearacea var. gemmifera) and leeks (Allium porrum L.) as reflected by root length, root colour and UV fluorescence[J]. Plant and Soil,1996,185:271-280.
    [14]尹怀富,王秀峰.地下滴灌对土壤特性及韭菜根系分布的影响[J].中国农学通报,2006,22(9):497-500.
    [15]王文,蒋文兰,谢忠奎,等.黄土丘陵地区唐库特白刺根际十壤水分与根系分布研究[J].草业科学,2013,22(1):20-28.
    [16]Anders Pedersen, Kefeng Zhang, Krisian Thorup-Kristensen, et al. Modelling diverse root density dynamics and deep nitrogen uptake-A simple approach[J]. Plant Soil, 2010,326:493-510.
    [17]M.B.Coelho, F.J.Villalobos, L.Mateos. Modeling root growth and the soil-plant-atmosphere continuum of cotton crops[J]. Agricultural Water Management,2003,60:99-118.
    [18]H.Kage, M.Kochler, H.Stutzel. Root growth of cauliflower (Brassica oleracea L.botrytis) under unstressed conditions:Measurement and modeling[J]. Plant and Soil,2000,223:131-145.
    [19]章明清.土壤-植物系统养分运移模型与叶菜生态经济施肥量研究[D].广州:华南农业大学博士学位论文,2006.
    [20]刘永霞,岳延滨,刘岩,等.基于生物量的水稻根系生长动态模型[J].江苏农业学报,2011,27(4):704-709.
    [21]陈俊意,徐莉,陈典全,等.玉米根系分布空间和空间密度分布的数学模型[J].生物数学学报,2008,23(4):717-720.
    [22]M.A.Badr, A.S.Taalab. Effect of Drip Irrigation and Discharge Rate on Water and Solute Dynamics in Sandy Soil and Tomato Yield[J]. Australian Journal of Basic and Applied Sciences,2007, 1(4):545-552.
    [23]Jiusheng Li, Jianjun Zhang, Minjie Rao. Wetting patterns and nitrogen distributions as affected by fertigation strategies from a surface point source[J]. Agricultural Water Management, 2004,67:89-104.
    [24]M.I.Al-Qinna, A.M.Abu-Awwad. Wetting Patterns under Trickle Source in Arid Soils with Surface Crust[J]. J.agric.Engng Res,2001,80(3):301-305.
    [25]梨朋红,汪有科,马理辉,等.涌泉根灌湿润体特征值变化规律研究[J].水土保持学报,2009,23(6):190-194.
    [26]王舒,李永光,王占胜,等.温室分层土壤条件下滴头流量和间距对湿润体的影响[J].灌溉排水学报,2005,24(4):36-40.
    [27]张振华,蔡焕杰,郭永昌,等.滴灌土壤湿润体影响因素的实验研究[J].农业工程学报,2002,18(2):17-20.
    [28]D.K.Singh, T.B.S.Rajput, D.K.Singh, et al. Simulation of soil wetting pattern with subsurface drip irrigation from line source[J]. Agricultural Water Management,2006,83:130-134.
    [29]G.Ainechee, S.Boroomand-Nasab, M.Behzad. Simulation of Soil Wetting Pattern Under Point Source Trickle Irrigation[J]. Journal of Applied Sciences,2009,9(6):1170-1174.
    [30]Ben-Asher, J., Charach Ch., and Zemel A.. Infiltration and water extraction from trickle irrigation source:the effective hemisphere model. Soil Sci. Soc. Am. J.,1986,50:882-887.
    [31]聂卫波,马孝义,王术礼.沟灌入渗湿润体运移距离预测模型[J].农业工程学报,2009,25(5):20-25.
    [32]费良军,董玉云,朱兴华.膜孔单点源肥液入渗湿润体特性试验研究[J].农业工程学报,2006,22(12):78-81.
    [33]张振华,蔡焕杰,杨润亚,等.点源入渗等效半球模型的推导和实验验证[J].灌溉排水学报,2004,2(3):9-12.
    [34]R.J.Stirzaker. When to turn the water off:scheduling micro-irrigation with a wetting front detector[J]. Irrig Sci,2003,22:177-185.
    [35]Peter J.Thorburn, Freeman J.Cook, Keith L.Bristow. Soil-dependent wetting from trickle emitters:implications for system design and management[J]. Irrigation Science,2003, 22(3-4):121-127.
    [36]Eugenio F.Coelho, Dani Or. Root distribution and water uptake patterns of corn under surface and subsurface drip irrigation[J]. Plant and Soil,1999,206:123-136.
    [37]王超.地下滴灌条件下土壤水分运移规律试验研究[D].杨凌:西北农林科技大学硕士学位论文,2010.
    [38]张妙仙.滴灌土壤湿润体与作物根系优化匹配研究[J].中国生态农业学报[J].2005,13(1):104-107.
    [39]李怀有,王斌,梁金战.苹果滴灌最佳灌水部位试验研究[J].甘肃农业科技,2000,4:31-33.
    [40]R.J.Hutton, B.R.Loveys. A partial root zone drying irrigation strategy for citrus-Effects on water use efficiency and fruit characteristics [J]. Agricultural Water Management, 2011,98(10):1485-1496.
    [41]Sam Geerts, Dirk Raes. Deficit irrigation as an on-farm strategy to maximize crop water productivity in dry areas[J]. Agricultural Water Management,2009,96(9):1275-1284.
    [42]G.H.Schmitz, Th.Wohling, M.dePaly,et al. GAIN-P:A New Strategy to Increase Furrow Irrigation Efficiency [J]. The Arabian Journal for Science and Engineering,2007,32:103-114.
    [43]郑重,马富裕,刘思博,等.基于GSM/FSK的膜下滴灌智能监控系统研究[J].灌溉排水学报,2006,25(6):86-89.
    [44]高玉芹.基于ZigBee和模糊控制决策的自动灌溉系统的设计[J].节水灌溉,2010,8:52-55.)[45]张海涛,陈宗海,秦延.农作物水循环灌溉系统的自适应预测控制策略[J].信息与控制,2003,32(7):586-590.
    [46]J.Johansson,O.Hagman,J.Oja. Predicting moisture content and density of Scots pine by microwave scanning of sawn timber[J]. Computers and Electronics in Agriculture,2003,41:85-90.
    [47]Lawrence K C,Nelson S O. Radio-frequence Density-independent Determinition in Wheat[J]. Transaction of the ASAE,1993,38(3):477-483.
    [48]M.Susan Moran,Daniel C.Hymer,Jiaguo Qi. Soil moisture evaluation using muli-temporal synthetic aperture radar(SAR) in semiarid rangeland[J].Agricultural and Forest Meteorology, 2000,105:69-80.
    [49]王克栋,王一鸣,冯磊,等.基于相位检测原理的土壤水分时域反射测量技术[J].农业机械学报,2010,1:72-76.
    [50]刘洁,李小昱,李培武,等.基于近红外光谱的板栗水分检测方法[J].农业工程学报,2010,26(1):338-341.
    [51]于君明,周艺,王世新,等.基于修正角度斜率指数的土壤水分遥感监测方法[J].土壤通报,2009,40(1):43-47.
    [52]Xu Liyuan, Chen Liping, Chen Tianen, et al. SOA-based precision irrigation decision support system[J]. Mathematical and Computer Modelling,2011,54:944-949.
    [53]PRENGER J.J., LING P.P., HANSEN R.C., Plant response-based irrigation control system in a greenhouse:System evaluation[J]. American Society of Agricultural Engineers, 2005,48(3):1175-1183.
    [54]Noble Abraham, P.S Hema, E.K Saritha, et al. Irrigation automation based on soil electrical conductivity and leaf temperature[J]. Agricultural Water Management,2000,45(2):145-157.
    [55]王永涛,陈玲,张小明等.科斯特坡地灌溉控制系统的研究及应用[J].中国农村水利水电,2012,7:13-16.
    [56]韩安太,何勇,陈志强,等.基于无线传感器网络的茶园分布式灌溉控制系统[J].农业机械学报,2011,42(9):173-180.
    [57]章军富,陈俊崎,胡剑飞,等.基于GPRS/SMS和uC/OS的都是绿地精准灌溉控制系统[J].农业工程学报,2009,25(9):1-6.
    [58]张爱莉,高磊.冻融过程对FDR测量土壤体积含水量的影响[J].排灌机械工程学报,2013,31(4):364-368.
    [59]郭文川,张鹏,宋克鑫,等.塿士介电特性与水分检测频率及温度影响[J].排灌机械工程学报,2013,31(8):713-718.
    [60]扬道业,权义萍,张印强.尺式电容传感器特性分析及应用[J].仪表技术与传感器,2010(2):7-9.
    [61]DECAGON DEVICES.Em50/Em50R Data Collection Systerm User's Maunual.
    [62]Noborio K, Measurement of soil water content and electrical conductivity by time domain reflectometry:A review. Computers and Electronics in Agriculture,2001 (31):213-237.
    [63]Cao Chun, Xing Zhen, Zhang Wengang, et al. Evaluation of the high-frequency capacitance sensor for measuring soil moisture[J]. Sensor Letters,2012,10(2):447-452.
    [64]龚元石,曹巧红,黄满香.土壤容重和温度对时域反射仪测定土壤水分的影响[J].土壤学报,1999,36(2):145-153.
    [65]何亮,王旭东,杨放,等.探地雷达测定土壤含水量的研究进展[J].地球物理学进展,2007,,2(5):1673-1679.
    [66]曹巧红,龚元石.土壤电导率对时域反射仪测定土壤水分的影响[J].土壤学报,2001,38(4):483-490.
    [67]F.Kizito, C.S.Campbell, G.S.Campbell, et al. Frequency, electrical conductivity and temperature analysis of a low-cost capacitance soil moisture sensor[J]. Journal Hydrology, 2008,352:367-378.
    [68]H.R.Bogena, J.A.Huisman, C.Oberdorster, et al. Evaluation of a low-cost soil water content sensor for wireless network applications[J]. Journal Hydrology,2007,344:32-342.
    [69]李英能,吴景社,黄修桥,等.节水农业新技术[M].江西科学技术出版社,2006.
    [70]樊军,王全九,汪羽宁.质地和根系深度对水分探头埋设的仿真模拟[J].排灌机械工程学报,2013,31(1):70-74.
    [71]鲍艳,胡振琪,柏玉等.主成分聚类分析在土地利用生态安全评价中的应用[J].农业工程学报,2006,20(8):87-90.
    [72]赵韩,张彦.灰色聚类法在汽车维修质量评价中的应用[J].农业机械学报,2002,38(1):181-183.
    [73]P.R.Bhatnagar, H.S.Chauhan. Soil water movement under a single surface tickle source[J]. Agricultural Water Management,2008,95:799-808.
    [74]汪有科,黎朋红,马理辉等.涌泉根灌在黄土坡地的水分运移规律试验[J].排灌机械工程学报,2010,28(5):449-454.
    [75]费良军,曹俊,聂卫波.涌泉根灌土壤湿润体特性试验[J].排灌机械工程学报,2011,29(3):260-265.
    [76]LI Jiu-sheng, JI Hong-yan, LIU Yu-chn. Wetting Patterns and Nitrate Distributions in Layered-Textural Soils Under Drip Irrigatin[J].
    [77]李明思,康邵忠,孙海燕.点源滴灌滴头流量与湿润体关系研究[J].农业工程学报,2006,22(4):32-35.
    [78]Rui ZHANG, Ziying CHENG, Jinxia ZHANG,et al. Sandy Loam Soil Wetting Patterns of Drip Irrigation:a Comparison of Point and Line Sources[J]. Procedia Engineering,2012, 28:506-511.
    [79]岳海英,李援农.滴灌土壤湿润体含水率分布规律的试验研究[J].灌溉排水学报,2010,29(2):137-139.
    [80]张俊,牛文全,张琳琳,等.初始含水率对微润灌溉线源入渗特征的影响[J].排灌机械工程学报,2014,32(1):72-79.
    [81]牛文全,樊晓康,陈俊英,等.初始含水率对涌泉根灌土壤渗透特征的影响[J].排没灌机械工程学报,2012,30(4):491-496.
    [82]李毅,关冰艺.滴灌两点源交汇入渗的斥水十壤水分运动规律[J].排灌机械工程学报,2013,31(1):81-86.
    [83]贾运岗,张富仓,李培岭.大田滴灌条件下土壤水分运移规律的试验研究[J].灌溉排水学报,2007,26(6):15-18.
    [84]卢俊寰,汪有科.滴灌土壤湿润体特性室外试验研究[J].中国农村水利水电,2012,3:1-11.
    [85]张权,陈正兵,沈大伟等.基于土壤入渗水量分布特性的微喷灌系统组合分析[J].中国农村水利水电,2009,9:1-7.
    [86]褚琳琳,康跃虎,陈秀龙,等.喷灌强度对滨海盐碱地土壤水盐运移特征的影响[J].农业工程学报,2013,29(7):76-82.
    [87]龚萍,刘洪光,何新林,等.滴灌葡萄的双线源水分分布特征及计划湿润层深度计算研究[J].节水灌溉,2012,2:9-12.
    [88]Brandt A, Bresler E, Dine N, ET AL. Infiltration from a trickle source:Mathmatical model. Soil Sci. Soc. Am. Proc,1971,35:675-682.
    [89]Or D, Coelho F E. Soil water dynamics under drip irrigation:Transient flow and uptake models. Soil Sci. Soc.Am.J,1996,60:2017-2025.
    [90]Ormaty M, Ligon J T. Three-dimensional movement of water and pesticide from trickle irrigation:Finite element model.Transactions of ASAE,1992,35(3):811-821.
    [91]Zhang R. Modelling food and drip irrigations. ICID Journal,1996,45(2):81-92.
    [92]李耀刚,王文娥,胡笑涛.基于HYDRUS-3D的涌泉根灌土壤入渗数值模拟[J].排灌机械工程学报,2013,31(6):546-552.
    [93]Schwartzman M. and Zur B.. Emitter spacing and geometry of wetted soil volume. J. Irrig. Drain. Eng,112(3):242-253.
    [94]胡立勇,刘铁梅,郑小林,等.油菜发育过程及生育期机理模型的研究[J].中国油料作物学报,2004,2(2):51-55.
    [95]李萍萍,李冬生.温室生态经济系统分析[M].北京:科学出版社,2011.
    [96]Sefer Bozkurt, Gulsum Sayilikan Mansuroglu. The effects of drip line depths and irrigation levels on yield,quality and water use characteristics of lettuce under greenhouse conditon. African Journal of Biotechnology,2011,10(17):3370-3379.
    [97]刘海军,龚时宏,王广兴.喷灌和地面灌条件下冬小麦根系分布特点的研究[J].农业工程学报,2000,16(5):34-37.
    [98]梅莉,韩有志,于水强,等,水曲柳人工林细根季节动态及其影响因素[J].林业科学,2006,4(9):7-12.
    [99]盛亚萍,赵成章,张静,等.高寒山区混播草地燕麦和毛苕子根长密度分布格局[J].生态学杂志,2013,32(2):279-284.
    [100]顾东祥,汤亮,曹卫星,等.基于作物图像分析方法的水稻根系形态特征指标的定量分析[J].作物学报,2010,36(5):810-817.
    [101]Babu John, Harendra N.Pandey, Radhey S.Tripathi. Vertiacal distribution and seasonal changes of fine and coarse root mass in Pinus kesiya Royle Ex.Gordon forest of three different ages[J]. Acta Oecologica,2001,22:293-300.
    [102]Sushil Kumar, P.Dey. Effects of different mulches and irrigation methods on root growth, nutrient uptake, water-use efficiency and yield of strawberry[J]. Scientia Horticulturae, 2011,127:318-324.
    [103]Seyed Hamid Ahmadi, Finn Plauborg, Mathias N.Andersen,et al. Effects of irrigation strategies and soils on field grown potatoes:Root distribution[J]. Agricultural Water Management,2011,98:1280-1290.
    [104]HU Xiao-tang, CHEN Hu, WANG Jing, et al. Effects of Soil Water Content on Cotton Root Growth and Distribution Under Mulched Drip Irrigation[J]. Agricultural Sciences in China, 2009,8(6):709-716.
    [105]熊淑萍,王小纯,李春明,等.冬小麦根系时空分布动态及产量对不同氮源配施的响应[J].植物生态学报,2011,35(7):759-768.
    [106]Yang Gao, Aivang Duan, XinqiangQiu et al.Distribution of roots and root length density in a maize/soybean strip intercropping system[J]. Agricultural Water Management 2010,98:199-212.
    [107]Kage H, Kochler K, Stutzel H. Root growth of cauliflower under unstressed conditions measurement and modeling [J]. Plant Soil,2000:133-147.
    [108]陆扣萍,谢寅峰,闵炬,等.不同施氮量对大棚莴苣根系形态及产量和品质的影响[J].土壤,2011,43(4):542-547.
    [109]胡立勇,刘铁梅,郑小林等.油菜发育过程及生育期机理模型的研究[J].中国油料作物学报,2004,2(2):51-55.
    [110]郁晓庆,吴普特,韩文霆,等.基于无线传感器网络的农田灌溉远程监控系统[J].排灌机械工程学报,2013,31(1):66-69.
    [111]王新忠,顾开新,刘飞.基于无线传感器网络的丘陵果园灌溉控制系统[J].排灌机械工程学报,2011,29(4):364-368.
    [112]刘涛,赵计生.基于ZigBee技术的农田自动节水灌溉系统[J].测控技术,2008,27(2):95-99.
    [113]刘俊岩,张海辉,胡瑾等.基于ZigBee的温室自动灌溉系统设计与实现[J].农机化研究,2012,1:111-118.
    [114]赵宝贵,李大军.华东地区第十次测绘学术交流大会论文集[C],2007,169-173.
    [115]陈伟侯.抛物线弓形面积的阿基米德算法[J].数学通报,1999,23-24.
    [116]罗志强,钟尔杰.任意多边形面积公式的推导及其应用[J].大学数学2005,21(1):123-125.
    [117]欧剑锋,金兆森.基于彭曼法计算水稻作物需水量的简化方法[J].扬州大学学报,2006,9(4):57-60.
    [118]王则玉,冯耀祖,陈署晃,等.彭曼-蒙太斯法制定阿克苏红枣根渗灌灌溉制度[J].新疆农业科学,2010,47(11):2189-2194.
    [119]陈新明,蔡焕杰,李红星,等.温室内作物腾发量计算与验证[J].水科学进展,2007,18(6):812-815.
    [120]Goudriaan J, Van Laar H H. Modelling protential crop growth processes:textbook with excercises [M]. Dordrecht:Kluwer Academic Publishers,1998.
    [121]张祎.基于作物蒸散量模型的智能滴灌控制器设计与研究[D]).南京农业大学,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700