用户名: 密码: 验证码:
基于线虫Hsp响应的As毒理机制的体内与体外研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一些重金属在环境介质中不能被分解,在环境因子变化下或与其他物质联合胁迫会产生不同的毒性效应。砷(As)为元素周期表中VA族中的一种类金属元素,在自然界中分布广泛,是环境中最常见和最严重的致癌污染物之一。因其理化性质和环境行为与重金属有许多相似之处,故在环境化学和毒理学领域将其归入重金属研究范畴。不同的环境条件下As的毒理作用会随之变化。秀丽隐杆线虫(C.elegans)被广泛用做模式生物进行生命科学研究,并作为指示生物应用于生态监测。秀丽隐杆线虫成为生态毒理学首选的模式生物之一,主要进行污染物标准化毒性测试。分子生物标志物(molecular biomarkers)可以直接反映外来理化因素与细胞靶分子的相关关系,作为分子伴侣的热休克蛋白因其在胁迫下的显著效应被广泛关注。
     本研究以C.elegans为活体模型,并通过细胞体外试验,探讨砷的毒理学机制。利用LC50、头摆行为、繁殖率等端点判定指标,研究了不同温度影响下As的毒性变化;揭示砷与一种典型农药草甘膦,及与一种典型重金属Cu的复合作用模式;基于线虫突变体和蛋白表达方法,探讨了Hsp90作为砷污染生物标志物的可行性及最优检测方法,探讨砷胁迫下线虫休眠(dauer)反应及hsp90响应特征。最后,通过As对不同细胞作用的体外试验,深入探究了砷的毒理学机制。研究结果表明在20℃正常培养温度下,As对N2成虫的LC50值为130.5mg/L。环境温度降低在一定程度上可增加线虫成虫抗As的能力,冷冲击与As对N2成虫的联合胁迫表现为拮抗效应,热极限温度通过削弱机体机能可大幅度协同增强重金属的毒性。强热与As对线虫的胁迫表现为协同增强作用。线虫头摆率与繁殖率随砷胁迫强度的增大而降低。
     草甘磷作对秀丽隐杆线虫的24h LC50为18.53mg/L,草甘磷对秀丽隐杆线虫表现出较强的生殖毒性。低浓度的砷与低浓度的草甘磷协同作用不显著,低浓度的砷与高浓度的草甘磷表现出极强的协同作用,草甘磷对较高浓度的砷毒性协同作用明显。与砷相比,低浓度的草甘膦对线虫行为的抑制作用较强。低浓度砷与草甘膦联合胁迫,对线虫头摆率表现出协同效应。而较高浓度的联合作用下,对线虫行为的协同作用不明显。低浓度胁迫强度下,砷与草甘膦的联合效应对线虫繁殖率表现为协同效应;高强度下二者对线虫繁殖率的联合效应表现为拮抗作用。与砷相比,铜对线虫繁殖率的影响较弱。作为典型重金属,砷与铜对线虫行为的毒性效应存在差异。砷与铜对线虫行为的抑制效应为协同作用。Cu浓度越低,与砷的这种协同作用越明显。低浓度胁迫下砷与铜联合作用下线虫繁殖率显著降低。高浓度胁迫下,铜与砷的联合作用对线虫繁殖率的影响表现为拮抗效应。
     环境温度变化会影响As对C.elegans的毒性。秀丽隐杆线虫进入休眠阶段增强了机体对砷的抗性,环境温度变化可影响其砷胁迫下的应激反应,进入休眠阶段的幼虫可作为环境温度变化下砷污染的指示生物。免疫印迹法和酶联免疫法均可以用于C.elegans的Hsp90表达水平半定量分析;但酶联免疫法的特异性优于免疫印迹。因此,与野外实际相符的污染强度下(一般为中低强度的污染),利用酶联免疫检测线虫蛋白标志物的精确度会好于免疫印迹法。此外,与免疫印迹法相比,酶联免疫法还具有操作简单、检测通量高及自动化等的特点,使其更适合环境污染物的高通量检测。砷胁迫下秀丽隐杆线虫Hsp90蛋白表达量有下调趋势,与休眠相关的基因daf-21在线虫对砷的应激耐受通路中具有负调控表现,应激蛋白Hsp90可作为高强度砷胁迫的生物标志物。
     体外毒性试验表明砷的细胞毒性与细胞种类有关,砷通过增加细胞中ROS (reactiveoxygen species)量而影响细胞功能。砷与细胞作用过程具有浓度和能量依赖性。结合活体试验(动物模型)与体外试验(细胞)进行砷毒理研究,对低浓度砷暴露的针对性防治,砷的生物毒性产生过程和致毒机理具有理论与应用意义。
Heavy metals are ubiquitous pollutants worldwide, while herbicides are some of themost prevalently used agrochemicals and became more pollutant in environment. Theenvironmental factors such as temperatures and other chemicals could affect the toxicity ofcontaminations. Arsenic (As), an element of wide distribution and multiple purposes, isknown to be a toxic environmental pollutant and carcinogen. Environmental factors such astemperature could affect the toxicology of As stress to organisms. Nematodes are frequentlyused for toxicological studies in various exposures, and becomes a useful animal model forthe study of the ecotoxicological relevance of chemical-Caenorhabditis elegans, a free-livingsoil nematode, is an excellent model organism because of its short lifespan, ease ofmanipulation, and low cost. Because of its high quality and inexpensive advantage, C. eleganis widely used as a model organism in the field of life sciences. Both nematode dormancy(dauer) state and stress protein (Hsps) expression have the characteristic of outstanding stressresponse and could be environmental ecotoxicological biomarkers in potential. induced andbiochemical level responses. Classical heat shock responses in C. elegans were describedmore than three decade ago.
     In this study, we chose nematode C. Caenorhabditis elegans as the model organism invivo and mammal cell line in vitro to study toxicological effects of arsenic. We used theending-points in C. elegans including24-h median lethal concentration (LC50), head thrash,reproductive rates/brood size to observe the effects of temperature (cold shock and heat shock)on of As stress to adults and dauer larval nematodes, and detecting mortality and Hsp90protein of nematode expression under Joint effects of As and pesticides stresses. Bothnematode dormancy (dauer) state and Hsps expression have the characteristic of outstandingstress response and could be environmental ecotoxicological biomarkers in potential.24-hLC50of As on wild type adults at20°C was130. mg·L-1through Probit analysis. Cold shockenhanced resistance of nematodes under arsenic stress, and high temperature significantlyreduced nematode tolerance to arsenic exposure. The head thrash and brood size declinedunder the increasing As extends.
     We also used C. elegans to investigate24h acute toxicities and joint toxicity of arsenicwith glyphosate, dichlorvos and cooper. Results showed that the24h-LC50for glyphosate toC. elegans were18.5mg·L-1. Glyphosate showed a high toxic effect on the reproduction to C.elegans. Results of equivalent toxicity design indicated that the joint toxicity of arsenic andglyphosate on C. elegans followed synergic especially when the concentration of As is high.Lower concentration glyphosate had a strong depression on the nematodes head thrash. Jointtoxicity of As and glyphosate at low concentration showed synergic effects on head thrash andreproductive rate of C. elegans. However, high concentrations of As and glyphosate had aantagonistic effects on the reproductive rate of C. elegans. Compared to As, Cu as a classicalheavy metal especially at low concentrations had a different toxic effect on C. elegans. The joint toxicity of As and Cu on C. elegans showed to be synergic. Cu and low concentration ofAs made a significant decrease of reproductive rate in C. elegans, while at high concentration,the joint toxicity of As and Cu showed a antagonistic effects on reproductive rate of C.elegans.
     We observed temperature played an important role in determining LC50values of As. Weexamined the differences in lethal toxicity induced by As exposure in dauer larvae and adultsdaf-21mutant at various temperatures. Hsp90is an essential gene in C. elegans, and the geneencoding Hsp90was identified as daf-21which is involved in C. elegans dauer formation.The lethal values in daf-21adults increased with temperatures increasing which indicates thatdauer larval had strong resistance to combined heat and As effects. It also implicated thespecial role of daf-21in dauer formation and maintenance. We further confirm using ELISAto assay the changes in Hsp90expression under the combined effects of heat and As. In thepresent study, we integrated the application of Western blot and ELISA assay method. Therewere differences of Hsp90expressions by Western blots and ELISA in C. elegans underdifferent concentrations of arsenic stress. The consistency in the results of protein expressionobtained from both methods confirms that temperature and pollutants has joint effect onchange of heat shock proteins expression in the nematode, which could be effective detectedand characterized by ELISA. Our results showed decreased Hsp90accumulation followingexposure of C. elegans to As stress, which indicates daf-21regulatory function in the pathwayof heat stress and possible role in As toxic response pathway in C. elegans. The significantdecreases in Hsp90levels observed in wild type adults exposed to As at higher temperaturessuggested that Hsp90could be a biomarker for heavy As pollution.
     For As toxicity study in vitro, PC12cell line (rat pheochromo-cytoma cell line) has beenselected as a mode cell line for evaluating toxicological effects of As. The value (47μM) of24h median lethal concentration (LC50) of NaAsO2for PC12cells has been obtained byMTT assay. The cytotoxicity of As has been systematically studied by exposure of PC12cells to relatively low concentration (5and20μM) of As. We found that As is able tosignificantly decrease cell proliferation, generate strong genotoxicity and increase ROS(reactive oxygen species) level of PC12cells. The experimental results demonstrate that lowconcentration of (e.g.,5μM, about10%of its LC50) As can generate high cytotoxicitytowards PC12cell line.
引文
[1] Smith A H,Lopipero P A, Bates M N, et al.Public health: Arsenic epidemiology and drinking waterstandards[J]. Science,2002,296,2145–2146.
    [2] Abernathy C O, Calderon R L, Chappell W R. Arsenic Exposure and Health Effects III, ElseviertScience Ltd., London,1999.
    [3] Tang C H, Chiu Y C, Huang C F, et al.Arsenic induces cell apoptosis in cultured osteoblasts throughendoplasmic reticulum stress[J]. Toxicol. Appl. Pharmacol.,2009,241,173–181.
    [4]Chai C Y, Huang Y C, Hung W C, et al. Arsenic salts induced autophagic cell death andhypermethylation of DAPK promoter in SV-40immortalized human uroepithelial cells[J].Toxicol. Lett.,2007,173,48–56.
    [5]Christopher States J, Barchowsky A, Cartwright I L, et al. Arsenic toxicology: Translating betweenexperimental models and human pathology[J]. Environmental Health Perspectives,2011,119(10):1356–1363.
    [6]Nordstrom D K. Worldwide occurrences of arsenic in ground water[J].Science,2002,296,2143–2144.
    [7]Melak D, Ferreccio C, Kalman D, et al.Arsenic methylation and lung and bladder cancer in a case-control study in northern Chile[J]. Toxicol Appl Pharmacol,2014,1,15;274(2):225-31.
    [8]Bhattacharjee P, Chatterjee D, Singh KK, et al. Systems biology approaches to evaluate arsenic toxicityand carcinogenicity: an overview[J].Hyg Environ Health,2013,8;216(5):574-86.
    [9]Gao J, Yu J, Yang L.Environ Res Public Health[J],2011,8(6):1991–2008.
    [10]Germolec D R, Spalding J, Yu H S, et al.Arsenic Enhancement of Skin Neoplasia by ChronicStimulation of Growth Factors. Am[J]. Pathol.,1998,153(6),1775–1785.
    [11] Mishra D, Flora S J, Differential oxidative stress and DNA damage in rat brain regions and bloodfollowing chronic arsenic exposure[J]. Toxicol. Ind. Health,2008,24(4),247–256.
    [12] Diesel E, Schreiber M, Vander Meer J R. Development of bacteria-based bioassays for arsenicdetection in natural waters[J]. Anal. Bioanal. Chem.,2009,394,687–693.
    [13]Ng J C, Wang J, Shraim A. A global health problem caused by arsenic from natural sources[J].Chemosphere,2003,52,1353–1359.
    [14]Wang Y, Xu J, Sheng L, et al. Field and laboratory investigations of the thermal influence on tissue-specific Hsp70levels in common carp (Cyprinus carpio)[J]. Comparative Biochemistry and PhysiologyPart A: Molecular&Integrative Physiology,2007,148(4):821–827.
    [15]Yeh Y, Cheng L C, Liang Y C, et al.Modulation of the arsenic effects on cytotoxicity, viability, andcell cycle in porcine endothelial cells by selenium[J]. Endothelium.,2003,10(3),127–139.
    [16]Hughes M F, Beck D B, Chen Y, et al. Arsenic exposure and toxicology: A historical perspective[J].Toxicology Science,2011,123(2):305–332.
    [17]Mamindy-Pajany Y, Hurel C, Géret F, et al.Arsenic in marine sediments from French Mediterraneanports: geochemical partitioning, bioavailability and ecotoxicology. Chemosphere,2013,3;90(11):2730-6.
    [18]Naujokas M F, Anderson B, Ahsan H, et al.The broad scope of health effects from chronic arsenicexposure: update on a worldwide public health problem. Environ Health Perspect,20133;121(3):295-302.
    [19]Lu T H, Tseng T J, Su C C, et al.Arsenic induces reactive oxygen species-caused neuronal cellapoptosis through JNK/ERK-mediated mitochondria-dependent and GRP78/CHOP-regulated pathways[J].Toxicol Lett.,2014,1,3;224(1):130-40.
    [20] Junghans M, Backhaus T, Faust M, et al. Application and validation of approaches for the predictivehazard assessment of realistic pesticide mixtures[J]. Aquatic Toxicology,2006,76(2):93–110.
    [21] Peterson R T, Nass R, Dong K,et al. Use of non-mammalian alternative models for neurotoxicologicalstudy[J]. Neurotoxicology,2008,29,545–554.
    [22]梁继东,周启星.甲胺磷、乙草胺和铜单一与复合污染对黑土环境安全的胁迫研究[J].环境科学学报,2003,24(3):474-481.
    [23]王云彪;李润琴;邓茗芩,等.砷与农药草甘膦、敌敌畏对秀丽隐杆线虫的联合毒性.生态毒理学报,2013,2013(02)262-267.
    [24]肖细元,陈同斌,廖晓勇.中国主要含砷矿产资源的区域分布与砷污染问题[J].地理研究,2008,27(01)201-205.
    [25] Shahid F, Rizwan S, Khan M W, et al. Studies on the effect of sodium arsenate on the enzymes ofcarbohydrate metabolism, brush border membrane, and oxidative stress in the rat kidney.
    [26] Sun G F, Arsenic contamination and arsenicosis in China[J].Toxicol. Appl Pharmacol.,2004,198(3),268–271.
    [27] Majumder A, Ghosh S, Saha N, et al. Arsenic accumulating bacteria isolated from soil for possibleapplication in bioremediation[J].Environ Biol.,201334(5):841-846.
    [28] Zhu X D, Wang Y J, Liu C, et al.Kinetics, intermediates and acute toxicity of arsanilic acid photolysis[J].Chemosphere,2014, S0045-6535(13)01725-6.
    [29] Chung S G, Ryu J C, Song M K, et al, Modified composites based on mesostructured ironoxyhydroxide and synthetic minerals: A potential material for the treatment of various toxic heavy metalsand its toxicity[J].Hazard Mater2014Feb28;267:161-168.
    [30] Wilcox D E.Arsenic. Can this toxic metalloid sustain life[J].Met Ions Life Sci.,2013;13:475-498.
    [31] Llop S, Lopez-Espinosa M J, Rebagliato M,et al.Gender differences in the neurotoxicity of metals inchildren[J].Toxicology,2013,6;311(1-2):3-12.
    [32] Faita F, Cori L, Bianchi F,et al.Arsenic-induced genotoxicity and genetic susceptibility to arsenic-related pathologies[J].Environ Res Public Health,2013Apr12;10(4):1527-46.
    [33]Liang W J, Li Q, Zhang X K,et al.Effect of heavy metals on soil nematode community structure inShenyang suburbs[J]. Amery J Agra Environ Sci.,2006,1,14-18.
    [34]Mutwakil M H, Reader J P, Holdich D M,et al.Caenorhabditis elegans in toxicology research25, Useof stress-inducible transgenic nematodes as biomarkers of heavy metal pollution in water samples from anEnglish river system[J].Arch.Environ.Contam. Toxicol,1997,32,146–153.
    [35] alamún P, Ren o M, Kucanová E,et al.Nematodes as bioindicators of soil degradation due to heavymetals[J].Ecotoxicology,2012.21(8):2319-2330.
    [36] Liang Q, Zhao D. Immobilization of arsenate in a sandy loam soil using starch-stabilized magnetitenanoparticles[J] Hazard Mater,2014,271C:16-23.
    [37]Stamatelos S K, Androulakis I P, Kong A N, et al.A semi-mechanistic integrated toxicokinetic-toxicodynamic (TK/TD) model for arsenic(III) in hepatocytes[J].Theor Biol.,2013121;317:244-56.
    [38]Majumder A, Bairagya MD, Basu B, et al. Retting of jute grown in arsenic contaminated area andconsequent arsenic pollution in surface water bodies[J].Sci Total Environ.,2013,1,1;442:247-54.
    [39]Anbalagan C, Lafayette I, Antoniou-Kourounioti M,et al.Use of transgenic GFP reporter strains of thenematode Caenorhabditis elegans to investigate the patterns of stress responses induced by pesticidees andby organic extracts from agricultural soils[J]. Ecotoxicology,2013.22(1):72-85.
    [40]Anderson G L, Boyd W A, Williams P L. Assessment of sublethal endpoints for toxicity testing withthe nematode Caenorhabditis elegans[J].Environ.Toxicol.Chem,2001,20,833–838.
    [41]Rahbar M H, Samms-Vaughan M, Ardjomand-Hessabi M, et al.The role of drinking water sources,consumption of vegetables and seafood in relation to blood arsenic concentrations of Jamaican childrenwith and without Autism Spectrum Disorders[J]. Sci Total Environ.,2012,9,1;433:362-70.
    [42]Jain C K, Singh R D. Technological options for the removal of arsenic with special reference to SouthEast Asia[J].Environ Manage.,2012,9,30;107:1-18.
    [43]Calatayud M, Vélez D, Devesa V. Metabolism of inorganic arsenic in intestinal epithelial celllines[J].Chem Res Toxicol.,2012,11,19;25(11):2402-11.
    [44] Sin O, Michels H, Nollen EA.Genetic screens in Caenorhabditis elegans models for neurodegenerativediseases[J].Biochim Biophys Acta,2014,11.S0925-4439(14)00031-3.
    [45] Aitlhadj L, Stürzenbaum S R.Caenorhabditis elegans in regenerative medicine: a simple model for acomplex discipline[J].Drug Discov Today,2014Feb7.S1359-6446(14)00032-4.
    [46] Hobert O. Development of left/right asymmetry in the Caenorhabditis elegans nervous system: Fromzygote to postmitotic neuron[J]Genesis,2014Feb9. doi:10.1002/dvg.22747.
    [47] Hsieh Y W, Alqadah A, Chuang C F. Asymmetric neural development in the Caenorhabditis elegansOlfactory system[J].Genesis,2014Jan30.10.1002/dvg.22744.
    [48] Wang Y, Gao J, Wu D. Effects of temperature on copper resistance in daf-21mutant and Hsp90expression of Caenorhabditis elegans[J]. Paddy and Water Environment,2013.11(1-4):249-254.
    [49] Wang Y,Ezemaduka A N.Combined effect of temperature and zinc on Caenorhabditis elegans wildtype and daf-21mutant strains[J].Journal of Thermal Biology,2014,41,16–20.
    [50]Wilcox DE. Arsenic. Can this toxic metalloid sustain life[J].Met Ions Life,2013;13:475-98.
    [51]Seyedmousavi S, Badali H, Chlebicki A, et al.Exophiala sideris, a novel black yeast isolated fromenvironments polluted with toxic alkyl benzenes and arsenic[J].Fungal Biol.,2011Oct;115(10):1030-7.
    [52]Cherkasova, V; Ayyadevara, S; Egilmez, N; et al. Diverse Caenorhabditis elegans genes that areupregulated in dauer larvae also show elevated transcript levels in long-lived, aged, or starved adults[J].mol.boil.,2000,300,433-448.
    [53]Chu K W, Chan S K. Chow K L. Improvement of heavy metal stress and toxicity assays by coupling atransgenic reporter in a mutant nematode strain[J]. Aquat.Toxicol,2005,74,320–332.
    [54] Albert P S, Brown S J, Riddle D L. Sensory control of dauer larva formation in Caenorhabditiselegans[J].Comp.Neurol,1981,198,435–451.
    [55] Wang Y., Anastasia N E, Yan T, et al. Understanding the mechanism of the dormant dauer formationof C.elegans:from genetics to biochemistry[J].IUBMB Life,2009,61,607-612.
    [56]Albert P S, Riddle D L. Developmental alterations in sensory neuroanatomy of the Caenorhabditiselegans dauer larva[J].Comp.Neurol,1998,219,461-481.
    [57] Nicole F.Adam A.C.elegans dauer formation and the molecular basis of plasticity.[J]. Genes.Devel.,2008,22,2149-2165.
    [58]Jeong P Y,Jung M,Yim Y H,et al.Chemical structure and biological activity of the Caenorhabditiselegans dauer-inducing pheromone[J].Nature,2005,433,541–545.
    [59]Ayyadevara S,Dandapat A, Singh S P,et al.Life span and stress resistance of Caenorhabditis elegansare differentially affected by glutathione transferases metabolizing4-hydroxynon-2-enal[J]. Mech. Ageing,2007,128,196–205.
    [60]Bart P Braeckman, Koen Houthoofd, Annemie De Vreese, et al. Assaying metabolic activity in ageingCaenorhabditis elegans[J].Mechanisms of Ageing and Development,2002,123(2-3):105-119.
    [61]Kamath R S,Ahringer J.Genome-wide RNAi screening in Caenorhabditis elegans[J].Methods,2003,30,313–321.
    [62]Kaletta T,Hengartner M O.Finding function in novel targets: C.elegans as a model organism[J].Nat.Rev.Drug Discovery,2006,5,387–398.
    [63]Hasegawa K,Miwa S,Isomura K,et al.Acrylamide-responsive genes in the nematode Caenorhabditiselegans[J].Toxicol.Sci,2008,101,215–225.
    [64]Brenner S.The genetics of Caenorhabditis elegans[J].Genetics,77,1974,71–94.
    [65] Leung M C, Williams P L, Benedetto A, et al.Caenorhabditis elegans: an emerging model inbiomedical and environmental toxicology [J]. Toxicol Sci.,2008,106(1),5-28.
    [66]Graves A L,Boyd W A,Williams P L.Using transgenic Caenorhabditis elegans in soil toxicity testing[J].Arch.Environ.Contam.Toxicol,2005,48,490-494.
    [67] Chowdhury R, Chowdhury S, Roychoudhury P, et al. Arsenic induced apoptosis in malignantmelanoma cells is enhanced by menadione through ROS generation, p38signaling and p53activation[J].Apoptosis,2009,14,108–123.
    [68]Hoss S,Jansch S, Moser T,et al.Assessing the toxicity of contaminated soils using the nematodeCaenorhabditiselegans as test organism[J].Ecotoxicology and Environmental Safety,2009.72(7),1811-1818.
    [69]Qiuli Wua,Abdelli Nouaraa,Yiping Lia,et al.Comparison of toxicities from three metal oxidenanoparticles at environmental relevant concentrations in nematode Caenorhabditis elegans[J].Chemosphere,2012,90(3):1123–1131.
    [70]Martinez-Finley J E,Aschner M. Revelations from the nematode Caenorhabditis elegans on thecomplex interplay of metal Toxicological Mechanisms[J]. Journal of Toxicology,2011:895236.
    [71]Harada H,Kurauchi M,Hayashi R,et al.Shortened lifespan of nematode Caenorhabditis elegans afterprolonged exposure to heavy metals and detergents[J].Ecotox Environ Safety,2007,66,378-383.
    [72]Du M,Wang D.The neurotoxic effects of heavy metal exposure on GABAergic system in nematodeCaenorhabditis elegans[J]. Envir Toxic Pharm,2009,27,314-320.
    [73]Dhawan R,Dusenbery D B,Williams P L.A comparison of metal-induced lethality and behavioralresponses in the nematode Caenorhabditis elegans[J]. Environmental Toxicology and Chemistry,2000,19(12):3061-3067.
    [74]Cioci L K,Qiu L,Freedman J H.Transgenic strains of the nematode Caenorhabditis elegans asbiomonitors of metal contamination[J]. Environ. Toxicol. Chem,2000,19,2122–2129.
    [75]Chu K W,Chow K L.Synergistic toxicity of multiple heavy metals is revealed by a biological assayusing a nematode and its transgenic derivative[J].Aqua Toxic,2002,61,53-64.
    [76]American Society for Testing and Materials (ASTM). Standard guide for conducting laboratory soiltoxicity tests with the nematode Caenorhabditis elegans.[J]. E2172-01. In Annual Book of ASTMStandards,2002,11.05ASTM, West Conshohocken,1606–1616.
    [77]Boyd W A, Cole R D, Anderson G L, et al. The effects of metals and food availability on the behaviorof Caenorhabditis elegans[J].Environ.Toxicol.Chem,2003,22,3049-3055.
    [78]Rakhi K. Jha, Pradeep K. Jha, Koel Chaudhury, et al. An emerging interface between life science andnanotechnology: present status and prospects of reproductive healthcare aided by nano-biotechnology[J].Nano Rev.2014,5(10):22762.
    [79] Claire E Richardson, Kerri A Spilker, Juan G Cueva, et al. PTRN-1, a microtubule minus end-bindingCAMSAP homolog, promotes microtubule function in Caenorhabditis elegans neurons [J].eLife,2014,3:7554.
    [80]Zhuang Z H, Zhao Y L, Wu Q L, et al.Adverse Effects from Clenbuterol and Ractopamine onNematode Caenorhabditis elegans and the Underlying Mechanism [J].PLoS One,2014,9(1):85482.
    [81] Young-Mi Go, Dean P Jones. Redox biology: Interface of the exposome with the proteome,epigenome and genome[J].Redox Biol,2014,2,358–360.
    [82]Fernanda Salvato, Jesper F Havelund, Mingjie Chen, et al. The Potato Tuber Mitochondrial Proteome[J].Plant Physiol,2014,164(2):637–653.
    [83]Christopher Southan, John M Hancock. A tale of two drug targets: the evolutionary history of BACE1and BACE2[J].Front Genet,2013,4:293.
    [84] Zhou S Y, Wang Z M, James E Klaunig. Caenorhabditis elegans neuron degeneration andmitochondrial suppression caused by selected environmental chemicals[J].Biochem Mol Biol.,2013,4(4):191–200.
    [85]Tseng I-Ling, Yang Y F, Yu C W, et al. Phthalates Induce Neurotoxicity Affecting Locomotor andThermotactic Behaviors and AFD Neurons through Oxidative Stress in Caenorhabditis elegans[J].PLoSOne,2013,8(12):82657.
    [86]Julien Brechbühl, Fabian Moine, Marie-Christine Broillet et al. Mouse Grueneberg ganglion neuronsshare molecular and functional features with C. elegans amphid neurons[J].Front Behav Neurosci,2013,7:193.
    [87]Snutch T P,Baillie D L,Alterations in the pattern of gene expression following heat shock in thenematode Caenorhabditis elegans.Canad[J].Biochem.Cell.Biol,1983.61,480–487.
    [88]Sochova I, Hofman J,Holoubek I.Using nematodes in soil ecotoxicology[J].Environ.Inter.,2006.32,374-383.
    [89]Schmitz C,Kinge P,Hutter H.Axon guidance genes identified in a large-scale RNAi screen using theRNAi-hypersensitive Caenorhabditis elegans strain nre-1(hd20)lin-15b(hd126)[J]. Proc. Natl Acad. Sci.USA,2007,104,834–839.
    [90]Ruzanov P R, Donald L, Marco A,et al.Genes that may modulate longevity in C.elegans in both dauerlarvae and long-lived daf-2adults[J]. Exp geront,2007,42(8),825-839.
    [91]Roh J Y,Lee J, Choi J.Assessment of stress-related gene expression in the heavy metal-exposednematode Caenorhabditis elegans: A potential biomarker for metal-induced toxicity monitoring andenvironmental risk assessment[J]. Environ. Toxicol. Chem.,2006,25,2946–2956.
    [92]Toshiharu Shibuya, Yoshihide Tsujimoto. Deleterious effects of mitochondrial ROS generated byKillerRed photodynamic action in human cell lines and C. elegans[J]. Journal of Photochemistry andPhotobiology B: Biology,2012,117(5),1-12.
    [93]Sulston J E. Neuronal cell lineages in the nematode Caenorhabditis elegans[J]. Cold Spring Harb.Symp.Quant.Biol.,1983,48(Pt2),443–452.
    [94]Papan C, Penkov S, Herzog R, et al.Systematic screening for novel lipids by shotgun lipidomics[J].Anal Chem.,2014,4,4;86(5):2703-10.
    [95]Depuydt G, Xie F, Petyuk VA, et al.LC-MS Proteomics Analysis of the Insulin/IGF-1-DeficientCaenorhabditis elegans daf-2(e1370) Mutant Reveals Extensive Restructuring of Intermediary Metabolism[J].Proteome Res,2014,3,3.
    [96]Penkov S, Ogawa A, Schmidt U, et al. A wax ester promotes collective host finding in the nematodePristionchus pacificus[J].Nat Chem Biol.,2014,3,2(10):1038-1460.
    [97]Rehfuess EA, Bartram J. Beyond direct impact: evidence synthesis towards a better understanding ofeffectiveness of environmental health interventions[J].Hyg Environ Health,20143;217(2-3):155-9.
    [98]Neal SJ, Kim K, Sengupta P. Quantitative assessment of pheromone-induced Dauer formation inCaenorhabditis elegans[J].Methods Mol Biol,2013;1068:273-83.
    [99]Erkut C, Vasilj A, Boland S, et al.Molecular strategies of the Caenorhabditis elegans dauer larva tosurvive extreme desiccation[J].PLoS One,2013,12,4;8(12):82473.
    [100]Gleason RJ, Akintobi AM, Grant BD, et al.BMP signaling requires retromer-dependent recycling ofthe type I receptor[J].Proc Natl Acad Sci USA,2014,2,18;111(7):2578-83.
    [101]Lee J, Kim K Y, Paik Y K. Alteration in cellular acetylcholine influences dauer formation inCaenorhabditis elegans[J].BMB Rep,20142;47(2):80-5.
    [102]Judkins J C, Mahanti P, Hoffman J B, et al. A Photocleavable Masked Nuclear-Receptor LigandEnables Temporal Control of C.elegans Development[J].Angew Chem Int Ed Engl,2014,1,22(10):1002.
    [103]Crook M. The dauer hypothesis and the evolution of parasitism:20years on and still going strong[J].Parasitol,2014,1;44(1):1-8.
    [104]Kaul T K, Reis Rodrigues P, Ogungbe I V, et al.Bacterial fatty acids enhance recovery from the dauerlarva in Caenorhabditis elegans[J].PLoS One,2014, Jan24;9(1):86979.
    [105]Kulalert W, Kim D H. The unfolded protein response in a pair of sensory neurons promotes entry of C.elegans into dauer diapause[J].Curr Biol,2013,12,16;23(24):2540-5.
    [106]González-Aguilera C, Palladino F, Askjaer P. C. elegans epigenetic regulation in development andaging[J].Brief Funct Genomics,2013,12,10.
    [107]Feng Y, Williams B G, Koumanov F, et al.FGT-1is the major glucose transporter in C. elegans and iscentral to aging pathways[J].Biochem,2013,12,1;456(2):219-29.
    [108]Chen A T, Guo C, Dumas K J, et al.Effects of Caenorhabditis elegans sgk-1mutations on lifespan,stress resistance, and DAF-16/FoxO regulation[J].Aging Cell,2013,10,12(5):932-40.
    [109]Green J W, Snoek L B, Kammenga J E, et al.Genetic mapping of variation in dauer larvaedevelopment in growing populations of Caenorhabditis elegans[J].Heredity (Edinb),2013,10,111(4):306-13.
    [110]Kanzaki N, Maehara N, Aikawa T, et al.An entomoparasitic adult form in Bursaphelenchus doui(Nematoda: Tylenchomorpha) associated with Acalolepta fraudatrix[J]. Parasitol,2013,10,99(5):803-15.
    [111]Chase D L,Koelle M R.Biogenic amine neurotransmitters in C.elegans[J].In WormBook,2007,1–15.
    [112]Cole R D,Anderson G L,Williams P L.The nematode Caenorhabditis elegans as a model oforganophosphate-induced mammalian neurotoxicity[J]. Toxicol. Appl. Pharmacol,2004,194,248–256.
    [113]Bargmann C I. Horvitz H R. Morris and Horn, control of larval development by chemosensoryneurons in Caenorhabditis elegans[J]. Science,1991,251,1243-1246.
    [114]Avery L, Horvitz H R. Effects of starvation and neuroactive drugs on feeding in Caenorhabditiselegans[J].J.Exp.Zool,1990,253,263–270.
    [115]Windy A. Boydb, Marjolein V.et al.Medium-and high-throughput screening of neurotoxicants using C.elegans[J].Neurotoxicology and Teratology,2010,32(1):68–73.
    [116]Sambongi Y, Nagae T, Liu Y,et al.Sensing of cadmium and copper ions by externally exposedADL,ASE,and ASH neurons elicits avoidance response in Caenorhabditis elegans[J].Neuroreport,1999,10,753–757.
    [117]Williams P L,Dusenbery D B. A promising indicator of neurobehavioral toxicity using the nematodeCaenorhabditis elegans and computer tracking[J].Toxicol. Ind. Health,1990,6,425–440.
    [118]David Rudel, Chandler D Douglas, Ian M Huffnagle, et al. Assaying Environmental Nickel ToxicityUsing Model Nematodes [J].PLoS One,2013,8(10):77079.
    [119]Sudipta Chakraborty, Julia Bornhorst, Thuy T Nguyen, et al.Oxidative Stress Mechanisms UnderlyingParkinson’s Disease-Associated Neurodegeneration in C. elegans [J].Mol Sci,2013,14(11):23103–23128.
    [120]Zhang W M, Ting L, Li M, et al. Beneficial Effects of Wheat Gluten Hydrolysate to Extend Lifespanand Induce Stress Resistance in Nematode Caenorhabditis elegans [J].PLoS One,2013,8(9):74553.
    [121]Han S M, Hajer El Oussini, Jelena Scekic-Zahirovic, et al. VAPB/ALS8MSP Ligands RegulateStriated Muscle Energy Metabolism Critical for Adult Survival in Caenorhabditis elegans [J].PLoS Genet,2013,9(9):1003738.
    [122]Hamilton B, Dong Y, Shindo M, Liu W,et al.A systematic RNAi screen for longevity genes inC.elegans[J].Genes,1998,19,1544–1555.
    [123]Dengg M,van Meel,J C A. Caenorhabditis elegans as model system for rapid toxicity assessment ofpharmaceutical compounds[J]. Pharmacol.Toxicol.Methods,2004,50,209–214.
    [124]Candido E P,Jones D.Transgenic Caenorhabditis elegans strains as biosensors[J].Trends Biotechnol,1996,14,125–129.
    [125]Donkin S G.Williams P L.Influence of developmental stage, salts and food presence on various andendpoints using Caenorhabditis elegans for aquatic toxicity testing[J]. Environ.Toxicol.Chem,1995,14,2139–2147.
    [126]Easton A,Guven K,Pomerai D I.Toxicity of the dithiocarbamate fungicide mancozeb to the nontargetsoil nematode, Caenorhabditis legans[J].Biochem.Mol.Toxicol,2001,15,15–25.
    [127]Donkin S G, Dusenberry D B. A soil toxicity test using the nematode Caenorhabditis elegans and aneffective method of recovery[J].Arch.Environ.Contam.Toxicol,1993,25,145-151.
    [128]Massimo A.Hilliard,Cornelia I.Bargmann,Paolo Bazzicalupo. C.elegans Responds to ChemicalRepellents by Integrating Sensory Inputs from the Head and the Tail[J]. Current biology,2002,12(9):730–734.
    [129]Maxwell C K.Leung,Phillip L.Williams,Alexandre Benedetto, et al.Caenorhabditis elegans:AnEmerging Model in Biomedical and Environmental Toxicology[J]. Toxicological Science,2008,106(1):5–28.
    [130]Wang D Y,Wang Y.Phenotypic and Behavioral Defects Caused by Barium Exposure in NematodeCaenorhabditis elegans[J].Arch Environ Contam Toxic,2008,54(3),447-453.
    [131]Pestov N B, Shakhparonov M I, Kornienko T V. Matricide in Caenorhabditis elegans as an example ofprogrammed death of whole animal organism: role of mitochondrial oxidative stress[J].Article in Russian.
    [132]Ulrike Beckert, Wen Yih Aw, Heike Burhenne, et al. The Receptor-Bound Guanylyl Cyclase DAF-11Is the Mediator of Hydrogen Peroxide-Induced Cgmp Increase in Caenorhabditis elegans [J].PLoS One,2013,8(8):72569.
    [133]Christopher J Boehler, Anna M Raines, Roger A Sunde. Deletion of Thioredoxin Reductase andEffects of Selenite and Selenate Toxicity in Caenorhabditis elegans[J].PLoS One,2013,8(8):71525.
    [134]Laura M Jones, Samantha J Rayson, Anthony J Flemming, et al. Adaptive and SpecialisedTranscriptional Responses to Xenobiotic Stress in Caenorhabditis elegans Are Regulated by NuclearHormone Receptors [J].PLoS One,2013,8(7):69956.
    [135]Surasri N Sahu, Jada Lewis, Isha Patel, et al. Genomic Analysis of Stress Response against Arsenic inCaenorhabditis elegans [J].PLoS One,2013;8(7),66431.
    [136]Henkle-Duhrsen, K. A stress-responsive glutathione S-transferase confers resistance to oxidativestress in Caenorhabditis elegans[J].Free Radic.Biol.Med,2008,34,1405–1415.
    [137]Ichishita R,Tanaka K,Sugiura Y,et al.An RNAi screen for mitochondrial proteins required to maintainthe morphology of the organelle in Caenorhabditis elegans[J]. Biochem,2008,143,449–454.
    [138]Jeevan K Prasain, Hieu D Hoang, Johnathan W Edmonds, et al. Prostaglandin Extraction andAnalysis in Caenorhabditis elegans [J].J Vis Exp,2013,(76):50447.
    [139]Manuel Liebeke, Isabel Garcia Perez, Craig J Anderson, et al. Earthworms Produce phytochelatins inResponse to Arsenic[J].PLoS One,2013,8(11):81271.
    [140]Kellyn S Betts.Tox21to Date: Steps toward Modernizing Human Hazard Characterization[J].EnvironHealth Perspect,2013,121(7):228.
    [141]Ronny van Aerle, Anke Lange, Alex Moorhouse, et al. Molecular Mechanisms of Toxicity of SilverNanoparticles in Zebrafish Embryos[J].Environ Sci Technol,2013,47(14):8005–8014.
    [142]Hope I A.Background on Caenorhabditis elegans.In C. elegans: A Practical Approach (I. A. Hope,Ed.), pp.1999,1–15. Oxford University Press, NY.
    [143]Cassee F R, Groten J P, van Bladeren P J, et al. Toxicological evaluation and risk assessment ofchemical mixtures[J].Critical Reviews in Toxicology,1998,28(1):73–101.
    [144]Marshall E Toxicology goes molecular[J].Science,1993,259,1394-1398.
    [145]Lagido C,McLaggan D,Flett A,et al.Rapid sublethal toxicity assessment using bioluminescentCaenorhabditis elegans, a novel whole-animal metabolic biosensor[J]. Toxicol.Sci,2009,109,88-95.
    [146]Bukau B,Weissman J,Horwich A.Molecular chaperones and protein quality control[J].Cell,2006,66,191–197.
    [147]Candido E P.The small heat shock proteins of the nematode Caenorhabditis elegans: structure,regulation and biology[J].Prog. Mol.Subcell.Biol,2002,28,61-78.
    [148]Feder M E,Hofmann G E,Heat-shock proteins, molecular chaperones, and the stress response:evolutionary and ecological physiology[J]. Annu. Rev. Physiol,1999,61,243–282.
    [149]Devaney E, Thermoregulation in the life cycle of nematodes[J].Parasitol,2006,36,641–649.
    [150]Alexiou G A, Vartholomatos G, Stefanaki K, et al.Expression of heat shock proteins inmedulloblastoma[J].Neurosurg Pediatr,2013,12(5):452-7.
    [151]Slotta-Huspenina J, Wolff C, Drecoll E, et al.A specific expression profile of heat-shock proteins andglucose-regulated proteins is associated with response to neoadjuvant chemotherapy in oesophagealadenocarcinomas[J].Br J Cancer,2013,23,109(2):370-8.
    [152]Arrigo A P, Gibert B. Protein interactomes of three stress inducible small heat shock proteins: HspB1,HspB5and HspB8[J].Hyperthermia,2013,29(5):409-22.
    [153]Jaiswal M K, Agrawal V, Jaiswal Y K. Lipopolysaccharide drives alternation of heat shock proteinsand induces failure of blastocyst implantation in mouse[J].Biol Reprod,2013,27,88(6):162.
    [154]Chow A M, Tang D W, Hanif A, et al. Induction of heat shock proteins in cerebral cortical cultures bycelastrol[J].Cell Stress Chaperones,2013,18(2):155-60.
    [155]Hightower L E. Heat shock,stress proteins, chaperones and proteotoxicity[J].Cell,1991,66,191–197.
    [156]Tovar N, Fernández de Larrea C, Pedrosa F, et al.Differential humoral responses against heat-shockproteins after autologous stem cell transplantation in multiple myeloma[J].Ann Hematol,2014,93(1):107-11.
    [157]King A M, Toxopeus J, MacRae T H. Functional differentiation of small heat shock proteins indiapause-destined Artemia embryos[J].FEBS,2013,280(19):4761-72.
    [158]Acunzo J, Katsogiannou M, Rocchi P. Small heat shock proteins HSP27(HspB1), αB-crystallin(HspB5) and HSP22(HspB8) as regulators of cell death.[J].Biochem Cell Biol,2012,44(10):1622-31.
    [159]Cha J Y, Ahn G, Kim J Y, et al. Structural and functional differences of cytosolic90-kDa heat-shockproteins (Hsp90s) in Arabidopsis thaliana[J].Plant Physiol Biochem,2013,70:368-73.
    [160]Marunouchi T, Abe Y, Murata M, et al.Changes in small heat shock proteins HSPB1, HSPB5andHSPB8in mitochondria of the failing heart following myocardial infarction in rats[J].Biol PharmBull,2013,36(4):529-39.
    [161]Ding L,Candido E P.Association of several small heat-shock proteins with reproductive tissues in thenematode Caenorhabditis elegans[J].Biochem,2000,351,13-7.
    [162]Micha M M,Wilhelmusa,Wilbert C,et al.Small heat shock proteins inhibit amyloid-β proteinaggregation and cerebrovascular amyloid-β protein toxicity[J].Brain Res,2006,1089,67-78.
    [163]Morley J F,Morimoto R I.Regulation of longevity in Caenorhabditis elegans by heat shock factor andmolecular chaperones[J].Mol.Biol.Cel,2004,15,657-664.
    [164]Kammenga J E,Arts M S J,Oude-Breuil W J M. HSP60as a potential biomarker of toxic stress in thenematode plectus acuminatus[J]. Arch. Environ. Contam.Toxicol,1998.34,253–258.
    [165]Devaney E, O’Neill K M, Whitesell L,et al.Hsp90is essential in the filarial nematode Brugia[J].Parasitol,2005,35,625–636.
    [166]Gillan V,Maitland K,McCormack G, et al.Functional genomics of hsp-90in parasitic and free-livingnematodes[J]. Parasitol,2009,39,1071–1081.
    [167]Morrow G,Battistini S, Zhang P,et al.Decreased lifespan in the absence of expression of themitochondrial small heat shock protein Hsp22in Drosophila[J].Biol. Chem,2004,279,43382-43385.
    [168]Parcellier A,Gurbuxani S, Schmitt E,et al.Heat shock proteins, cellular chaperones that modulatemitochondrial cell death pathways[J].Biochem.Biophys.Res. Commun,2003,304,505–512.
    [170]Cara J B,Aluru N,Moyano FJ,et al.Food-deprivation induces Hsp70and Hsp90protein expression infry gilthead sea bream and rainbow trout[J].Comp.Biochem. Physiol,2005, B142,426–431.
    [171]Leroux M R,Ma B J, Batelier G, et al. Unique structural features of a novel class of small heat shockproteins[J].Biol.Chem,1997,272,12847-12853.
    [172]Wilhelmus M M,Otte-H ller I, Wesseling P,et al.Specific association of small heat shock proteinswith the pathological hallmarks of Alzheimer’s disease brains[J].Neur. Appl.Neurobio,2006,32,119–130.
    [173]Kregel K C. Heat shock proteins: modifying factors in physiological stress responses and acquiredthermotolerance[J].J Appl Physiol,2002,92:2177–2186.
    [174]Birnby D A,Link E M,Vowels J J,et al.A transmembrane guanylyl cyclase (DAF-11) and Hsp90(DAF-21)regulate a common set of chemosensory behaviors in C.elegans[J]. Genetics,2000,155,85–104.
    [175]Carretero-Paulet L, Albert VA, Fares MA. Molecular evolutionary mechanisms driving functionaldiversification of the HSP90A family of heat shock proteins in eukaryotes[J].Mol Biol Evol,2013,30(9):2035-43.
    [176]李铸衡;侯晓丽;徐镜波,等.温度对线虫的砷胁迫应答的影响.分析化学,2013,2013(04).
    [177]Guven K,Duce J,de Pomerai D I,Evaluation of a stressinducible transgenic nematode strain for rapidaquatic toxicity testing[J]. Aquat.Toxicol,1994,29:119–137.
    [178]Evangelou M W H., Ebel M, Schaeffer A. Chelate assisted phytoextraction of heavy metals from soil:Effect, mechanism, toxicity, and fate of chelating agents[J].Chemosphere,2007,68(6):989-1003.
    [179] Spurgeon D J,Jones O A H,Dorne J C M,et al.Systems toxicology approaches for understanding thejoint effects of environmental chemical mixtures[J]. Science of the Total Environment,2010,408(18):3725–3734.
    [180]Beyer J, Sondvik M, Hylland K, et al. Contaminant accumulation and biomarker responses inflounder (Platichthys flesus L.) and atlantic cod (Gadus morhua L.) exposed by caging to pollutedsediments in Sorfjorden,Norway[J]. Aquat Toxicol,1996,36:75–98.
    [181]Zhou Q,Zhang J,Fu J,et al.Biomonitoring: an appealing tool for assessment of metal pollution in theaquatic ecosystem[J].Anal Chim Acta,2008,606(2),135-150.
    [182]Singh V.and Aballay A. Links Heat-shock transcription factor (HSF)-1pathway required forCaenorhabditis elegans immunity[J]. Proc.Natl.Acad.Sci,2006,103,13092-13097.
    [183]苏永红,唐柱云,曾科.重金属联合毒性研究进展[J].现代农业科技,2007,10:174-175.
    [184] Edward J Perkins, Gerald T Ankley, Kevin M Crofton, et al. Current Perspectives on the Use ofAlternative Species in Human Health and Ecological Hazard Assessments[J].Environ Health Perspect,2013,121(9):1002–1010.
    [185]Saleh Heneidi, Ariel A. Simerman, Erica Keller, et al. Awakened by Cellular Stress: Isolation andCharacterization of a Novel Population of Pluripotent Stem Cells Derived from Human Adipose Tissue[J].PLoS One,2013,8(6):64752.
    [186] Olesja Bondarenko, Katre Juganson, Angela Ivask, et al. Toxicity of Ag, CuO and ZnO nanoparticlesto selected environmentally relevant test organisms and mammalian cells in vitro: a critical review [J].ArchToxicol,2013,87(7):1181–1200.
    [187]Hu Chunxiao, James Dillon, James Kearn, et al. NeuroChip: A Microfluidic ElectrophysiologicalDevice for Genetic and Chemical Biology Screening of Caenorhabditis elegans Adult and Larvae [J].PLoSOne,2013,8(5):64297.
    [188]Sebastian Schmeisser, Kathrin Schmeisser, Sandra Weimer, et al. Mitochondrial hormesis links low-dose arsenite exposure to lifespan extension [J].Aging Cell,2013,12(3):508–517.
    [189]John A Lewis, Elizabeth A Gehman, Christine E Baer, et al. Alterations in gene expression inCaenorhabditis elegans associated with organophosphate pesticide intoxication and recovery [J].BMCGenomics,2013,14:291.
    [190]李钦云,赵铃铃.有机磷农药对食品的污染防治[J].工业卫生与职业病,2005,31(4):260—263.
    [191]Cassee F R, Groten J P, van Bladeren P J, et al. Toxicological evaluation and risk assessment ofchemical mixtures[J]. Critical Reviews in Toxicology,1998,28(1):73-101.
    [192]张哲,王江涛,谭丽菊.草甘膦对旋链角毛藻和盐生杜氏藻的毒性兴奋效应[J].生态毒理学报,2010,5(5):658-691.
    [193]Negga R, Rudd D A, Davis N S, et al. Exposure to Mn/Zn ethylene-bis-dithiocarbamate andglyphosate pesticides leads to neurodegeneration in Caenorhabditis elegans[J]. NeuroToxicology,2011,32(3):331-341.
    [194]Ural M S, Calta M. Acute toxicity of dichlorvos (DDVP)to fingerling mirror carp, Cyprinus carpioL[J].Bulletin of Environmental Contamination and Toxicology,2005,75(2):368-373.
    [195]韩庆莉,赵志瑞,白志辉,等.敌敌畏对鲫鱼的急性毒性及类球红细菌的解毒作用[J].生态毒理学报,2009,4(6):847-853.
    [196]Lewis J A, Szilagyi M, Gehman E, et al. Distinct patterns of gene and protein expression elicited byorganophosphorus pesticides in Caenorhabditis elegans [J].BMC Genomics,2009,10:202-222.
    [197] Martinez-Finley E J, Aschner M. Revelations from the nematode Caenorhabditis elegans on thecomplex interplay of metal toxicological mechanisms [J]. Journal of Toxicology,2011: Article ID895-236.
    [198]何风生,陈署砀.混配农药中毒的防治研究[J].中华医学信息导报,2002,(11):16—17.
    [199]王玉军,周东美,孙瑞娟,等.土壤中草甘膦与镉的交互作用对3种土壤酶活性的影响[J].生态毒理学报,2006,1(1):58-63
    [200]Moshayov A, Koltai H, Glazer I. Molecular characterisation of the recovery process in theentomopathogenic nematode Heterorhabditis bacteriophora[J].Parasitol,2013,7,43(10):843-52.
    [201]Schroeder N E, Androwski R J, Rashid A, et al. Dauer-specific dendrite arborization in C. elegans isregulated by KPC-1/Furin[J].Curr Biol,2013,8,19,23(16):1527-35.
    [202]Ludewig AH, Izrayelit Y, Park D, et al.Pheromone sensing regulates Caenorhabditis elegans lifespanand stress resistance via the deacetylase SIR-2.1[J].Proc Natl Acad Sci USA,2013,4,2,110(14):5522-7.
    [203]Srinivasan J, Dillman A R, Macchietto M G, et al.The draft genome and transcriptome of Panagrellusredivivus are shaped by the harsh demands of a free-living lifestyle[J].Genetics,2013,4,193(4):1279-95.
    [204]Backholm M, Ryu WS, Dalnoki-Veress K. Viscoelastic properties of the nematode Caenorhabditiselegans, a self-similar, shear-thinning worm[J].Proc Natl Acad Sci USA,2013,3,19,110(12):4528-33.
    [205]Driver R J, Lamb A L, Wyner A J, et al.DAF-16/FOXO regulates homeostasis of essential sleep-likebehavior during larval transitions in C. elegans[J].Curr Biol,2013,3,18,23(6):501-6.
    [206]Okumura E, Tanaka R, Yoshiga T. Species-specific recognition of the carrier insect by dauer larvae ofthe nematode Caenorhabditis japonica[J].Exp Biol,2013,2,15,216(4):568-72.
    [207]Sim C, Denlinger D L. Insulin signaling and the regulation of insect diapause[J].Front Physiol,2013,7,22,4:189.
    [208]Chung S H, Schmalz A, Ruiz R C, et al.Femtosecond laser ablation reveals antagonistic sensory andneuroendocrine signaling that underlie C.elegans behavior and development[J].Cell Rep,2013,7,25,4(2):316-26.
    [209]Lee J Y, Kim C, Kim J, et al. DJR-1.2of Caenorhabditis elegans is induced by DAF-16in the dauerstate[J].Gene,2013,7,25,524(2):373-6.
    [210]Baugh L R. To grow or not to grow: nutritional control of development during Caenorhabditis elegansL1arrest[J]. Genetics,2013,7,194(3):539-55.
    [211]Dumas K J, Delaney C E, Flibotte S, et al.Unexpected role for dosage compensation in the control ofdauer arrest,insulin-like signaling, and FoxO transcription factor activity in Caenorhabditiselegans[J].Genetics,2013,7,194(3):619-29.
    [212]Holmes M. County-level estimates of the number of individuals in North Carolina who would beeligible for coverage under the Affordable Care Act's expanded insurance options[J].N C Med,2013,7-8;74(4):343-7.
    [213]Artyukhin A B, Yim J J, Srinivasan J, et al.Succinylated octopamine ascarosides and a new pathwayof biogenic amine metabolism in Caenorhabditis elegans[J].Biol Chem,2013,6,28;288(26):18778-83.
    [214]Kitaoka S, Morielli A D, Zhao F Q. FGT-1is a mammalian GLUT2-like facilitative glucosetransporter in Caenorhabditis elegans whose malfunction induces fat accumulation in intestinal cells[J].PLoS One,2013,6,24,8(6):e68475.
    [215]Massey H C Jr, Ranjit N, Stoltzfus J D, et al. Strongyloides stercoralis daf-2encodes a divergentortholog of Caenorhabditis elegans DAF-2[J].Parasitol,2013,6,43(7):515-20.
    [216]Sommer R J, McGaughran A. The nematode Pristionchus pacificus as a model system for integrativestudies in evolutionary biology[J].Mol Ecol,2013,5,22(9):2380-93.
    [217]Okumura E, Tanaka R, Yoshiga T. Negative gravitactic behavior of Caenorhabditis japonica dauerlarvae[J].Exp Biol,2013,4,15,216(8):1470-4.
    [218]Abernathy C O, Calderon R L, Chappell W R. Arsenic Exposure and Health Effects III,[J].ElseviertScience Ltd., London,1999.
    [219]Nordstrom D K. Worldwide occurrences of arsenic in ground water[J]. Science,2002,296,2143–2144.
    [220]Smith A H, Lopipero P A, Bates M N, et al. Public health: Arsenic epidemiology and drinking waterstandards[J]. Science,2002,296,2145–2146.
    [221]Ng J C, Wang J, A. Shraim, A global health problem caused by arsenic from naturalsources[J].Chemosphere,2003,52,1353–1359.
    [222]Diesel E, Schreiber M, van der Meer J R. Development of bacteria-based bioassays for arsenicdetection in natural waters[J]. Anal. Bioanal. Chem,2009,394,687–693.
    [223]S. Otles, O. Cagindi, Health importance of arsenic in drinking water and food[J]. Environ. Geochem.Health,2010,32,367–371.
    [224]Lu T H, Su C C, Chen Y W, et al.Arsenic induces pancreatic b-cell apoptosis via the oxidativestress-regulated mitochondria-dependent and endoplasmic reticulum stress-triggered signalingpathways[J].Toxicol. Lett.,2011,201,15–26.
    [225]曹煊,余晶晶,王庚,等.人肝细胞中总砷及砷代谢产物分析方法研究[J].分析化学,2009,37(1),19-24.
    [226]Suzuki K T, Katagiri A, Sakuma Y, et al. Distributions and chemical forms of arsenic afterintravenous administration of dimethylarsinic and monomethylarsonic acids to rats[J]. Toxicol. Appl.Pharmacol.,2004,198(3),336-344.
    [227]Dwivedi N, Mehta A, Yadav A, et al. MiADMSA reverses impaired mitochondrial energymetabolism and neuronal apoptotic cell death after arsenic exposure in rats[J]. Toxicol. Appl. Pharmacol.,2011,256,241–248.
    [228]Germolec D R, Spalding J, Yu H S, et al.Arsenic Enhancement of Skin Neoplasia by ChronicStimulation of Growth Factors[J]. Am. J. Pathol.,1998,153(6),1775–1785.
    [229]Sun G F, Arsenic contamination and arsenicosis in China[J]. Toxicol. Appl Pharmacol.,2004,198(3),268–271.
    [230]Ling Y H, Jiang J D, Holland J F, et al.Arsenic trioxide produces polymerization of microtubulesand mitotic arrest before apoptosis in human tumor cell lines[J]. Mol. Pharmacol.,2002,62,529–538.
    [231]Mishra D, Flora S J, Differential oxidative stress and DNA damage in rat brain regions and bloodfollowing chronic arsenic exposure[J]. Toxicol. Ind. Health,2008,24(4),247–256.
    [232]Shi Y, Wei Y, Qu S, et al.Arsenic induces apoptosis of human umbilical vein endothelial cellsthrough mitochondrial pathways[J]. Cardiovasc. Toxicol.,2010,10,153–160.
    [233]Chowdhury R, Chowdhury S, Roychoudhury P, et al. Arsenic induced apoptosis in malignantmelanoma cells is enhanced by menadione through ROS generation, p38signaling and p53activation[J].Apoptosis,2009,14,108–123.
    [234]Yeh J Y, Cheng L C, Liang Y C, et al.Modulation of the arsenic effects on cytotoxicity, viability,and cell cycle in porcine endothelial cells by selenium[J]. Endothelium.,2003,10(3),127–139.
    [235]Chai C Y, Huang Y C, Hung W C, et al. Arsenic salts induced autophagic cell death andhypermethylation of DAPK promoter in SV-40immortalized human uroepithelial cells[J].Toxicol. Lett.,2007,173,48–56.
    [236]Yan H, Wang Y C, Li D, et al.Arsenic trioxide and proteasome inhibitor bortezomib synergisticallyinduce apoptosis in leukemic cells: the role of protein kinase Cdelta[J].Leukemia,2007,21(7),1488–1495.
    [237]Tang C H, Chiu Y C, Huang C F, et al.Arsenic induces cell apoptosis in cultured osteoblaststhrough endoplasmic reticulum stress[J].Toxicol. Appl. Pharmacol.,2009,241,173–181.
    [238]Singh S, Greene R M, Pisano M M, Arsenate-induced apoptosis in murine embryonic maxillarymesenchymal cells via mitochondrial-mediated oxidative injury[J]. Birth Defects Res. A: Clin. Mol.Teratol.,2010,88,25–34.
    [239]Kaneto H, Kawamori D, Matsuoka T A, et al. Oxidative stress and pancreatic b-celldysfunction[J].Am. J. Ther.,2005,12,529–533.
    [240]Packer L, Rosen P, Tritschler H, et al.Oxidative stress and pancreatic-cell destruction in insulin-dependent diabetes mellitus.[M].Antioxidants and diabetes management. New York: Marcel Dekker.2000,265–274..[241]Singh N P, McCoy M T, Tice R R, et al.A simple technique for quantitation of low levels of DNAdamage in individual cells[J]. Exp. Cell Res.,1988,175,184–191.
    [242]Frankel S, Concannon J, Brusky K, et al.Arsenic exposure disrupts neurite growth and complexityin vitro[J]. Neuro Toxicology,2009,30,529–37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700