用户名: 密码: 验证码:
土壤汞污染的物理化学行为及其微生物学特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究是国家重点基础研究发展规划(973)项目(编号:2002CB410804)“长江、珠江三角洲地区土壤和大气环境质量变化规律与调控原理”子课题“重金属在土壤—植物系统中迁移、转化、积累规律与农产品安全”的组成部分。根据国家项目的特定研究内容、目标的要求,本研究选择了长江三角洲的小粉土、黄红壤和青紫泥三种代表性人为耕作土壤作为研究对象,通过实验室模拟分析及网室盆栽试验研究了土壤中主要污染物汞的吸附解吸行为,生物有效性,土壤—水稻(蔬菜)系统中土壤微生物的汞生态效应、群落结构和酶活性等。取得了以下有一定特色和意义的研究结果:
     1.土壤对汞离子的吸附-解吸行为与土壤性质密切相关。有机质和粘粒含量较高的黄红壤对汞离子的吸附容量最大,其次是青紫泥,最小的是小粉土。小粉土、黄红壤和青紫泥对汞离子的吸附可以用Langmuir和Freundlich吸附模型很好的拟合,Langmuir方程的相关系数更高一些,说明它更适用于描述汞的吸附。小粉土、黄红壤与青紫泥对汞的最大吸附量(K_L)分别为111.11 mg kg~(-1)、212.77 mg kg~(-1)和188.68 mg kg~(-1)。三种供试土壤在吸附汞离子后平衡液的pH随添加汞浓度的增加而显著降低。随汞浓度增加,三种土壤中汞的吸附分配系数呈指数下降。在汞加入浓度1000 mg kg~(-1)时,用0.1 M KCl连续解吸5次,小粉土吸附汞中有24.40%被解吸,而黄红壤则有14.37%吸附汞被解吸,青紫泥有18.35%吸附汞被解吸。
     pH对土壤吸附汞离子的解吸影响较大。小粉土、青紫泥和黄红壤吸附Hg~(2+)的解吸率均随pH值升高先降低,后变平缓,又升高,在pH为3.00-5.00范围内下降,pH为5.00-7.00曲线趋于平缓,pH为7.00-9.00曲线趋于升高,这说明酸性的环境(pH<5.4)有利于Hg~(2+)解吸,并且对Hg~(2+)解吸率随pH增加而减少,因而pH也是控制土壤中汞有效性一个重要因素。
     在加入Cu~(2+)和Zn~(2+)后,三种供试土壤吸附汞的解吸量大大增加,在相同Cu~(2+)和Zn~(2+)离子浓度下,Cu~(2+)对Hg~(2+)解吸量增加的幅度较Zn~(2+)大。铜加入量从0 mM到15 mM,小粉土、青紫泥和黄红壤吸附汞的解吸量分别从1.50 mg L~(-1)、1.64 mg L~(-1)和2.06 mg L~(-1)增加到5.45 mg L~(-1)、4.48 mg L~(-1)和2.68 mg L~(-1);锌加入量从0 mM到20 mM,小粉土、青紫泥和黄红壤吸附汞的解吸量分别从1.50 mg L~(-1)、1.64 mg L~(-1)和2.06 mg L~(-1)增加到4.53mg L~(-1)、3.96 mg L~(-1)和2.56 mg L~(-1)。
     研究表明有机酸对三种土壤中汞的解吸行为影响极大,随加入的有机酸浓度增大,三种土壤吸附汞的解吸量增大。对小粉土而言,低浓度(<10~(-4) M)的有机酸可抑制对Hg~(2+)的解吸,而高浓度(>10~(-4) M)有机酸可促进Hg~(2+)的解吸。不同有机酸对土壤吸附汞的解吸行为的影响也不同,本实验研究的四种有机酸对三种土壤吸附汞的解吸行为的影响中,按对土壤吸附汞离子解吸的促进作用强弱排序为:柠檬酸>酒石酸>苹果酸>草酸。
     2.本文从土壤化学角度出发,对HCl、NH_4OAC、DTPA和CaCl_2四种提取剂对小粉土、黄红壤和青紫泥中汞的化学提取条件及提取性作了初步研究。结果表明,随着平衡时间延长增加,汞提取量有逐渐增加的趋势。在三种土壤中各提取剂的提取率达到稳定的提取时间分别为:小粉土(HCl 10分钟;CaCl_2 10分钟;DTPA 10分钟;NH_4OAc 10分钟);黄红壤(HCl 10分钟;CaCl_2 30分钟;DTPA 30分钟;NH_4OAc 30分钟);青紫泥(HCl 10分钟;CaCl_2 30分钟;DTPA 30分钟;NH_4OAc 30分钟)。可见,提取时间30分钟时,有效汞含量基本达到平衡,因此,对四种提取剂来说,30分钟可作为提取三种供试土壤汞有效态的最佳提取时间。
     研究表明,随着土液比的不断减小,三种土壤四种提取剂Hg的提取量明显提高。为减少试验误差,确定1:5为较适宜的土液比。
     四种提取剂在三种供试土壤中的提取能力有显著的差异。对于小粉土,其顺序为:NH_4OAc<CaCl_2<DTPA<HCl;对于黄红壤,其顺序为:NH_4OAc<CaCl_2≈DTPA<HCl;对于青紫泥,其顺序为:DTPA<NH_4OAc<HCl<CaCl_2。这表明HCl和DTPA,特别是HCl提取效率较高。
     用水稻籽粒、小白菜叶、萝卜根含汞量与提取剂提取汞量进行相关统计分析。结果表明:对土壤—水稻系统来说,小粉土和黄红壤用DTPA作提取剂,青紫泥用CaCl_2作提取剂,在振荡平衡时间30min,土液比1:5条件下,测定土壤中有效态Hg是较为适宜的方法;
     对土壤—小白菜系统来说,在振荡平衡时间30min,土液比1:5条件下,由于三种供试土壤上小白菜叶Hg含量与4种提取剂提取Hg量相关不显著,因此,需要选择其它的提取剂来提取;
     对土壤—萝卜系统来说,在振荡平衡时间30min,土液比1:5条件下,小粉土和黄红壤上萝卜根Hg含量与提取剂HCl提取Hg量相关系数最大,而青紫泥上萝卜根Hg含量与提取剂CaCl_2提取Hg量相关系数最大。因此,小粉土和黄红壤用HCl作提取剂,青紫泥用CaCl_2作提取剂,在振荡平衡时间30min,土液比1:5条件下,测定土壤中有效态Hg是较为适宜的方法。
     通过综合分析4种提取剂的提取能力、提取结果与植物汞含量的关系,确定HCl为评价本研究三种供试土壤中汞元素有效性的最佳化学提取剂。
     3.土壤—水稻作物系统中,本实验条件下,汞污染对土壤环境质量微生物学和酶学指标有较大的影响。水稻收获后,除部分土壤的呼吸强度和代谢商随汞处理浓度的增加而持续增加外,不同Hg处理后土壤微生物量碳、呼吸强度,土壤脲酶、酸性磷酸酶和脱氢酶均表现为在低浓度Hg处理时有促进作用,在高浓度时则表现出抑制作用。不同指标出现峰值时的Hg浓度分别是0.5、1、1.5、2mg kg~(-1)不等。综合来看,土壤微生物商是Hg处理后比较敏感的微生物学指标。Hg不同处理的土壤酶活性强弱依次为:黄红壤>青紫泥>小粉土。通过对重金属生态剂量ED50的分析,表明Hg对小粉土脲酶活性的生态毒性比相应的青紫泥和黄红壤强;对黄红壤磷酸酶活性的生态毒性比相应的青紫泥和小粉土强;对青紫泥脱氢酶活性的生态毒性比相应的小粉土和黄红壤强。
     本文也证实了BIOLOG系统是反映土壤微生物生理轮廓和微生物群落结构的有效手段。微生物群落代谢剖面AWCD值和McIntosh指数可以较好的反应本实验三种土壤微生物群落结构和汞污染之间的剂量关系。汞污染严重的土壤AWCD值、McIntosh指数均显著低于无污染和轻度污染的土壤,表明汞污染引起了红砂土和黄筋泥微生物群落结构功能多样性的下降,减少了能利用有关碳源底物的微生物的数量,最终导致土壤微生物群落功能结构多样性发生变化。
     4.土壤—(小白菜)作物系统中分析测定的大部分土壤微生物学和酶学等生态指标,均与土壤—水稻系统表现出相似的规律。本试验中,就平均而言,青紫泥中的土壤微生物量碳最高,其次是黄红壤,最小的是小粉土。同时,小粉土中对汞污染的敏感性最强,其次是青紫泥,最弱的是黄红壤。不同浓度汞处理后,土壤微生物活性的变化与土壤微生物量的变化规律相似。即,随汞处理浓度增大土壤微生物活性而增强,到一定浓度后转为减弱。三种供试土壤的微生物商差异显著,黄红壤的微生物商最大,其次是青紫泥,最小的是小粉土。比较而言,微生物商是对土壤微生物比较敏感的指标。
     平均而言,黄红壤和青紫泥中的土壤酶活性高于小粉土。除磷酸酶外,Hg多数处理浓度对土壤酶活性表现出抑制作用,与种植水稻时多数处理浓度起促进作用正好相反。Hg污染条件下小粉土脲酶活性受抑制的幅度最大,黄红壤的受抑制最小。种植小白菜后,除磷酸酶和小粉土中的脱氢酶外,其它土壤中脲酶和脱氢酶活性与重金属处理间均达负相关水平,但未达到显著水平。研究表明Hg对小粉土脲酶活性的生态毒性比相应的青紫泥和黄红壤强;Hg对黄红壤磷酸酶活性的生态毒性比相应的青紫泥和小粉土强;Hg对小粉土脱氢酶活性的生态毒性比相应的青紫泥和黄红壤强。
     此外,在小白菜收获后,采用碳素利用法(BIOLOG测试系统)对土壤微生物功能和群落结构多样性分析,结果表明:随Hg各处理浓度增加,BIOLOG ECO盘平均吸光值(AWCD)降低,群落代谢剖面值与培养时间间呈非线性关系,其变化过程符合微生物种群生长动态模型,呈“S”形增长模式(logistic模型)。
     5.土壤—(萝卜)作物系统中Hg的生态效应与土壤—水稻或蔬菜系统有相似之处。就平均而言,青紫泥和黄红壤中平均Cmic高于小粉土。从土壤看,青紫泥和黄红壤中土壤呼吸强度要高于小粉土。黄红壤和青紫泥的土壤代谢商除了峰值外差异不大,但小粉土的最高,其次是黄红壤,最低的是青紫泥。与栽培小白菜后的变化不同,青紫泥的微生物商最大,其次是小粉土,最小的是黄红壤。
     不同浓度汞处理后,土壤酶活性在供试的三种土壤中都表现出一定的差异性。起初,随着汞处理浓度的增高,三种土壤中酶的活性增强,小粉土到1 mg kg~(-1)处理时出现峰值,黄红壤和青紫泥到1.5 mg kg~(-1)处理时出现峰值,然后随汞浓度增高而下降。
     种植萝卜后,Biolog生态盘的AWCD随培养时间的增加而增强,呈“S”型指数增长模式。三种土壤的平均吸光值依次为:青紫泥>黄红壤>小粉土,表明青紫泥和黄红壤中微生物活性超过小粉土。
     本研究阐明了在长江、珠江三角洲地区主要土壤类型中汞的物理化学行为、生物有效性及生物学特征;揭示汞在土壤—作物系统中迁移、积累、平衡规律及其主控因子;明确土壤—作物系统中汞污染的生态毒理、预测方法及其调控机制。在土壤-植物系统中汞的迁移、转化和积累规律及其健康效应方面的基础理论研究方面取得较大突破,为国家制定该地区土壤汞污染控制、削减、修复行动计划提供科学依据。
This study was a part of the research project "the mechanisms of movement,transform, and accumulation of typical heavy metals in agricultural soil and theirrelationships to plant ecosystem and farm produce safety", a sub-project of the NationalKey Basic Research Program of China (973)"the temporal and spatial variation andadjusting and controlling principles of the environmental quality of soil and atmosphere inthe areas of Yangtse Rive and Pearl Rive Deltas"(No. 2002CB410804)". According to thedemands of the specific research content and aims of the national program, Three paddysoils with contrasting properties were studied. A silty loam soil (Paddy soil 1) wascollected from Huajiachi campus, Zhejiang University, Hangzhou, a yellowish red soil(Paddy soil 2) from Deqing County, and a purplish clayey soil (Paddy soil 3) from JiaxingCounty in Zhejiang Province, China. All of them belong to Gleyi-Stagnic Anthrosols inFAO/UNESCO nomenclature.
     Both laboratory and greenhouse pot experiments using rice, Chinese cabbage andradish as indicator plants were conducted to investigate the adsorption-desorptioncharacteristics and availability of Hg, and the ecological effects of increasing Hg loadingson microbial biomass, microbial activity, microbial community structure, and soil enzymeactivities. The major objectives of this study were to understand biogeochemical behaviorof Hg in three tested soils and to compare the potential of chemical, biochemical, andmicrobiological parameters for indicating and predicting Hg contamination. The resultswere summarized as follows:
     1. Adsorption-desorption of Hg at contaminated levels in three tested soils wereinvestigated. In all cases, Hg~(2+) adsorption decreased in the order: YRS soil>PCS soil>SLSsoil, with YRS having the highest sorption capacity for Hg. The maximum adsorption (K_L)value was 111.11 mg kg~(-1) for SLS soil, 212.77 mg kg~(-1) for YRS soil and 188.68 mg kg~(-1)for PCS soil. The isotherms of Hg~(2+) adsorption in the soils can be well described by thesimple Langmuir and Freudlich model. The simple Langrnuir model gave a relativelybetter representation of the experimental data based on the fitting correlation coefficients(r~2).
     Adsorption of Hg~(2+) decreased soil pH by 0.75 unit for the SLS soil, 0.91 unit for theYRS soil and 0.55 unit for the PCS at the highest loading. The distribution coefficient (k_d)of Hg in the soils decreased exponentially with increasing Hg~(2+) loading. The adsorptionequilibrium pH of YRS was higher than that of SLS at the same Hg~(2+) concentration.Most of the adsorbed Hg~(2+) in the soils was not desorbed in the 0.01 M KCl solution. Afterfive successive desorptions, the accumulative amounts of Hg~(2+) desorbed accounted foronly 24.40%of the adsorbed Hg~(2+) for SLS soil, 14.37%for YRS soil and 18.35%for PCS soil, indicating that the YRS soil had the greatest affinity for Hg~(2+) at the same Hg~(2+)loading. Different mechanisms may be involved in Hg~(2+) adsorption/desorption atdifferent levels of Hg~(2+) loading and among three testedsoils.
     Desorption characteristics as affected by desorption solution pH, organic acids, andcompetitive ions were also studied, pH was the most important factor controlling Hg~(2+)desorption. Mercury desorption with increasing solution pH was characteristic of a "U"pattern and consisted of a desorption decreasing stage at pH 3.0-5.0, a precipitation andminimal desorption stage at pH 5.0-7.0; and a desorption increasing stage at pH 7.0-9.0.
     Organic acids remarkably influenced the desorption behavior of Hg~(2+) in the paddysoils. The presence of organic acids at low concentrations (<10~(-4) M) tended to inhibit Hg~(2+)desorption, but enhanced Hg~(2+) desorption at higher concentrations (>10~(-4) M). Citric acid athigh concentrations (>10~(-3) M) was the most effective in increasing Hg~(2+) desorption,followed by tartaric acid and malic acid, and oxalic acid was the least effective. Thedesorption of Hg~(2+) was also affected by the presence of competitive cations (Cu~(2+) or Zn~(2+)).The desorption of adsorbed Hg~(2+) increased with increasing concentrations of added Cu~(2+)or Zn~(2+), and Cu~(2+) was more effective than Zn~(2+) in competing with Hg~(2+) for adsorbing sitesat the same concentration levels.
     2. Four extractants, including 0.1 M HCl, 1 M NH_4OAc(pH7.0), 0.005 M DTPA and 0.1M CaCl_2 (pH5.0) were evaluated for their extraction of available Hg~(2+) in the three testedsoils at different equilibrium times and different soil: solution ration.
     The amount of Hg~(2+) extracted increased with the increasing of equilibrium time. Theequilibrium time required for maximum extraction of the added Hg~(2+) varied among thefour extractants: 10 min for the four extractants in the SLS soil; 10 min for the HCl, 30min for the other extractants for the YRS and the PCS soil. Overall, 30 min is the bestequilibrium time. The amount of Hg~(2+) extracted decreased with increasing soil: solutionratio. Our study shows that the soil:solution ratio of 1:5 is adequate. The amount of Hg~(2+)extracted increased in the order of NH_4OAc<CaCl_2<DTPA<HCl for the SLS soil,NH_4OAc<CaCl_2≈DTPA<HCl for the YRS soil, and DTPA<NH_4OAc<HCl<CaCl_2 for thePCS soil.
     There were significant correlations between concentrations of Hg in edible tissue andthe amounts of Hg extracted with the four extractants for soil-rice system and soil-radishsystem, but not for soil-Chinese cabbage system. According to the capability of differentextractants and the correlation of the extractable Hg~(2+) and Hg contents in edible planttissues, the 0.1M HCl was the best extractant among the four extractants and couldindicate plant availability of Hg in soil-plant systems.
     3. The changes of soil microbial activities and the functional diversity of microbialcommunity can be used to indicate the dose effect of Hg~(2+) on soil ecological system. Somesoil microbial parameters such as microbial biomass carbon, microbial quotient, AWCD, and urease activity were sensitive to Hg pollution.
     Mercury ecological dose responses of basal respiration, microbial biomass carbon,metabolism quotient, microbial quotient, and microbial community diversity wereinvestigated in the SLS, YRS, and PCS soils at Hg~(2+) loadings of 0, 0.25, 0.5, 1, 1.5, 2, 3,6mg kg~(-1). The results showed that mercury (Hg~(2+)) pollution had significant effects on themicrobial and enzymatic indices. There were several ecological effect characteristics ofHg in the soil-rice system. After harvesting rice plant, except for basal respiration andmetabolism quotient, which increased with increasing level of Hg treatments, all measuredmicrobial and enzymatic indices including microbial biomass carbon, microbial quotientincreased with the increasing level of Hg treatments at low concentrations (<2mg kg~(-1)) anddecreased at the 0.5, 1, 1.5, 2mg kg~(-1) Hg treatments. The results also indicate that soilmicrobial quotient is more sensitive to Hg contamination than the other microbial indices.
     Some important soil enzymes including urease, dehydrogenase, and acid phosphatase,which are related to cycling of soil C, N and P, were investigated. Mercury input had verydifferent effects on the enzyme activities. Enzymatic activity of the YRS soil was highest,followed by the PCS soil, and the SLS soil was the least.. The analysis of ED50 indicatedthat ecological toxicity of urease was the strongest for the SLS soil; ecological toxicity ofacid phosphatase was the strongest for the YRS soil; and ecological toxicity ofdehydrogenase was the strongest for the PCS soil.
     After harvesting rice plants, soil microbial function and community structurediversity were analyzed using BIOLOG, soil microbial functional diversities of microbialcommunity were changed to varying extent under the stress of Hg~(2+) pollution. The averagewell color development (AWCD) on the ECO plate reduced with increasing level of Hg.There was a nonlinearly relationship between AWCD and incubation time, and therelationship followed a growth dynamic model of microbial population (Logistic curve).The microbial community richness and McIntosh index decreased in polluted soil than thecontrol soil. The results suggest that the structure of microbial community has beenchanged under Hg~(2+) stress. Mercury pollution decreased the functional diversity ofmicrobial community, and reduced the microbial utilization of different carbon resources.
     4. The ecological effect of Hg in soil-vegetable (Chinese cabbage and radish) systemwas similar to those in soil—rice system. Namely, small addition of Hg (<2mg kg~(-1)) to soilcould promot above soil microbial and enzymatic indices, but excessive addition of Hg(>2mg kg~(-1)) to soil declined the soil microbial and enzymatic indices.
     In the soil-Chinese cabbage system, the results indicate that soil microbial quotient ismore sensitive to Hg contamination than the other microbial indices. In addition,enzymatic activities were higher in the YRS and PCS soil than the SLS soil. Afterharvesting Chinese cabbage, except for acid phosphatase whose activity increased withincreasing level of Hg treatments, most of Hg treatments had inhibitory effects on enzymatic activity in contrast with soil-rice system. Mercury treatments had the mostinhibitory effects on urease activity in SLS soil, less in PCS soil, and the least in YRS soil.There were no significant relationships between dehydrogenase and soil Hg loadings, norbetween urease activity and soil Hg~(2+) loadings except for acid phosphatase anddehydrogenase in SLS soil. The analysis of ED50 indicated that ecological toxicity ofurease and dehydrogenase was the strongest in the SLS soil; ecological toxicity of acidphosphatase was the strongest in the YRS soil after harvesting Chinese cabbage.
     After harvesting radish, microbial biomass carbon in SLS soil was the highest, butbasal respiration of SLS soil was the smallest. In soil-radish system, the peak values ofsoil enzymatic activity varied with soils, 1 mg kg~(-1) for SLS soil, 1.5 mg kg~(-1) for YRS andPCS soils. The soil-radish system differed from the soil-Chinese cabbage system in thatthe microbial quotient of three tested soils in the radish system decreased in the order ofPCS soil>SLS soil>YRS soil.
     The analysis of BIOLOG after harvesting radish also indicated that the average wellcolor development (AWCD) on the ECO plate was reduced with increasing level of Hg.There was a nonlinear relationship between AWCD and incubation time, and therelationship followed a growth dynamic model of microbial population (Logistic curve),similar to other cropping system.
     The study illuminated physicochemical and biological characterization of mercurycontamination in representative paddy soils in the areas of Yangtse Rive and Pearl RiveDeltas, revealed transplant, accumulation,and equilibium law of mercury and someimportant factors controlling mercury contamination in soil-crop system, and highlightedecological toxicity, prediction method, and regulation and control mechanism of mercurycontamination in soil—crop system. It also made major breakthrough in fundamentalresearch aspect consisting of transplant, transformation, and accumulation law of mercuryand healthy effect, which would supply scientific theoretics gist of control, restore projectof soil mercury pollution for our country.
引文
白瑛.1987.北京地区几种主要土壤的性质和汞的临界含量.环境科学.8(5).
    白瑛.1988.汞在土壤—作物系统中的残留与吸收.中国环境科学.6.
    鲍士旦.2000.土壤农化分析[M].北京:中国农业出版社,363—364
    北京林学院.1982.土壤学上册.北京:中国林业出版社.
    陈怀满,1996.土壤-植物系统中的重金属污染.北京:科学出版社.
    陈世宝,华珞.1997.有机质在土壤重金属污染治理中的应用.农业环境与发展.14(3):26-29
    迟清华.2004.汞在地壳、岩石和疏松沉积物中的分布.地球化学.33(6):641-648.
    崔瑞平,赵彬彬,满洪界.1987.某汞矿冶炼厂附近环境汞污染调查.环境科学.8(3):65-67.
    柴世伟,温琰茂,张云霓等.2003.广州市郊区农业土壤重金属含量特征.中国环境科学.23(6):592-596
    戴前进,冯新斌,唐桂萍.2002.土壤汞的地球化学行为及其污染的防治对策.地质地球化学.30(4):75-79.
    单孝全,王仲文.2001.形态分析与生物可给性.分析实验室.20(6):103-108.
    喜田村正次.1988.汞:原子能出版社.
    丁中元.1989.重金属在土壤—作物中分布规律研究.环境科学.10(5):55-61.
    东北地理与农业生态所.研究显示:我国汞污染防治工作亟需加强 2006[cited.Avai lable from http://www.cas.ac.cn/html/Dir/2004/05/28/7490.htm.
    杜道灯.1987.土壤汞对小麦、水稻生长和残留的影响.农业环境保护.6(5).
    冯新斌,陈业材.1996.土壤中汞存在形式的研究.矿物学报.16(2):218-222.
    福斯,H.P,唐耀先等.1984.土壤科学原理.北京:农业出版社.
    傅献彩等.1990.物理化学(下册).第四版.北京:高等教育出版社.
    汞工作组,SCOPE CHINA. 1996. SCOPE CHINA汞污染专题学术讨论会《纪要》.环境化学 15(1):90-91.
    关松荫.1984.我国主要土壤剖面酶活性状况.土壤学报.21(4):368-381.
    何振立.1998.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社.
    和文祥,朱铭莪等.2002.土壤脲酶与汞关系中的作物效应.西北农林科技大学学报.30(2):68-72.
    和文祥,韦革宏,等.2001.汞对土壤酶活性的影响.中国环境科学.21(3):279-283
    贺建群,许嘉琳.1994.土壤中有效态Cd,Cu,Zn,Pb提取剂的选择.农业环境保护 13(6):246-251.
    胡红青,贺纪正,李学垣.1999.多种有机酸共存对可变电荷土壤的影响.植物营养与肥料学报.5(2):122-128.
    环境污染分析方法科研协作组.1987.环境污染分析方法.北京:科学出版社.
    蒋先军,骆永明等.2001.镉污染土壤的植物修复及其Edta调控研究:Ⅰ、镉对富集植物印度芥菜的毒性.土壤.33(4):197-201.
    江行玉,赵可夫.2001.植物重金属伤害及其抗性机理.应用与环境生物学报.7(1):92-99
    康春丽,杜建国.1999.汞的地球化学特征及其映震效能.地质地球化学.27(1):79-84.
    李长生,刘静宜.1989.汞在天然水体中的环境化学行为.环境化学.
    李健等.1989.环境背景值数据手册.北京:中国环境科学出版社.
    李军,张玉龙,陈维新.1992.有机质对土壤汞吸附特性的影响.沈阳农业大学学报.23:38-42.
    李瑞美,何炎森.2003.重金属污染与土壤微生物研究概况.福建热作科技 28(4):41-43.
    李天杰.1995.上海市区城市化对降水的影响初探.
    立川凉.1980.汞在土壤中的存在形态—粒径及有机物组成与汞量的关系.日本土壤肥料学杂志 49(4).
    廖敏,黄昌勇.2002.镉在有机酸存在时对红壤中微生物生物量的影响.应用生态学报.13(3):300-302
    刘继芳,曹翠华,蒋以超,李韵珠.2000.重金属离子在土壤中的竞争吸附动力学初步研究.Ⅰ.铜与镉在褐土中竞争吸附动力学.土壤肥料.(3):10-15.
    刘俊华,王文华.2000.土壤中汞生物有效性的研究.农业环境保护 19(4):216-220.
    刘霞,刘树庆,唐兆宏.2002.河北主要土壤中Cd、Pb形态与油菜有效性的关系.生态学报.22(10):1689-1694.
    刘英俊等.1984.元素地球化学.北京:地质出版社.
    刘云惠,魏显有.1998.土壤中汞镉的化学形态和有效态的提取与分离研究.河北农业大学学报.21(4):44-47.
    罗洪亮,周剑.2002.有机酸对几种土壤吸附铜的影响.中国岩溶.21(3):160-164.
    莫淑勋.1986.土壤中有机酸的产生、转化及对土壤肥力的某些影响.土壤学进展.4:1-10.
    孟昭福,张增强,张一平等.2004.几种污泥中重金属生物有效性及其影响因素的研究.农业环境科学学报.23(1):115-118
    牟树森,青长乐.1993.环境土壤学.北京:中国农业出版社.
    牟树森,青长乐.1997.酸沉降区作物对汞的积累及其影响因素的研究.重庆环境科学.19(1):5-10.
    牟树森,唐书源.1992.酸沉降地区土壤—蔬菜系统中汞污染问题.农业环境保护 11(2):57-60.
    潘树荣.1982.环境中若干元素的自然背景值及研究方法.
    庞叔薇等.1981.连续化学浸提法测定底泥中不同形态汞的探讨.环境科学学报. 1(3):234-241.
    皮广洁,袁建云.1996.汞对泽蛙蝌蚪毒性的研究.西南农业大学学报.18(3):293-295.
    祁忠占,彭永康.1991.汞对蔬菜幼苗生长及氧化酶同工酶的影响.环境科学学报.11(3):370-375.
    青长乐,付绍清.1992.论土壤重金属毒性临界值.农业环境保护.11(2):51-56.
    青长乐,牟树森.1995.抑制土壤汞进入陆生食物链.环境科学学报.15(2):148-155.
    邱少敏,薛家华.1990.红壤中铜的竞争吸附动力学.环境化学.9(2):1-5.
    斯尼茨尔,吴奇虎等.1979.环境中的腐殖物质.北京:化学工业出版社.
    宋静.2002.土壤重金属污染的生物有效性及铜污染的生物修复研究,中国科学院南京土壤研究所,南京.
    隋红建,饶纪龙.1995.土壤离子吸持机理模型及其应用.土壤学进展.23(1):27-31,55.
    孙波,赵其国.1997.土壤质量与持续环境:Ⅲ.土壤质量评价的生物学指标.土壤 29(5):225-234.
    孙卫玲,赵蓉,张岚等.2001.pH对铜在黄土中吸持及其形态的影晌.环境科学.22(3):78-83.
    唐永鉴等.1987.环境学导论.北京:高等教育出版社.
    王丹丽,关子川,王恩德.2003.腐殖质对重金属离子的吸附作用.黄金 24(1):47-49.
    王定勇,牟树森.1998.大气汞对土壤—植物系统汞累积的影响研究.环境科学学报.18(2):194-198.
    王定勇,牟树森.1999.酸沉降地区大气汞对土壤—植物系统汞累积影响的调查研究.生态学报.19(1):140-144.
    王果.1995.Cu,Cd在2种土壤上的吸附特征.福建农业大学学报.24(4):436-441.
    王果.1994.络合作用对重金属离子吸附的影响.土壤学进展.22(6):6-13.
    王建林,刘芷宇.1991.重金属在根际中的化学行为:Ⅰ.土壤中铜吸附的根际效应.环境科学学报.11(2):178-186.
    王连生,田笠卿.1989.有机酸,碱类污染物分配系数的测定及相关性研究.环境科学学报.9(4):418-424.
    王美青,章明奎.2002.杭州市城郊土壤重金属含量和形态的研究.环境科学学报.22(5):603-608.
    王起超,沈文国.1999.中国燃煤汞排放量估算.中国环境科学.19(4):318-321.
    王维君,邵宗臣,何群.1995.红壤粘粒对Co、Cu、Pb和Zn吸附亲和力的研究.土壤学报.32(2):167-177.
    王孝堂.1991.土壤酸度对重金属形态分配的影响.土壤学报.28(1):103-107.
    王翊亭等.1985.环境学导论.北京:清华大学出版社.
    王云等.1995.土壤环境元素化学.北京:中国环境科学出版社.
    吴敦虎,齐少华.1983.氧化汞,硫化汞溶解度因素的研究.环境科学.5(1):31—33.
    吴燕玉,陈怀满.1997.重金属复合污染对土壤—植物系统的生态效应Ⅰⅰ.对作物,苜蓿,树…应用生态学报.8(5):545-552.
    伍钧,漆辉,郭佳.2003.黄壤对铬(Ⅳ)吸附特性的研究.农业环境科学学报.22(3):333-336.
    武玫玲.1989.土壤对铜离子的专性吸附及其特征的研究.土壤学报.26(1),31-40.
    喜田村正次.1988.汞:原子能出版社.
    夏时雨,刘清.1996.土壤中不同形态汞的提取及其取样深度.环境污染与防治 16(4):27-29.
    夏瑶,娄运生,杨超光等.2002.几种水稻土对磷的吸附与解吸特性研究.中国农业科学.35(11):1369-1374.
    夏增禄.1988.土壤环境容量及其应用.北京:气象出版社.
    谢正苗.1996.环境中汞的化学循环.环境保护科学.22(3):8-11.
    熊礼明.土壤有效Cd测定方法探讨.环境化学.1992,11(3):41-47.
    徐明岗.1997.土壤离子吸附:2.主要阴阳离子的吸附特性.土壤肥料(6):3-7.
    徐明岗.1998.pH对黄棕壤Cu~(2+)和Zn~(2+)吸附等温线的影响.土壤学报.29(2):65-66.
    杨崇洁.1989.几种金素元素进入土壤后的迁移转化规律及吸附机理的研究.环境科学.10(3):2-8.
    杨国治,夏家琪,戈捷.1979.土壤中汞的固定与释放的初步研究.土壤学报.16(1):38-43.
    杨元根,Paterson等.2001.用微生物对单—碳源利用方法探讨重金属在城市土壤中积累的环境效应.地球化学.30(5):459-464.
    杨元根,Paterson等.2002.Biolog方法在区分城市土壤与农村土壤微生物特性上的应用.土壤学报.39(4):582-589.
    姚爱军,青长乐.1999.腐殖酸对矿物结合汞活性的影响:Ⅰ.腐殖酸对矿物结合汞挥发活性的影响.土壤学报.36(4):477-483.
    姚爱军,青长乐.2000.腐殖酸对矿物结合汞植物活性的影响.中国环境科学.20(3):215-219.
    姚槐应.2003.评估红壤微生物群落结构Biolog体系的改进.
    叶叔中等.1986.重庆市近郊农业环境污染调查及环境区划报告.In内部资料.
    尹君,刘文菊.2000.土壤中有效态镉、汞浸提剂和浸提条件研究.河北农业大学学报.23(2):25-28.
    尹君,张毅功.1993.土壤中有效态镉测定方法探讨.河北农业大学学报.16(4):37-41.
    游植磷,罗志刚.1996.华南地区三种土壤对汞吸附特性的探讨.华南农业大学学报.17(3):25-29.
    于天仁,季国亮,丁昌璞.1996.可变电荷土壤的电化学.北京:科学出版社.
    余贵芬青长乐,等.2002.腐殖酸结合汞在土壤中的分布特征.中国环境科学.22(2):179-183.
    余贵芬,青长乐.2000.腐殖酸结合汞的研究现状.农业环境保护19(4):255-256,F003.
    余国营,吴燕玉.1997.土壤环境中重金属元素的相互作用及其对吸持特性的影响.环境化学.16(1):30-36.
    俞慎何振立,黄昌勇.2003.重金属胁迫下土壤微生物和微生物过程研究进展.应用生态学报.14(4):618-622.
    俞慎.2002.红壤中铜污染的物理化学行为和生物学表征,浙江大学,杭州.
    虞锁富.1987.几种土壤对锌的专性吸附.土壤通报.(18):265.
    虞锁富.1991.土壤对重金属的竞争吸附.土壤学报,28(1):50-57.
    愈慎.2002.红壤中铜污染的物理化学行为和生物学表征,浙江大学,杭州.
    张格丽,王凯荣.1997.国内外农业镉污染研究现状及其发展趋势分析.农业环境保护 16(3):114-117
    张淼,李亚青,王敏新.1996.黄土体对重金属(Cd、Pb、Zn、Cu)吸附试验研究.西北水资源与水工程.7(2):35-40.
    张学询,王连平,宋胜焕.1988.天津污灌区土壤、作物重金属污染状况的研究.中国环境科学.8(2):20-26.
    赵春燕,何瀛等.2001.重金属对土壤微生物酶活性的影响.土壤通报.32(2):93-94
    中国科学院南京土壤研究所微量元素组编著.1979.土壤和植物中微量元素分析方法。北京:科学出版社,167-250。
    周玳,龙金满.1985.汞在土壤中的吸附与释放的初步研究.环境化学.(2).
    周密等.1987.环境容量:东北师范大学出版社.
    朱寿珩.1987.土壤中汞的形态研究.北京农业大学学报.13(1).
    朱小翠,青长乐.1996.土壤汞形态及其影响因素的研究.土壤学报.33(1):94-100.
    Adrino, D.C., 1986. Trace Elements in the Terrestrial Environment. New York: Springer-Verlag.
    Agamuthu, P., and R., Mahalingam, 2005. Mercury emissions: is there a global problem? Waste. Manage. Res. 23, 485-486.
    Akira, Kudo, D.C Mortimer, and H., Sanford. 1975. Factors of effects on Hg desadsorption in desposits. Canadian Journal of Earth Sciences 12 (6).
    Alina, K.P. et al. 1984. Trace elements in soils and plants. Boca Roton, Elorida: CPC press Inc.
    Amacher, M.C., H.M. Selim, and X. Iskandari. 1993. Kinetics of mercuric Chloride Retention by soils. Journal of Environmental Quality 19 (3): 382-388.
    Anthony, C. 1997. Methyl-mercury contamination and emission to the atmosphere from soil amended with municipal sewage sludge. J. Envion. Qual. 26 (6): 1650-1654.
    Aoyama, M., and S. Itaya. 1993. Effects of copper on the decomposition of plant residues, microbial biomass and betaglucosidase activity in soils. Soil Sci Plant Nutr 39: 557-566.
    Atlas R.M. Diversity of microbial community. Adv. Microb. Ecol. 1984, 7: 1-47.
    Baath E. Effects of heavy metal in soil on microbial processes and populations: a review. WaterAir Soil Pollution. 1989,335-379.
    Baath E., K. A., Arnebrant, Nordgren. Microbial biomass and ATP in smelter polluted forest humus. Bull. Environ. Contam. Toxicol. 1991, 47:278-282.
    Baath, E. 1989. Effects of heavy metals in soil on microbial processes and populations(A Review). Water Air and Soil Pollution 47:335-379.
    Baath, E. 1992. Measurement of heavy metal tolerance of soilbacteria using thymidine incorporation into bacteria extracted after homogenization centrifugation. Soil Biology & Biochemistry 24 (11):1167-1172.
    Baath, E., A. Forstegard, M. DiaRavina, et al., 1998b. Microbial community -based measurements to estimate heavy metal effects in soil: the use of phospholipid fatty acid patterns and bacterial community tolerance. Integrated soil analysis. Ambio 7 (1):58-61.
    Baath, E., K. Arnebrant, and A. Nordgren. 1991. Microbial biomass and ATP in smelter polluted forest humus. Bull. Environ. Contamin. Toxicol. 47:278-282.
    Baath, E., M. DiazRavina, A Frostegard, et al., 1998a. Effect of metal-rich sludge amendments on the soil microbial community. Appl Environ Microbiol 64 (1):238-245.
    Baath, E.1989. Effects of heavy metals in soil on microbial processes and populations(A Review). Water Air and Soil Pollution 47:335-379.
    Bardgett, R.D and T.W. Speir. 1994. Impact of pasture contamination by copper,chromium and arsenic timber preservative on soil microbial properties and nematodes. Biol.Fertil.Soils 18:71-79.
    Basta, N.T., and M.A.Tabatabai. 1992a. Effect of cropping systems on adsorption of metals by soils: I. Single-metal adsorption. Soil Sci. 153:108-114.
    Basta, N.T., and M.A. Tabatabai. 1992b. Effect of cropping systems on adsorption of metals by soils: II. Effect of pH. Soil Sci. 153:195-204.
    Basta, N.T., and M.A. Tabatabai. 1993. Path-analysis of heavy metal adsorption by soil. J. Agron. 85: 1054-1057.
    Behra, R. 1985. Evidences for the Exsitence of a Retention phenomenon during the migration of a mercurial solution through a saturated porous medium. Geoderma 38:209-222.
    Bhattackarya, A.K., Venkobachar, C, 1984. Removal of cadmium(II) by low cost adsorbents. J. Environ. Eng. 110, 110-112.
    Biro, B., Pechy Koves, K., I. Voros, et al., 1998. Toxicity of some field applied heavy metals altstotherhizobial and fungal microsymbionts of alfalfa and red clover. Agrokemiaes Talajtan 47 (124):265-276.
    Bourg, A.C.M, and P.W Schindler. 1985. Control of trace metals in natural aquatic systems by the adsorptive properties of organic matter in T.D.Lekkas(ed). In Pro, 5th int. Conf. Heavy Metals in the Environment. Athens.
    Bronwyn D.H., Raymond L.C. 1997. Using the Gini coefficient with BIOLOG substrate utilization data to provide an alternative quantitative measure for comparing bacterial soil communities. Journal of Microbiological Methods. 30: 91-101.
    Brookes P.C. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils. 3995, 19:269-279.
    Brookes P.C, Landman A., Pruden G. Chloroform fumigation and the release of soil nitrogen: A rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biology and Biochemistry. 1985, 17(6): 837-845.
    
    Brookes P.C, and McGrath S.P. Journal of soil science. 1984, 35: 341-346.
    Brookes, P.C, McGrath, S. P. 1995. The use of microbial parameters in monitoring soil pollution by heavy metals. Biology and Fertility of Soils 19:269-279.
    Brookes, P.C, and S. P. McGrath. 1987. Adenylate energy charge in metal contaminated soil. Soil Biol.Biochem 19:219-220.
    Brookes, P.C, D.S. Powlson, and D.S. Jenkinson.1985. The microbial biomass in soil. London: In J.M.Lynch(ed.) Soil biotechnology.Blackwell.
    Bruemmer, G.W., J. Gerth, and K.G. Tiller. 1988. Reaction kinetics of the adsorption and desorption of nickel, zinc, and cadmium by goethite. I. Adsorption and diffusion of metals. J. Soil Sci. 39:37-52.
    Burckhard, S.R., Schwab, A.P., Banks, M.K., 1995. The effects of organic acids on the leaching of heavy metals from mine tailings. J. Hazard. Mater. 41, 135-145.
    Burns R G. Enzyme activity in soil: location and possible role in microbial activity [J]. Soil BioLBiochem., 1982,14:423-427
    Carbonell, G., M.V. Pablos, P. Farcia, et al., 2000. Rapid and cost-effective multiparameter toxicity tests for soil microorganisms. Science of the Total Environment 247:143-150.
    Chander K, Brookes P C. Microbial biomass dynamics following addition of metal-mriched sewage sludges to a sandy loam [J]. Soil Biol. Biochem., 1995, 27:1409-1421
    Chander, K., and P.C. Brookes. 1991a. Effects of heavy metals from past applications of sewage sludge on microbial biomass and organic matter accumulation in a sandy loam and silty clay loam. U.K.Soil BioLBiochem. 23:927-932.
    Colpaert, J.V., and J.A. Vanassche. 1987. Heavy metal tolerance in some ectomycorrhizal fungi. Func Ecol 1 (4):415-421.
    Contrufo, M.F., et al., 1995. Effects of urban heavy metal pollution on organic matter decomposition in woods. Environ Pollut, 89:81-87.
    Couillard, D., and S.C. Zhu. 1992. Bacterial leaching of heavy metals from sewage sludge for agricultural application. Water Air Soil Pollu 63 (1-2):67-80.
    Dahlin, S., E. Witter, A. Martensson, et al., 1997. Where's the limit? Changes in the microbiological properties of agricultural soils at low levels of metal contamination. Soil BioLBiochem 29 (9-10):1405-1415.
    Dick R.P., Breakwell D.P., Turco R.F. Soil enzyme activities and biodiversity measurements as integrative microbiological indicators. Methods for Assessing Soil Quality. SSSA Special Publication 49, Soil Science Society of American, 677 S. Segoe Rd., Madison WI53711, USA, 1996:247-271.
    Dronen, A. K., V. Torsvik, J. Goksoyr, and E. M. Top. 1998. Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. Ferns Microbiology Ecology 27 (4):381-394.
    Eichholz, G.G, M.F. Peteka, and R.L. Kury. 1988. Migration of elemental mercury through soil from simulated burial sites. Water Research 22 (1): 15-20.
    Elzahabi M., Yong R.N. pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology. 2001, 60(1-4): 61-68.
    Ernst, W H O. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry. 1996, 11(1-2): 163-167.
    Farrah, H, et al., 1979. Water Air and Soil Pollution 9 (23).
    Feick, G. et al. 1972. Science 175:1142.
    Fliebbach, A.R., and H. Martens. 1994. Soil microbial biomass and activity in soils treated with heavy metal contaminated sewage sluge. Soil Biol.Biochem., 26:1201-1205.
    Gambrell, R.P. 1994. Trace and Toxic Metals in Wetland-A Review. Journal of Envionment Quality 5 (23):813-819.
    Garland CD. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community level sole-carbon-source utilization. Appl Eniviron Microbial. 1991, 57:2351-2359.
    Giller, K. E., E. Witter, and S. P. McGrath. 1998. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils:a review. Soil Biology & Biochemistry 30(10-11):1389-1414.
    Gillis, A., Miller, D. R., 2000. Some local environmental effects on mercury emission and absorption at a soil surface. Sci. Total. Environ. 260, 191-200.
    Gilmour, J.T. 1971. Envir. Lett. 2.
    Grigal, D. 2003. Mercury sequestration in forests and peatlands: A review. J. Environ. Qual. 32: 393-405.
    
    Gunary, D. 1970. J.Soil Sci., 21:72-77.
    
    Haansta, L., and P. Doelman. 1991. An ecologicaldose-responsemode approach to short- and long-term effects of heavy metals on arylsulphatase activity in soil. Biol Ferti Soils, 11 (1): 18-23.
    Harter, R.D. 1983. Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci.Soc. Am. J. 47:47-51.
    
    Hayward, D.O., and B.M.W. Trapnell. 1964. Chemisorption London: Butter-worth and Co. Ltd.,.
    He, Z.L., J. Wu, A.G. O'Donnell, and J.K. Syers. 1997. Seasonal responses in microbial biomass carbon, phosphorus and surfur in soils under pasture. Biol. Fertil.Soils 24:421-428.
    Hemida, S.K., S.A. Omar, and Mallek Abdel, A.K. 1997. Microbial populations and enzyme activity in soil treated with heavy metals. Water Air Soil Pollut 95 (1-4):13-22.
    Hever, M., J. Burke, and G. Keeler. 1995. Atmospheric sources, transport and deposition of mercury in Michigan: two years of event precipitation. Water Air and Soil Pollution 80:199-208.
    Hiroki M. Effects of heavy metal contamination on soil microbial pupolation [J]. Soil Sci.Plant Nur. 1992,38:141-147
    Holford, I.C.R et al. 1974. J.Soil Sci., 25:242-255.
    Huang P.M. and Violante A. Influence of organic acids on crystallizations and surface properties of precipitation products of aluminum. In P.M. Huang and M. Schnitzer (ed). Interactions of soil minerals with natural organics and microbes. SSSA. Spec. Publ. 17. SSSA. Madison. WI. 1986: 159-221.
    Huang, P.M., Bethelin, J., 1995. Environmental Impact of Soil Component Interaction. Metals, Other Inorganics and Microbial Activities. CRC Press, Florida, pp. 376-384.
    Huckabee, J.W., F.S. Diaz, S.A. Janzen, et al., 1983. Distribution of Mercury in vegetation at Almaden. Spain. Environmental Pollution Series A-Ecological 30 (3):211-224.
    James, R.O., P.J. Stiglicb, and T.W. Healy. 1975. Analysis of models of adsorption of metal ions at oxide/water interfaces. Faraday Discuss. Chem. Soc 59:142-156.
    Jelinek, L., Inoue, K., Miyajima, T., 1999. The effect of humic substances on Pb (II) adsorption on vermiculite. Chem. Lett. 1, 65-66.
    Jenkinson, D.S., and J.N. Ladd. 1981. Microbial biomass in soil: Measurement and turnover in: Soil Biochemistry,. New York: Paul, E.A. and Ladd, J.N(eds) Marcel Dekker INC.
    Jitaru, P., Adams, F., 2004. Toxicity, sources and biogeochemical cycle of mercury. J. Phys. Iv. 121, 185-193.
    Kandeler, E. 1992. Soil microbial processes and Testacea as indicators of heavy metal pollution. Zeitshrift fur Pflanzenemahrung und Bodenkunde 155:319-322.
    Kandeler, E., G. Luftenegger, and S. Schwarz. 1997. Influence of heavy metals on the functional diversity of soil microbial communities. Biology and Fertility of Soils 23:299-306.
    Kandeler, E.1992. Soil microbial processes and Testacea as indicators of heavy metal pollution. Zeitshrift fur Pflanzenemahrung und Bodenkunde 155:319-322.
    Kell, J.J., and R.L. Tate. 1998. Use BIOLOG for the analysis of microbial communities from zinc-contaminated soil. Journal of Envionment Quality 27 (3):601 -608.
    Kelly, J. J., and R.L. Tate. 1998. Effects of heavy metal contamination and remediation on soil microbial communities in the vicinity of azincsmelter. Journal of Environmental Quality 27 (3):609-617.
    Killham, K. 1985. A physiological determination of the impact of environmental stress on the activity of microbial bilmass. Environ.Pollut 38:283-294.
    Kinniburgh, D.G. et al. 1997. Adsorption of mercury(II) by iron hydrous oxide gel. Soil.Sci. SocAm.J. 42:45-57
    Knight B.P., McGrath S.P., Chaudri A.M., 1997. Biomass carbon measurements and substrate utilization patterns of microbial populations from soils amended with cadmium, copper, or zinc. Appl. Environ. Microbiol., 63: 39-43.
    Krishnamurti, G.S.R., Huang, P.M., Van Rees, K.C.J., 1997. Kinetics of cadmium release from soils as influenced by organic: implication in cadmium availability. J. Environ. Qual. 26, 271-277.
    Kunito, T., H. Oyaizu, and S. Matsumoto. 1998. Ecology of soil heavy metal-resistant bacteria and perspective of bioremediation of heavy metal-contaminated soils. Recent Res Devel Agric BiolChem 2(1): 185-206.
    Kuperman, R. G., and M. M. Carreiro. 1997. Soil heavy metal concentrations, microbial biomass and enzyme activities in a contaminated grassland ecosystem. Soil Biology & Biochemistry 29 (2): 179-190.
    Laczko, E., A. Rudaz, M. Aragno, et al., 1997. Diversity of anthropogenically influenced or disturbed soil microbialcommunities.In: Insam H,Raugger H,eds.Microbial Communities: Functional Versus Structural Approaches. Heidelberg,Germany: Springer-Verlag.
    Landa, E.R. 1979. The volatile loss of mercury from soils amended with methyl-mercury chloride. Soil Sci 128.
    Landmeyer, J.E., and F.H. Chapelle. 1993. Influence of Pb on microbial activity in Pb contaminated soils. Soil Biol.Biochem 25:1465-1466.
    Ledin, M., and K. Pedersen. 1996. The environmental impact of mine wastes-role of microorganism and their significance in treatment of mine wastes. Earth-Science Review 41:67-108.
    Lee, K.E., and C. E. Pankhurst. 1992. Soil organisms and sustainable productivity. Aust.J.Soil Res. 30:855-892.
    Li, Z.B., J.A. Ryan, J.L. Chen, and S.R. Al-Abed. 2001. Adsorption of cadmium on biosolids-amended soils. J.Environ.Qual.30:903-911.
    Liesack W, Schnell S, Niels Peter Revsbech N P, et al. Microbiology of flooded rice paddies [J]. Microbiology Reviews, 2000, 24: 625-645
    Lindqvist, O., K. Johnson, M. Aastrup, et al., 1991. Mercury in the Swedish environmentrecent research on causes consequences and corrective methods. Water Air and Soil Pollution 55:1-261.
    Lockwood, R.A, and K.Y. Chen. 1973. Adsorption of Hg by hydrous manganese oxides. Env.Sci.Tec 7:1028-1034.
    Ma, W.C. 1987. Heavy metal accumulation in the mole,Talpaeuro-pea,and earthworms as an indicator of metal bioavailability in terrestrial environments. Bull Environ Contamin Toxicol 39 (6):933-938.
    MacNaughton, et al. 1996. Adsorption of aqueous mercury(II) complexes at the oxide/water interface. J.Colloid Interface Sci 47 (431-440).
    Magurran A.E. Ecological diversity and its measurement. Princeton University Press, Princeton, N.J. 1998.
    Maliszewska, W., S. Dec, H. Wierzbicka, et al., 1985. The influence of various heavy metal compounds on the development and activity of soil microorganisms. Environ Pollut, 37 (3):195-215.
    Manson, R.P., W.F. Fitzgerald, and F.M.M Morel. 1994. The biogeochemical cycling of elemental mercury.anthropogenic influences. Geochemical et Cosmochimica Acta 58:3191-3198.
    McGrath, S. P., A. M. Chaudri, and K. E. Giller. 1995. Long-term effects of metals in sewage on soils,microorganisms and plants. Journal of Industrial Microiology 14:94-101.
    Mench, M., Martin, E., 1991. Mobilization of cadmium and other metals from two soils by root exudates of Zea mays L., Nicotiana tabacum L., and Nicotiana rustica L. Plant Soil 132,187-196.
    Mench, M., Morel, J.L., Guckert, A., Gruillet, B., 1988. Metal binding with root exudates of low molecular weight. J. Soil Sci. 39, 521-527.
    Mercier, L., Detellier, C, 1995. Preparation, characterization and applications as heavy metals sorbents of covalently grafted thiol functionalities on the interlamellar surface of montmorillonite. Environ. Sci. Technol. 29, 1318-1323.
    Mierle, G. and R. Ingram. 1991. The role of humic substances in the mobilization of mercury from watersheds. Water, Air and Soil Pollut. 56:349-358.
    Miretzky, P., M.C. Bisinoti, J.C. Rocha, and W.F. Jardim. 2005. Factors affecting Hg (II) dsorption in soils from the Rio Negro basin (Amazon). Quim. Nova, in press.
    Moreno J L, Garcia C, Landi L, et al. The ecological dose value (ED50) for assessing Cd toxicity on ATP content and dehydrogenase and urease activities of soil [J]. Soil Biol. Biochem., 2001,33: 483-489
    Mou, Shusen, et al., 1990. Mercury as an environmental pollutant. In Abstract of Inter, conference.. Gavle Sweden.
    Naidur, B.S, S Kookanar, et al., 1994. Ionic strength and pH efects on the sorption of cadmium an d the surface charge of soils. Euro J Soil Sci 45:419-429.
    Nannipieri P., 1995. The potential use of soil enzymes as indicators of productivity, sustainability and pollution. In: Soil biota: management in sustainable farming systems (Pankhurst C. E., Doube B. M., Gupta V.V.S.R., Grace P.R. eds.). East Melboure Victoria, Australia: CSIRO: 238-244.
    Netwon, R et al. 1976. J. Environ Qual 5 (3):251-254.
    Newton, D.W. et al. 1976. Effect of pH and Complex Formation on Mercury(II) adsorption by Bentonite. J.Environ.Qual. 5 (3):251-254.
    Obukhovskaya, T.D. 1986. Mercury Fixation by Humic Acid. Biologicheskie Nauki Moscow 7:108-112.
    Oliveira, S.M.B.D et al. 2001. Soils as an important sink for mercury in the Amazon. Water, Air and Soil Pollution 26:321-337.
    
    Olsen, S., and F.S. Watanabe. 1957. Proc. Soil. Sci. Am., 21:144-149.
    Pagnanelli F., Esposito A., Toro L., et al. Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Research. 2003, 37(3): 627-633.
    Panchanadikar, V.V., and R.N. Kar. 1993. Precipitation of copperas in Desulfovibrio sp. World J Microbiol Bio technol, 9 (2):280-281.
    Paoletti, M.G. 1999. The role of earthworms for assessment of sustainability and asbioindicators. Agric Ecosyst Environ, 74:137-155.
    Peng, A., and Z. Wang. 1985. Mercury in river sediments In:Environmental inorganic Chemistry. Weinberm: VCH Publishers Inc.
    Pennanen, T., A Frostegard, H. Fritze, et al., 1996. Phospholipid fatty acid composition and heavy metal tolerance of soil microbial communities along two heavy metal-polluted gradients in coniferous forests. Appl Environ Microbiol 62 (2):420-428.
    Ponizovskii, A. A., Mironenko, E. V., 2001. Mechanisms of lead (II) sorption in soils. Euras. Soil Sci. 34,371-381.
    Prochackova, T., R. Gora, J. Kandrac, and M. Hutta. 1998. Distribution of mercury in soil organic matter fractions obtained by dissolution/precipitation method. Journal of Radioanalytical and Nuclear Chemistry 229 (1-2):61-65.
    Qi, X.F., Y.H Lin, J.H. Chen, et al., 2000. An evaluation of mercury emissions from the chlor-alkali industry in China. J.Envion.Scil2(Supplement):24-30.
    Ramamoorthy, S., S Springthorpe, and D.J. Kushner. 1977. Bulletin of Environmental Contamination and Toxicology 17 (5):505-511.
    
    Ramkens, P.F.A.M., et al., 1999. Environment Pollution 106:315-321.
    Ramos, L., et al., 1994. Sequential fractionation of copper, cadmium and zinc in soils from or near Donana National Park. J.Environ.Qual. 23:50-57.
    Randle, k. et al. 1987. Geoderma 40:281.
    Reddy, C.N., Patrick, W.H.J., 1977. Effect of redox potential and pH on the uptake of cadmium and lead by rice plants. J. Environ. Qual. 6, 259-262.
    Renella G, Ortigoza A L R, Landi L, et al. Additive effects of copper and zinc on cadmium toxicity on phosphatase activities and ATP content of soil as estimated by the ecological dose (ED50) [J]. Soil Biol.Biochem., 2003, 35: 1203-1210
    Revis, E.I 989. Distribution of mercury species in soil from a mercury contaminated site. Water Air and Soil Pollutionl989 (45):105-l 13.
    
    Revis, N.N. 1990. Arch Environ Contem Toxicol 19 (2):221-226.
    Rogers, R. D., and J. C. Mcfarlane. 1979. Impact factors of mercury volatile from soils. Journal of Environmental Quality 8:255-260.
    Sauve, S. et al. 1998. Soil Sci.Soc. Am. J. 62:618-622.
    Schindler, P.W., 1967. Heterogeneous equilibria involving oxides, hydroxides, carbonates, and hydroxide carbonates. In W. Stumm (ed.) Equilibrium concepts in natural water systems. Advances in Chemistry Ser. 67, Am. Chem. Soc, Washington, DC.
    Schluter, K. 1997. Sorption of inorganic mercury and monomethyl mercury in an iron-humus podzol soil of southern Norway studied by batch experiments. Environmental Geology 30 (3-4):266-279.
    Schnitzer, M. et al. 1992. Water Air and Soil Pollution 15.
    Scholtz, M. T. B. 2003. Modelling of mercury emissions from backgroud soils. The Science of The Total Environment 304:185-207.
    Schuater, E. et al. 1991. The behavior of mercury in the soil with special emphasis on complexation and adsorption process-A review of the literature. Water, Air and Soil Pollut 56:667-680.
    Schuster, E. 1991. The behavior of mercury in the soil with specific emphasis on complexation and adsorption processes-A review of the literature. Water Air Soil Pollut. 56:667-680.
    Selin, N. E., 2005. Mercury rising: Is global action needed to protect human health and the environment? Environment. 47, 22-35.
    Semu, E. et al. 1987. Water Air and Soil Pollution 32:1-10.
    Singh JS, Raghubanshi AS, Singh RS, etal. 1989. Microbial binmass acts as a source of plant nutrients in dry tropical forest and savanna. Nature, 338: 499-500
    Smith, J.L., and E.A. Paul. 1991. The Significance of soil microbial biomass estimations. In In J.M.Bollag and G.STotzky(eds), Soil Biochemistry, 357-396. New York USA: Marcel Dkker.
    Speir, T.W., and D.J. Ross. 1992. Assessment of the feasibility of using CCA treated and boric acid treated sawdust as soil amendment.Soil biochemical and biological properties. Plant Soil and Environment 142:249-258.
    Speir, T.W., and H.A. Kettles. 1995. A simple kinetic approach to derive the ecological dose value,ED50, for the assessmet of Cr toxicity to soil biological properties. Soil Biol.Biochem 27:801-810.
    
    Stevenson, F.J. 1982. Humua Chemistry: John Wiley & Sons, Inc.
    Strom, L., 1997. Root exudation of organic acids: importance of nutrient availability and the calcifuge and calcicole behavior of plants. Oikos 80, 459-466.
    task, Department of environmental protection and energy. 1993. Task force on mercury emissions standard setting. In Final report on municipal soild waste, 53. Ni:DEPE.
    Tessier, A., P.G.C Compbell, and M. Bisson. 1979. Sequential Extraction Procedure for the Speciation of particulate Trace Metals. Analytical Chemistry 51 (7):844-850.
    Thanaba lasingam, P., and W.F. Pickering. 1985. The Sorption of Mercury(II) by Humic Acids. Environment Pollution 9 (4):267-279.
    Thornton I., Culbard E., Moorcroft S., et al. Metals in urban dusts and soils. J Environ Technol Lett. 1985,6:137-144.
    Toyoaki, M., K. Kasyu, and I. Syuichi. 1982. Mercury contamination of soil, rice plants,and human hair in the vicinity of a mercury mine in Mir Prefecture. Japan Soil Sci. Plant,Natr., 28 (4):523-534.
    Tyler, G.B., A.M. Pahlsson, J. Giles, et al., 1989. Heavy-metal ecology of terrestrial plants, microorganisms and invertebrates: a review. Water Air and Soil Pollution 47:189-215.
    Uren, N.C., Reisenauer, H.M., 1988. The role of root exudates in nutrient acquisition. Adv. Plant Nutr. 3,79-114.
    Wang, D. Y., C. L. Qing, T. Y. Guo, and Y. J. Guo. 1997. Effects of humic acid on transport and transformation of mercury in soil-plant systems. Water Air and Soil Pollution 95 (1-4):35-43.
    Wasserman, J. C., Hacon, S., 2003. Wasserman M A. Biogeochemistry of mercury in the Amazonian environment. Ambio. 32, 336-342.
    Weissenhorn, I., C. Leyval, and J. Berthelin. 1995. Bioavailability of heavy metals and abundance of arbuscul armycorrhiza in a soil polluted by atmospheric deposition fromasmelter. Biol Ferti Soils, 19(1):22-28.
    Weng, L., Temminghoff, E. J. M, van Riemsdijk, W. H., 2001. Contribution of individual sorbents to the control of heavy metal activity in sandy soil. Environ. Sci. Technol. 35, 4436-4443.
    Wilcke W., Muller S., Kanchanakool N., et al. Urban soil contamination in Bangkok: Heavy metal and aluminum partitioning in topsoils.Geoderma.1998, 86(3-4): 211-228.
    Wobeser, G.A. 1976. Mercury poisoning in a wild milk. J. Wildl, Dis 12:335-340.
    Wu, L.H., Luo, Y.M., Christie, P., Wong, M.H., 2003. Effects of EDTA and low molecular weight organic acids on soil solution properties of a heavy metal polluted soil. Chemosphere. 50, 819-822.
    Xiao, Z.F., J. Munthe, W.H. Schroeder, et al., 1991. Vertical fluxes of volatile mercury over forest soil and lake surfaces in Sweden. Tellus 43B:267-279.
    Yao, A.J., C. L. Qing, and S.S. Mou. 1999. Effects of humus on the activity of mineral-bound Hg. Acta Pedologica Sinica 36 (4):477-483.
    Yin, Y. J., H. E. Allen, C. P. Huang, D. L. Sparks, and P. F. Sanders. 1997. Kinetics of mercury(II) adsorption and desorption on soil. Environmental Science & Technology 31 (2):496-503.
    Yin, Y., Allen, H. E., Li, Y., Huang, C. P., Sanders, P. F., 1996. Adsorption of mercury by soil: Effects of pH, chloride, organic matter. J. Environ. Qual. 25, 837-844.
    Yu, S., He, Z.L., Huang, C.Y., Chen, G.C., Calvert, D.V., 2002. Adsorptone desorption behavior of lead at contaminated levels in red soils from China. Environ. Qual. 31, 1129-1136.
    Yujun Yin, et al. 1996. Adsorption of mercury(II) by soil: Effects of pH, chloride, and organic matter. J.Envion. Qual. 25:837-844.
    Zadhir, F., S.J. Rizwi, S.K . Haq, et al., 2005. Low dose mercury toxicity and human health. Environmental Toxicology and Pharmacology 23 (2):351-360.
    Zak, J.C., M.R. Willing, D.L Moorhead, and H.G. Wildman. 1994. Functional diversity of microbial communities: a quantitative approach. Soil Biol.Biochem 26:1101-1108.
    Zvonarev, B.A., and N.G. Zryin. 1982. Patterns of mercury sorption by soil, 1., Influence of pH on mercury sorption by soils. Moscow University of Soil Science Bulletin 37 (4):27-32.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700