用户名: 密码: 验证码:
煤矸石淋溶液对地下水系统污染规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文基于前人研究成果基础之上,运用地下水动力学、多孔介质流体力学、环境化学以及水文地质学等多学科相关理论,利用理论、实验和数值模拟相结合的方法,对煤矸石淋溶液对地下水系统污染机理和规律进行了较深入地研究:
     (1)通过室内煤矸石静、动态淋溶实验研究,科学、全面、系统、深入地揭示了新邱露天矿不同风化程度煤矸石在水岩相互作用下溶解释放出的主要污染组分为总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2-))、钠(Na~+)、总溶解性固体(TDS)等,这一结果与Szcepanska对波兰380余座煤矸石山进行的调查研究发现煤矸石的主要污染是盐度、含硫量和潜在的酸性等基本是一致的;揭示了煤矸石在长期的地球物理、化学风化、自然降水淋溶等作用下随着大量黄铁矿的氧化、分解、溶解反应以及碳酸盐岩、硅铝酸盐岩矿物的溶解反应使煤矸石风化,风化程度越高的煤矸石在水岩相互作用下溶解释放的总硬度、硫酸盐、钠、总溶解性固体等无机污染物量越多的内在机制;揭示了影响煤矸石污染组分溶解释放的主要因素为固液比、浸泡时间、酸度、搅动、矸石粒度大小以及水的动态流动等;提出了煤矸石在水岩相互作用下主要污染组分溶解释放的多相反应动力学机理即:整个溶解过程分为两个阶段:①是易溶组分脱离界面过程;②是脱离界面后以低速向外扩散过程。且溶解扩散服从菲克(Fick)扩散定律;建立了煤矸石在动态淋溶作用下主要污染组分溶解释放规律的数学模型:Cv=C_0V~n,从而可定量预测煤矸石中主要污染组分在大气降水作用下对地下水系统污染的强度;
     (2)通过室内土柱动态模拟试验,研究揭示了煤矸石淋溶液主要污染组分总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2+))、钠(Na~+)在地下水系统中的多组分运移机理和污染规律:总硬度(Ca~(2+)+Mg~(2+))的运移速度很快,硫酸盐(SO_4~(2-))次之,而钠离子(Na~+)的运移速度最慢;对流、水动力弥散和吸附作用是造成总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2-))和钠离子(Na~+)运移的主要原因,对污染组分的运移起主要作用;土壤介质对总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2-))和钠离子(Na~+)都发生了吸附作用,且吸附强弱不同,对钠离子(Na~+)的吸附最强,硫酸盐(SO_4~(2-))次之,而对总硬度(Ca~(2+)+Mg~(2+))的吸附较弱,且土壤介质对三者的吸附都符合线性等温平衡吸附规律。并测定了土壤的渗透系数、水动力弥散系数以及总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2-))、钠(Na~+)在饱水砂性土壤中的吸附分配系数(cm~3/g)和迟滞因子分别为1.59×10~(-2)cm~3/g、6.5×10~(-2)cm~3/g、4.22×10~(-1)cm~3/g和1.08、1.34、3.21,为模型的验证和数值模拟提供了可靠的实测参数;
     (3)系统地分析了影响污染组分运移的主要因素,建立了综合考虑对流、水动力弥散、吸附解吸及存在源汇项条件下的定量描述土壤-地下水系统中主要污染组分运移三维动力学耦合数学模型,利用有限差分方法对数学模型进行了数值离散,给出了数值解法;
     (4)利用数值模拟方法,对煤矸石淋溶液中主要污染组分总硬度(Ca~(2+)+Mg~(2+))、硫酸盐(SO_4~(2-))、钠离子(Na~+)在研究区域地下水系统中的浓度时空分布规律进行了三维数值模拟研究,结果表明:污染面积随时间推移不断向两轴方向扩大,且纵向显著,在地下水流的下方向,污染范围较大,地下水流的上方向,污染范围较小,地下水流的两侧方向,污染范围基本呈对称分布;污染组分浓度值向两轴方向逐次递减,淋溶液对地下水体污染程度与距污染源的距离有关,距离污染源越远,溶质的浓度越低;在垂向方向,污染组分随水流运移的同时逐渐向下方渗漏,污染面积不断扩大,并逐次递减,在污染源下部的0-20m深度范围内含量最高;而同一位置污染组分的浓度值随时间的延续呈逐渐增大的趋势,最后达到平衡;总硬度(Ca~(2+)+Mg~(2+))在地下水中运移的速度大于硫酸根的运移速度,更大于钠离子(Na~+)的运移速度;模拟相同时间后总硬度(Ca~(2+)+Mg~(2+))的运移范围较大,硫酸根(SO_4~(2-))的运移范围次之,而钠离子(Na~+)的运移范围最小,总硬度(Ca~(2+)+Mg~(2+))最先达到平衡,硫酸根(SO_4~(2-))次之,而钠离子(Na~+)的运移非常缓慢,所以总硬度(Ca~(2+)+Mg~(2+))、硫酸根(SO_4~(2-))污染的范围比钠离子(Na~+)污染的范围广,对地下水质破坏的程度比较严重;
     (5)通过对新邱原南露天矿煤矸石山周围地区的地下水水质进行的调查、监测表明:该区地下水受到了严重污染,且污染源主要来自煤矸石山。煤矸石山是长期的污染源,是造成周围地区地下水无机盐类污染的主要原因。这一结论与波兰学者对380余座煤矸石山进行研究发现的煤矸石山是地下水污染的长期污染源以及煤矸石的主要污染是盐度、含硫量和潜在的酸性等基本是一致的;
     (6)将数值模拟值与研究区域地下水多年的监测数据进行对比,进一步验证了所建数学模型的可靠性。该数学模型和数值模拟方法对其它地区煤矸石淋溶液对地下水系统污染问题普遍适用。
     最后对煤矸石山淋溶液对地下水污染问题提出了治理措施。
     本文的研究成果对于揭示煤矸石对地下水系统污染的环境动力学行为具有重要的科学理论意义,对地下水环境污染的预测、预报和管理具有重要的理论意义和实际意义,为更科学、更有效地预防、控制和治理矿区煤矸石固体废物排放带来的地下水系统污染问题提供了科学理论依据。
Based on the previous research results,the multi-disciplinary relevant theories of the groundwater dynamics,porous medium fluid dynamics, environmental chemistry and hydrogeology,and the combination of the theories, experiments and numerical simulation,this paper conducted a series of further investigations on pollution mechanism and laws of coal gangue leaching solution to groundwater system:
     (1)The bench scale.soaking- leaching and dynamic leaching experiment indicates:the main pollution components released by the coal gangue of different rate of decay under water-rock interaction in Xinqiu open-cut mine are total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-)),sodium(Na~+)and total dissolved solid(TDS),the results of which are basically in accordance with the investigation of the 380 plus coal gangue hills in Poland conducted by Szcepanska;The coal gangue is eroded under geophysical function,chemical erosion and natural precipitation in the company of the oxidation, decomposition and dissolution reactions of the pyrite and the dissolution of the carbonate and aluminosilicate minerals.The higher the rate of decay is,the more pollution components the coal gangue releases;The main factors influencing the dissolution-release are the solid-liquid ratio,soak time,acidity, agitation,grain size and water dynamic flow.Moreover,heterogeneous reaction kinetics mechanism of the dissolution-release of the main pollution components was revealed,which abides by the Fick' s law;And builds the index fading equation of the dissolution-release regularity of the main pollution components and precipitation:C_v=C_0V~n,which can quantitatively predicts the pollution intensity of the main pollution components to groundwater system under atmospheric precipitation.
     (2)The laboratory column dynamic simulating experiment reveals the multicomponent transport mechanism and pollution laws of the main pollution components of total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-))and sodium(Na~+)in soil-groundwater system.That is,the transport velocity of the total hardness (Ca~(2+)+Mg~(2+))is the biggest followed by sulfate(SO_4~(2-)),and sodium(Na~+)the lowest.Namely,advection,mechanical dispersion and adsorption are the principal reasons of the transport of the total hardness(Ca~(2+)+Mg~(2+)), sulfate(SO_4~(2-))and sodium(Na~+)and play an vital role in the transport. Adsorption of total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-))and sodium(Na~+) occurs in the soil medium,while the adsorption intensity is different.The adsorption of sodium(Na~+)is the strongest followed by sulfate(SO_4~(2-)),and total hardness(Ca~(2+)+Mg~(2+))the weakest.In general,their adsorption conforms to the linear equilibrium sorption isotherm.The soil conductivity,fluid dynamic dispersivity,adsorption distribution coefficient and retardation factor of total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-))and sodium(Na~+)are also measured.The adsorption distribution coefficient and retardation factor for the three are 1.59×10-2 cm~3/g、6.5×10-2cm~3/g、4.22×10-1 cm~3/gand1.08,1.34,3.21,these offer measured parameters for model verification and numerical simulation.
     (3)Systematically analyze the essential factors influencing the pollution component transport and build three-dimensional dynamic coupled numerical model to describe the transport of the main pollution components in soil-groundwater system under the consideration of advection,hydrodynamic dispersion,adsorption-desorption and source and sink.The model underwent numerical discretization using finite-difference and the numerical solution was given.
     (4)Numerical simulation.was conducted to the concentration temporal and spatial distribution of total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-))and sodium (Na~+)in the groundwater system,the results of which indicate:The pollution area enlarges continuously with the passage of time and the longitudinal direction is more remarkable.The pollution scale is bigger in the groundwater downstream,smaller in the upstream,and distributes symmetrically on both sides;The pollutant concentration decreases gradually on either axis and the pollution degree of the leaching solution to the groundwater system is related to the distance of the pollution sources,the farther away from sources of pollution, the concentration of solute lower;In the vertical direction,with the current migration of contaminants at the same time gradually to the bottom of leaks, pollution area continued to expand,and successive decline.In the lower part of the pollution sources within 0-20m depth of the highest.The pollutant concentration in one location increases gradually with the passage of time and finally reaches equilibrium;The transport velocity of total hardness(Ca~(2+)+Mg~(2+)) is bigger than that of sulfate and much bigger than that of sodium;In the same simulation time period,the transport scale of total hardness(Ca~(2+)+Mg~(2+))is the largest and then sulfate(SO_4~(2-))and sodium(Na~+)sequentially.The total hardness(Ca~(2+)+Mg~(2+))comes to equilibrium first followed by sulfate(SO_4~(2-)) and sodium(Na~+)the slowest,so the pollution scale of hardness(Ca~(2+)+Mg~(2+)) and sulfate(SO_4~(2-))is larger than that of sodium(Na~+)and eventually causes more severe pollution to the groundwater.
     (5)The investigation and monitoring to the water quality of groundwater in the surrounding areas of the coal gangue hills in formal Xinqiu open-cut mine demonstrate that the investigation areas have been polluted heavily by main pollution components of total hardness(Ca~(2+)+Mg~(2+)),sulfate(SO_4~(2-)),sodium(Na ~+)and total dissolved solid(TDS).The pollution sources is the coal gangue hill. The coal gangue hill is a long-term pollution source and is the main reason of groundwater inorganic salts pollution in the surrounding areas,which is also in accordance with the study conducted in Poland.
     (6)The simulation results were compared with the many-year monitoring datas of the groundwater in the study region,which demonstrates that the mathematical model built is reliable.The model and numerical simulation method are also applicable to the pollution of inorganic salts to the groundwater in other regions.
     In the end,the countermeasures were given to the groundwater pollution issues by coal gangue.
     This study is of great scientific significance to reveal the environmental dynamics of the groundwater pollution by coal gangue.It is also of great theoretical and practical significance to predict,forecast and manage the groundwater pollution and lays theoretical foundations for preventing, controlling and treating the groundwater pollution issues caused by coal gangue in coal mine sites scientifically and efficiently.
引文
铩颷1]胡振琪,杨秀红,鲍艳等。论矿区生态环境修复.科技导报,23(1):38-41,2005
    [2]祝光耀.通力合作 加强监督-努力开创矿山环境保护工作新局面[M].北京:地震出版社,2001,24-29.
    [3]Azcue J M.Environmental impacts of mining activities:Emphasis on mitigation and remedialmeasures[M].New York:Spinger,1999.
    [4]赵家荣.大力推进煤矸石综合利用促进经济社会可持续发展[R].在全国煤矸石综合利用工作会议上的讲话,2000.
    [5]党志.煤矸石-水相互作用的溶解动力学及其环境地球化学效应研究[J].矿物岩石地球化学学报,1997,16(4):259-261.
    [6]王而力.于家沟地区地下水污染成因分析[R].阜新:辽宁省阜新市环境检测站,1999.
    [7]Ghosh,R.S.,Saigal,S.,AND dzombak,D.A.Assessment of In Situ Solvent Extraction with InterruptedPumping for Remediation of Subsurface Coal Tar Contamination[J].Water EnvironmentResearch,1997,69(3):295-304.
    [8]Dalverny.L.E.,R.F.Chaiken.,A.G.Kim and C.R.Manns.Pyrite leaching from coal and coalwaste[R].U.S.Department of Energy,Report of Investgation,1996.
    [9]Haigh.M.J.Problems in reclamation of coal mine disturbed lands in wales[J].International Journal ofSurface Mining and reclation,1992,6:31-37.
    [10]K.komnitsas,I.Paspaliaris.Environmental impacts at coal waste disposal site efficiency ofdesulphurization technologies[J].Global Nest:the Int.2001,3(2):109-116.
    [11]Dzombak.D.A.and Ali.M.A.Hydrochemical Modeling of Metal Fate and Transport in FreshwaterEnvironments[J].Water Pollution Research Journal of Canada,1993,28(1):7-50.
    [12]Stromberg,B.and Banwart,S.Kinetical modeling of geochemical processes at Aitik mining wastesite in north Sweden[J].Applied Geochemistry,1994,9:583-595.
    [13]Querol X,Fernandez J L.The behavior of mineral matter during combustion of Spanishsub-bituminous andbrown coals[J].Mineralogical magazine,1994,58:119-133.
    [14]Komnitsas,K.and Kontopoulos,A.,Lazar,I.Risk assessment and proposed remedial actions incoastal tailings disposal sites in Romania[J].Minerals Engineering,1998,11(2):1179-1190.
    [15]Fanfani L,et al.Heavy metals speciation analysis as a tool for studying mine tailingweathering[J].Journal of Geochemical Exploration,1997,58(2-3):241-248.
    [16]Clare Gee,et al.Mineralogy and weathering processes in historical smelting slags and their effect onthe mobilisation lead[J].Journal of Geochemical Exploration,1997,58(2-3):249-257.
    [17]Chamberlain V E,Gill S.Heavy metals contaminated waters.Coeurd'Alene Mining District[M].USA.In:H.
    铩颷18]K.komnitsas,I.Paspaliaris.Environmental impacts at coal waste disposal site efficiency ofdesulphurization technologies[J].Global Nest:the Int.2001,3(2):109-116.
    [19]Szcepanska J,Twardowska I.Distribution and environmental impact of coal mining wastes inUpper Silesia,Poland[J].Environmental Geology,1999,38(3):249-258
    [20]Collins,R.J.,and Miller,R.H.Availability of Coal Wastes and their Potential for Use as HighwayMaterial.Federal Highway Administration[R].Report No.FHWA-RD-76-106,Washington,DC,May,1996.
    [21]刘桂建、杨萍钥、彭子成等.煤矸石中潜在有害微量元素淋溶析出研究[J],高校地质学报,2001,7(4):449-457.
    [22]刘桂建.煤中微量元素的环境地球化学研究[M].徐州:中国矿业大学出版社,1999.
    [23]王运泉,任德贻.煤及其燃烧产物中微量元素的淋滤试验研究[J].环境科学,1996,17(1):16-19.
    [24]余运波,沈照理.煤矸石堆放对水环境的影响-以山东省一些煤矸石堆为例[J].地学前缘,2001,8(1):163-169.
    [25]杨正全、韩万东、王而力.露天煤矿排土场淋溶水对地下水环境影响分析[J].辽宁工程技术大学学报,2002年
    [26]刘志斌、范军富、丛鑫.煤矸石山对地下水环境质量影响的分析研究[J].露天采煤技术,2002年
    [27]王心义,杨建,郭慧霞.矿区煤矸石堆放引起土壤重金属污染研究.煤炭学报,2006,31(6):808-812
    [28]李东艳,方元元,任玉芬,等.煤矸石堆周围土壤重金属污染特征分析---以焦作市中马村矿为例[J].煤田地质与勘探,2004,32(5):15-17.
    [29]刘玉荣,党志,尚爱安.煤矸石风化土壤中重金属的环境效应研究[J].农业环境科学学报,2003,22(1):64-66.
    [30]李林涛,梁博.煤矸石中微量重金属对环境的污染问题[D].煤炭科学总院西安分院文集,1991,(5):22-26.
    [31]朴河春,万国江.富含黄铁矿煤矸石中碳酸盐影响其风化淋溶性质的研究[J].重庆环境科学,1995,3(6):24-28.
    [32]徐龙君、刘成伦、潘宏清.煤矸石酸雨淋滤特征的研究[J].四川环境,2000,19(3):34-37.
    [33]李兰.抚顺市堆积煤矸石对地下水的污染[J].辽宁地质,1994,(4):361-366.
    [34]吴耀国,沈照理.淄博煤矿区矿井水的化学形成及其模拟[J].环境科学学报,2000(4).
    [35]吴耀国.对采矿活动对地下水水化学环境的影响及污染防治技术[M].北京:气象出版社,2002.
    [36]郑西来,刘鸿俊.山东氧化铝厂碴场地下水系统的环境地球化学反应模型[J].地球化学,1990,9(3):271-276.
    [37]罗永德.矸石山淋溶污染新模式探讨[J].煤矿环境保护,1993,7(4):49-51.
    [38]史培军,宋长青.加强我国土地利用/覆盖变化及其对生态环境安全影响的研究-从荷兰“全 球变化开放科学会议”看人地系统动力学研究的发展趋势[J].地球科学进展,2002,17(2):
    161-168.
    铩颷39]陈梦熊.环境水文地质学的最新发展与今后趋向[J].地质科技管理,1995,(3):60-69[31].
    [40]郑西来、邱汉学、陈友媛.地下水系统环境地球化学反应模型研究[J].地学前缘,北京,中国地质大学,2001.18.
    [41]YounSim and ConstantionsV.Chrysikopoulos.Virustransportin unsaturated Porous media.WaterResources Research,2000,36(1):173-179.
    [42]Kinzelbach,W.,W.Schafer and J.Herzer.Numerical modeling of nitrate transport in a naturalaquifer.Contaminant Transport Groundwater.A.A.Balkema Publishers,1989.
    [43]Zysset A et al.Modeling of reactive groundwater transport governed by biodegradation.WaterResour.Res.1994,30(8):2423-2430.
    [44]E.T.Vogler.,C.V.Chrysikopoulos.Diddoluyion of nonaqueous phase liquid pools in anisotropicaquifers,Stochastic Environmental Research and Risk Assessment,2001
    [45]Engesgard,P.,Traberg,Broholm,K.Contaminant transport Modeling,Water ResourcesResearch,1996.
    [46]Jakobsen,R.,Sulfur transformation in an aquifer,Amer.Chem.Soc.208th national meeting,Washington,1994.
    [47]钱天伟、李书绅、武贵宾,地下水多组分反应溶质迁移模型的研究进展,水科学进展,2002年
    [48]D.J.Acheson,Elementary Fluid Dynamics,Clarendon Press,1990.
    [49]Cameron,D.A.,A.Klute,Convective-dispersive solute transport with a combined equilibrium andkinetic adsorption model,Water Resour.Res.1977.
    [50]M.Th.vanGenuchten,R.J.Wagenet,Two-site/Two-Region Models for Pesticide Transport andDegradation:Theoretical Development and Analytical solutions,Soil,1989.
    [51]andil H.,Miller C T.,Skaggs R W.Modelling long-term solute transport in drained unsaturatedzones.Water Resources Research,1992
    [52]Albrechtsen,H.J.,Ludvigsen,L.,Heron,G.,Hart,S.D.,Christensen,T.H.Microbial Fe(Ⅲ),reduction - a process resulting in transport of iron in aquifers.In:GIAM X,Tenth InternationalConference on Global Impacts of Applied Microbiology and Biotechnology,Helsing,Denmark,1995.
    [53]Albrechtsen,H.J.,Nielsen,P.H.,Lyngkilde,J.,Christensen,T.H.Microbial activity and degradationprocesses in a landfill leachate polluted aquifer,1993.
    [54]Butts,M.B.,Jensen,K.H.Experimental and Numerical Study of Multiphase Flow and Transport.American Geophysical Union,AGU,Fall Meeting,SanFrancisco,CA.EOS,Transactions of theAGU,1995.
    铩颷55]Faust C R.Transport of immiscible fluids within and below the unsaturated zone:A numericalmedia[J].Water Resources Research,1985
    [56]Smith D W,RoweR K,Booker J R.The analysis of pollutant migration through soil with linearhereditary time-dependent sorption.Int J Numer and Anal Methods in Geomechanics,1993
    [57]ZHANG Yue-sheng、SONG Quan-yuan、ZHAO Shu-ping,new research advances in the technologyfor waste landfill leachate processing,2001.
    [58]Chen,W.and Wagenet,RJ.Solute transport in porous media with soption-site heterogeneity,Environ.Sci.and Technol.1995
    [59]JamesJ.Deitsch.Modeling the Desorption of Organic Contaminants form Long Term contaminatedSoil Using Distributed Mass Transfer Rates.Enviro n.Sci.Tch nol,1997,31(6):1581-1588.
    [60]Scott A.Bradford.Linda M.Abtrioda.Flow and entrapment dense nonaqueous phase liquids inphysically and chemically heterogeneous aquifer formation[J].Advance Water Resources,1998,22(2):117-132
    [61]Zheng Xilai、Qiu Hanxue,Numerical analysis of the transport and restoration schemes of aqueousoil in soils,Environmental Geology,2001.
    [62]戴树桂,刘庆良,钱芸,土壤多介质环境污染研究进展[J].土壤与环境,2001,10(1):1-5
    [63]钱家忠、吴剑锋、朱学愚、周念清,地下水资源评价与管理数学模型的研究进展[J].科学通报,2001.
    [64]魏新平、王文焰等.溶质运移理论的研究现状和发展趋势[J].灌溉排水,1998(4):58-63.
    [65]张永祥、陈鸿汉.多孔介质溶质运移动力学[M]..北京:地震出版社,2000.
    [66]薛强,梁冰,刘建军,刘晓丽.环境介质中有机污染物运移的数值模型[J].应用与环境生物学报,2003,9(6):647-650.
    [67]王超,阮晓红等.污染物在非饱和土壤中迁移规律的试验研究[J].河海大学学报,1996,24(2),7-13.
    [68]薛强,梁冰,刘晓丽.有机污染物在土壤中迁移转化的研究进展[J].土壤与环境,2002,11(1):90-93.
    [69]王超,顾斌杰.非饱和土壤溶质迁移转化模型参数优化估算[J].水科学进展,2002,13(2),184-190
    [70]王超等.地下水系统中污染物变系数动力迁移模型解[J].水动力学研究与进展,1996,(4):475-483.
    [71]杨金忠.多孔介质中水分及溶质运移的随机理论[M].北京:科学出版社,2000.
    [72]王丽,王金生,杨志峰等.不流动水对包气带溶质运移的影响研究进展[J].水利学报,2001,(12):68-73.
    [73]张红梅,速宝玉.土壤及地下水污染研究进展[J].灌溉排水学报,2004,6,23(3):70-74.
    [74]J.Fried.Groundwater Pollution,1975.
    [75]L.F.Konikow et al.Computer model of two-dimensional solute transport and dispersion ingroundwater,1978.
    [76]R.Willis,S.P.Neumman.地下水水质管理的规划模型.水文地质工程地质译丛,1982年,第3期.
    铩颷77]Barry D.A.and G.Sposito.Analytical solution of a convection-dispersion model withtime-dependent transport coefficients.Water Resour,Res.1997,25:2407-2416.
    [78]Yates S.R.Analytical solution for one-dimensional transport in heterogeneous porous media.WaterResour,Res.1990,26:2331-2338.
    [79]Refsgaard A.et al.Three dimensional modeling of groundwater flow and solute transport.To besubmitted to Journal of contaminant transport,1991.
    [80]Goltz M.N.and P.V.Roberts.Using the method of moments to analyze three dimensionaldiffusions-limited solute transport from temporal and spatial perspectives.WaterResour,Res.1996,23(8):1575-1585.
    [81]Smith L.and F.W.Sehwartz.Mass transport,1,A stochastic analysis of macroscopicdispersion,Water Resour,Res.1998.26(2):303-313
    [82]Tang D.H.et al.Stochastic modeling of mass transport in a random velocity field,WaterResour,Res.1982.18(2):231-244.
    [83]Bubin Y.Stochastic modeling of macrodispersion in heterogeneous porous media,WaterResour,Res.1990.26(1):133-141.
    [84]王超.土壤及地下水污染研究综述[J].水利水电科技进展,1996,16(6):1-4.
    [85]邹胜章、张金炳、李洁等.北京西南城近郊浅层地下水盐污染特征及机理分析[J].水文地质工程地质,2002.
    [86]刘兆昌.地下水系统的污染与控制[M].北京:中国环境科学出版社,1991.
    [87]王秉忱.杨天行,王宝金等.地下水污染-地下水水质模拟方法[M].北京:北京师范学院,1985.
    [88]孙讷正.地下水污染-数学模型和数值方法[M].北京:地质出版社,1989.
    [89]朱学愚、谢春红.地下水运移模型[M].北京:中国建筑工业出版社,1990.
    [90]薛禹群.地下水动力学[M].北京:地质出版社,1997.
    [91]林学钰等.地下水水量模拟及管理程序集[M].北京:地质出版社,1993.
    [92]徐佳全.燃煤中有害元素铬在水体环境中的迁移转化规律[J].中国矿业大学学报,1994,23(1):53-58
    [93]赵燕.煤矸石对地下水污染的机理及过程[J].能源技术与管理,2006,13(4):54-55
    [94]Plummer L N,Parkhurst D L.PHREEQE-a computer program for geochemical calculations[R],U SGEOLOGICAL SURVEY,Water Resource Investigations Report 80-96.
    [95]Alison J D,Brown D S,Novn-dac K.MINTEQA2/PRODEFA2;A geochemical assessment modelfor enviormental systems,Version 3.0 user's manual[R],rep EPA/600/3-91/021,U S Eniron ProtAthens,Ga106.
    [96]Deustsch W J,Jenne E A,Krupka K M.Solubility equilibria in basalt aquifers:The ColumbiaPlateau,Eastern Washington,U S A[J].ChemGeol 1982,36.
    [97]Sherwood D R.Identification of chemical processes influencing constituent mobility during in-situuranium leaching[M],Rep.PNL-SA- 12173,Pac Northwest Lab,Richland,1984.
    铩颷98]Wolery T J.Calculation of chemical equilibrium between aqueous solution and minerals:The EQ3/6software package[M],Rep.UCRL-52658,Lawrence Livermore NatlLab,Livermore,Calif,1979.
    [99]Nordstrom D K,et al.A comparison of computerized chemical models for equilibrium calculationsin aqueous systems[M],Chem model in aqueous syst,ser.93,American Chemical Society,Washington,D.C.,1979.
    [100]Pavlik H,D D Runnells.Reconstruction of reaction pathways in a rock-fluid system usingMINTEQ[A].MelchiorD C In Chemical Modeling of aqueous SystemsⅡ[C].American ChemicalSociety,Washington,D C,1990.140-153.
    [101]Yeh G T,Tripathi V S.A model for simulating transport of reactive multispecies components:model development and demonstration[J].Water Resour Res.1991,27(12):3075-3094.
    [102]Rubin j.Transport of reacting solutes in porous media:Relation between mathematical nature ofproblem formulation and chemical nature of reactions[J].Water Resour Res.1983,19(5):1231-1252.
    [103]Cederberg,et al.A groundwater mass transport and equilibrium chemistry model formulticomponent systems[J]1 Water Resour Res.1985,21(9):1095-1104.
    [104]Liu C W,Narasimhan T N.Redox-controlled multiplespecies reactive chemical transport,1,Modeldevelopment[J],Water Resour Res.1989(a),25:869-882.
    [105]Rubin J.Solutes transport with multisegment,equilibrium-controlled reactions:A feed-forwardsimulation method[J].Water Resour Res.1990,26(9):2029-2056.
    [106]Yeh G T,Tripathi V S.A critical evaluation of recent developments in hydrogechemical transportmodels of reactive mutichemical components[J].Water Resour Res.1989,25(1):93-108.
    [107]钱云平.沈阳市地下水Pb2+的水文地球化学迁移模型[D].长春:长春地质学院,1991.
    [108]王长明.抚顺市煤矸石对生态环境的影响及综合利用[J].中国煤田地质,2005,17(1):32-34.
    [109]Gonzalez Canibano J,FernandezValcarce J A,Falcon A,et al.Static leaching of coal miningwastes[A].Rainbow A KM.Reclamation,Treatment and Utilization of CoalMiningWastes[C].Balkema,Rotterdam,1990.165-175.
    [110]徐磊,张华,桑树勋.煤矸石中微量元素的地球化学行为[J].煤田地质与勘探,2002,30(4):1-3.
    [111]邓丁海,岑文龙.煤矸石堆放区的环境效应研究[J].中国矿业,1999(6):87-91.
    [112]陈天虎,冯军会,徐晓春.国外尾矿酸性排水和重金属淋滤作用研究进展[J].环境污染治理技术与设备,2001,2(2):41-46.
    [113]吴攀,刘丛强,杨元根等.矿山环境中(重)金属的释放迁移地球化学及其环境效应[J].矿物学报,2001.6(21).
    [114]姜振泉,李雷.煤矸石的环境问题及其资源化利用[J].环境科学研究,1998,11(3):57-59.
    [115]蒋展鹏,祝万鹏.环境工程监测[M].北京:清化大学出版社,1990.
    [116]中国环境总局.水质监测分析方法标准[M].中国环境科学出版社,2002.
    铩颷117]李昌静,卫钟鼎.地下水质及污染[M].北京:中国建筑工业出版社,1983.
    [118]孔祥言.高等渗流力学[M].安徽合肥:中国科学技术大学出版社,1999.
    [119]J.贝尔.许洞铭译.多孔介质流体动力学[M].北京:地质出版社,1985.
    [120]党志,刘丛强,李忠.煤矸石中微量重金属元素化学活性的实验模拟研究[J].华南理工大学学报(自然科学版),2001,29(12):1-5.
    [121]王大纯,张人权,史毅虹等.水文地质学基础[M].北京:地质出版社,1990.
    [122]程兰征,章燕豪.物理化学[M].上海科学技术出版社,1992.
    [123]O.赫茨英格.环境化学手册[M].中国环境科学出版社,1987.
    [124]E·L·柯斯乐(美).扩散-流体系统中的传质[M].化学工业出版社,2002.
    [125]党志,Watts S F,Martin Haigh,et al.煤矸石-水相互作用溶解动力学-Ⅱ煤矸石微量金属元素的矿物学研究[J].中国科学(D辑),1996,26(1):16-20.
    [126]梁冰、薛强、刘晓丽,煤矸石中硫酸盐对地下水污染的环境预测[J].煤炭学报,2003,28(5):527-530.
    [127]赵峰华,任德贻.燃煤产物中有害元素淋滤实验的研究现状[J].煤田地质与勘探,1998,26(4):14-17.
    [128]吴颖娟,陈永亨,张汝国等.淋滤条件对矿物废渣中铊释放的影响[J].环境化学,2002,21(1):78-82.
    [129]李兴武.我国煤矿环境污染及其对策[J].矿产保护与利用,2004,(1):52-54.
    [130]周玉新、周志芳.有限分析法在排土场渗流分析中的应用[J].金属矿山,2001.16:18-21.
    [131]李天杰.土壤环境学[M].北京:高等教育出版社,1995,102-136.
    [132]赵峰华.煤中有害元素研究现状及其对环境保护的意义[J].煤矿环境保护,1998,12(2):20-23.
    [133]GoodarziF.Geology of trace elements in coal.in:Environmental aspects of trace elements incoal[M].Dordrecht Kluwer Aca demic Publishers,1995,51-75.
    [134]SwaineD J.The contents and somerelated aspects of trace elements in coals,in:environmentalaspects of trace elements coal[M].Dordrect:Kluwer Academic Publishers,1995,5-23.
    [135]梁冰,薛强,刘晓丽.油气田地区土壤-水环境中有机污染的数值模拟及模型预测[J].中国地质灾害与防治学报,2002,9,13(3):19-22.
    [136]王晓红、杨天行.城市生活垃圾淋滤液运移模型问题[J].工程勘查,1998.
    [137]薛强、梁冰.地下水溶质运移定解问题差分格式的稳定性分析[J].辽宁工程技术大学学报,2001.
    [138]Xue Qiang,L iang B ing,L IU xiaoli.Fliud -Solid Coup ling Mathematical Model of ContaminantTransport in Unsaturated Zone and Its Asymp totical Solution[J].App lied Mathematics andMechanics.2003,24(12):1309-1318.
    [139]梁冰、薛强.地下水污染中渗流力学问题的研究进展及其讨论[J].哈尔滨工业大学学报,2001.
    [140]吴耀国.饱和与非饱和流溶质运移的试验研究与数学模拟[J].勘探科学技术,1998.
    [141]吴林高.渗流力学[M].上海科技文献出版社,1996.
    [142]杨金忠,蔡树英,叶自桐.区域地下水溶质运移随机理论的研究与进展[J].水科学进展,1998, 9(1):84-98.
    铩颷143]王锦国、周志芳.裂隙岩体地下水溶质运移的尺度问题[J].水科学进展,2002,3,13(2):239-245.
    [144]Testa,S Man M T Paczkowski Volume Determination and Recovery of Free Hydrocarbon GroundWater Monitoring Review 9.1989
    [145]A.Mohamed,T.Sasaki K.Watanabe.Solute Transport Through Unsaturated Soil Due toEvaporation[J].Journal of Environmental Engineering,2000.
    [146]Pantazidou M,N Sitar.Emplacement of Non-aqueous Liquids in the Vadoze Zone[J].WaterResource Research,1993.
    [147]D.J.Acheson,Elementary Fluid Dynamics[M].Clarendon Press,1990.
    [148]谢宏全、张光灿.煤矸石山对生态环境的影响及治理对策[J].北京工业职业技术学院学报,2002,11,1(3):27-30.
    [149]Arturo A K,Paul V R.Martin J B,Effect of aperture variations on the dispersion of contaminants[J].Water Resources Research,1999,35(1),55-63.
    [150]杨勇,苑国琪等.~(90)Sr、~(137)C_s在某种包气带土壤中的迁移研究[J].四川环境,2004,23(3):85-89.
    [151]张永波,时红,王玉和.地下水环境保护与污染控制[M].北京:中国环境科学出版社,2003.
    [152]高连成,模拟酸雨条件下降尘中 Cu,Pb,Zn,Cr各形态的溶出和转化研究[J].环境化学,13(5):448-452
    [153]E.T.Vogler、C.V.Chrysikopoulos,Diddoluyion of nonaqueous phase liquid pools in anisotropicaquifers[J].Stochastic Environmental Research and Risk Assessment,2001.
    [154]邱克俭、戚隆溪、秦宁.饱和非饱和土壤中溶质运移的数值模拟[J].力学学报,1993.
    [155]李俊亭.地下水水流数值模拟[M].北京:地质出版社,1989.
    [156]陈崇希,唐仲华.地下水流动问题数值方法[M].武汉:中国地质大学出版社,1990.
    [157]常前发,王运敏.我国尾矿综合利用的现状及对策[J].中国矿业,1999.
    [158]M.van Dyke.Perturbation Methods in Fluid Mechanics[M].Academic Press,1964.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700