长春花幼苗生理代谢对锌胁迫的响应特点及其受乙烯调控的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长春花(Calharanlhus roseus (L.) G. Don),夹竹桃科(Apocynaceae),长春花属(Calharanthus)我国西南、中南及华东等地栽培品种,是一种防治癌症的良药,长春花茎、叶中提取出来的抗癌成分有长春碱、长春新碱等,是目前国际上应用最多的抗癌植物药源。锌(Zn)作为植物生长所必需的元素,同时也是一种具有毒性的重金属元素。重金属污染一般导致植物生理代谢紊乱,加速植物的衰老和死亡
     本论文以药用植物长春花为实验材料,采用珍珠岩为培养基质的营养液方式培养,设置不同浓度的外源锌、乙烯条件,从长春花在锌胁迫的逆境条件下培养入手,并且辅助以外源乙烯调控,对其初生代谢、Zn在植株内部的富集和转运、抗氧化系统以及次生代谢等方面进行初步研究,为进一步研究长春花中各项生理指标响应外源锌胁迫条件下的变化以及在此基础上外源乙烯的调控作用提供参考依据,并且验证长春花是否可以作为一种新的Zn超富集植物。
     研究结果如下:
     1.低浓度的外源锌可以促进长春花植株的生长,而高浓度的外源锌则抑制长春花植株的生长。长春花植株根系表现出的耐受性较强,说明长春花对Zn有着较强的耐受性和适应性,有超富集的潜质。叶绿素和植株光合作用在锌胁迫条件下表现出低促高抑的现象,可能是较高浓度Zn加速了叶绿素的降解,从而影响了植物的光合作用。在锌胁迫的基础上加入外源乙烯缓解了Zn胁迫对长春花植株的伤害作用。锌胁迫条件下长春花有一定的乙烯气体释放,随着时间的增加释放量都有小幅度的增加。而在锌胁迫的基础上加入外源乙烯后乙烯气体的释放量大幅度增加,最高可增加17.8倍。而在相同乙烯处理条件下随着时间的增加长春花乙烯气体释放量逐渐减少,说明随着时间的延长,乙烯气体释放量逐渐降低。
     2.外源锌胁迫条件下长春花植株根部对Zn的富集能力较强,因此Zn对根部的伤害也较大。长春花响应锌胁迫条件下根部对Zn的吸收富集能力随着Zn处理浓度的增高表现出低促高抑的现象,茎、叶片中Zn含量随着Zn处理浓度的增加逐渐升高,说明长春花对于Zn的富集能力较强,且有一定的超富集潜力。而转运能力主要表现为Zn由成熟组织向幼嫩组织转运率较强。在锌胁迫基础上加入外源乙烯后,降低了植株各组织部位对Zn的富集能力,降低了锌胁迫对长春花植株的胁迫伤害。促进了Zn由成熟叶片向幼嫩组织的转运率,但是抑制了Zn在长春花植株体内其余组织间的的运输。
     3.在外源锌胁迫条件下长春花植株细胞脂膜过氧化作用增强,POD、CAT、SOD活性升高,有利于活性氧物质的清除,使细胞膜免受伤害。外源锌胁迫刺激导致细胞内H202的积累对生物大分子产生细胞毒害的能力。并且使MDA、可溶性糖含量增加,在一定程度上减弱了重金属对植物体的毒害效应。Zn对植物伤害的重要机制之一是ROS的过量积累导致质膜过氧化,并通过SOD、CAT、POD等来消除或减少ROS带来的伤害。在锌胁迫的基础上加入外源乙烯后缓解了Zn对长春花植株的伤害。
     4.锌胁迫条件下药用植物长春花叶片中吲哚生物碱:文多灵、长春碱、长春质碱,以及根中含有的长春质碱具有组织器官和生长发育的特异性。不同叶位的叶片中文多灵、长春质碱含量呈现规律性变化,在上部幼嫩叶片中含量最高,而下部成熟叶片中含量最低。这一特点符合一般生物碱的变化规律:幼嫩组织中含量较高,随着组织逐渐成熟,含量逐渐降低,以最大效率维持植物正常的发育和生长。在此基础上加入外源乙烯则促进长春花吲哚生物碱含量的提高。
Catharanihus roseus (L.) is widely cultivated in south, east and southwest of China. Catharanthus roseus is a kind of medicine on prevention and treatment of cancer, the anticancer ingredient of vinblastine and vincristine that extracted from stems and leaves, is currently a critical source of most anti-cancer medicine. As an essential micro element for plant, Zinc (Zn) is also a kind of heavy metal that threatens plant growth. In general, heavy metal disorders of physiological metabolism and accelerates plant senescence and death.
     In this paper, to investigate the primary metabolism in plants and Zn ion transformation as well as its accumulation combined with the secondary metabolism response to Zn stress in plant, Catharanthus roseus was selected as experiment material. A cultivate system that nutrient solution irrigated to perlite was sued. Moreover, exogenous ethylene was applied to Zn stressed seedlings to study the effects of ethylene in regulating Catharanihus roseus response to Zn stress.
     The results are as follows:
     1. The growth of Catharanthus roseus was promoted under low concentrations of Zn presence while it was inhibited under high levels Zn condition. The root system of Catharanthus roseus was more tolerant to excess Zn, indicating the tolerance of Catharanthus roseus to Zn was high. Under Zn stress, the chlorophyll and photosynthesis was prompted and depressed under low or high levels of Zn. respectively, suggesting that high levels of Zn results in the degradation of chlorophyll by which decreased its photosynthesis ability. Under Zn stress, application of exogenous ethylene alleviated excess Zn induced damage to plants. Excess Zn treatment increased ethylene production and the production will increased slightly. On contrary, application of exogenous ethylene under Zn stress increased ethylene production dramatically,17.8times higher than that of control at its peak value. However, as the treatment time prolonged, the production of ethylene decreased under ethylene sole treatment condition, suggesting that ethylene production will decrease as the time past.
     2. As the high ability in absorbing and accumulating Zn ion, the root system of Catharanthus roseus was hypersensitive to Zn stress. The ability of absorbing and accumulating of Zn ion in Catharanthus roseus root was increased under low Zn condition while depressed under high Zn condition. The accumulation of Zn ion in plant stem and root was increased as the Zn treatment concentration increased, suggesting the higher ability of Catharanthus roseus in absorbing and accumulating Zn ion. Specifically, the high transformation ability was mainly due to the transformation of Zn ion from mature tissue to younger tissue. Under Zn stress, application of exogenous ethylene decreased the accumulation of Zn ion in many tissues, and alleviated the damage induced by excess Zn ion to plant. Furthermore, its application also promotes transformation of Zn ion from mature tissue to younger tissue and inhibited its transformation between other tissues.
     3. Under Zn stress, cells was severe damaged by stress induced oxidative stress, however. the activities of POD. CAT and SOD was increased that was considered to be ROS scavengers and protect cell membranes from oxidative damage. Also, the concentrations of MDA and soluble sugars were also increased which then alleviated the damage induced by-excess Zn to plants. One of the important mechanisms that Zn induced damage to plants was the oxidative stress that caused by ROS. However, application of exogenous ethylene alleviated Zn stress induced damage to plants.
     4. Vindoline, vinblastine and catharanthine, three forms of indole alkaloids in Catharanthus roseus, combined the vinblastine in roots displayed characteristics of tissue specific. The concentrations of vindoline and vinblastine varies depends on the location of tissue, it was higher in upper younger leaves but lower in bottom mature ones. This phenomenon was consist with the classical theory that there was more secondary metabolites in younger tissue while less in mature ones, by which to guarantee the organism develop and growth ordinarily. Application of exogenous ethylene stimulates biosynthesis of indole alkaloid in Catharanthus roseus under excess Zn stress.
引文
[1]徐勤松,施国新.王学,等.镉、铜和锌胁迫下黑藻活性氧的产生及抗氧化酶活性的变化研究[J].水生生物学报,2006,30(1):107-112.
    [2]丁亚芳.包永明,安利佳.长春碱类抗肿瘤药物的研究进展.中国医药工业杂志,2005.36(7):424-427.
    [3]王瑾,王宫.长春碱类化合物的研究概况.福建中医学院学报,2005,15:88-89.
    [4]郑喜坤,鲁安怀,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法.土壤与环境,2002,11(1):79-84.
    [5]丁园.重金属污染土壤的治理方法[J].环境与开发,2000,15(2):25-28.
    [6]徐勤松,施国新,周红卫,等.Cd、Zn复合污染对水车前叶绿素含量和活性氧清除系统的影响[J].生态学杂志,2003,22(1):75-81.
    [7]刘建新.镉锌交互作用对玉米幼苗生理生化特性的影响[J].宜春学院学报:自然科学版,2004,26(6):55-60.
    [8]Stephan Clemens, Michael G. Palmgren and Ute Kramer. A long way ahead: understanding and engineering plant metal accumulation. TRENDS in Plant Science 2002, 7(7):309-315.
    [9]Pauwels M., Frerot H., Bonnin I., Saumitou-Laprade P. A broad-scale analysis of population differentiation for Zn tolerance in an emerging model species for tolerance study.Arabidopsis halleri (Brassicaceae). Journal of Evolutionary Biology,2006,19:1838-1850.
    [10]Meyer C.L., Kostecka A.A., Saumitou-Laprad P., Creach A.,Castric V., Pauwels M., Frerot H. Variability of zinc tolerance among and within populations of the pseudometallophyte species Arabidopsis halleri and possible role of directional selection. New Phytologist.2010,185:130-142.
    [11]Roosens N., Willems G., Saumitou Laprade P. Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends in Plant Science.2008,13:208-215.
    [12]祖元刚,王非,马书荣,唐中华,郭晓瑞.长春花生活史型研究.科学出版社,2006.
    [13]Waller G.R., Nowacki E.K.. Alkaloid biology and metabolism in plants[M]. New York, Plenum Press,1978.
    [14]唐中华,于景华,杨逢建,祖元刚.植物生物碱代谢生物学研究进展[J].植物学通报,2003,20(6):696-702.
    [15]O'Connor SE, Maresh JJ. Chemistry and biology of monoterpene indole alkaloid biosynthesis. Nat Prod,2006,23:532-547.
    [16]Gragg GM, Newman DJ. Plants as a source of anti-cancer and anti-HIV agents. Ann Appl Biol,2003,143:127-133.
    [17]Van der HeijdenR, Jacobs Dl, Snouijer W, et al. The Catharanthus alkaloids: phannacognosy and biotechnology. Curr MedChem,2004,11:607-658.
    [18]Lorence A, Nessler CI. Molecules of interest-Camptothecin, over four decades of suprising findings. Phytoehem,2004,65:2735-2749.
    [19]Wink M, Roberts MF. Compartmentation of alkaloid synthesis, transport and storage. In: Robers MF, Wink.
    [20]刘成梅,游海.天然产物有效成分的分离与应用[M].北京:化学工业出版社,2003:123-124.
    [21]Canel C, Lopes-Cardoso M I, Whitmer S, et al. Effects of over-expression of strictosidine synthase and tryptophan decarboxylase on alkaloid production by cell cultures of Catharanthus roseus [J]. Planta,1998,205(3):414-419.
    [22]Lichtenthaler HK. The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in Plants. Annu Rev Plant Physiol Plant Mol Biol,1999,50:47-65.
    [23]Rodriguez-Concepcion M, Boronat A. Elucidation of the methylerythrito phosphate pathway for isoprenoid biosynthesis in bacteria and plastids. A metabolic milestone achieved through genomics. Plant Phvsiol,2002,130:1079-1089.
    [24]De Carolis E, De Luca V. Purification, characterization, and kinetic analysis of a 2-oxoglutarate dependent deoxygenate involved in vindoline biosynthesis from Catharanthus roseus. J Biol Chem,1993,268:5504-5551.
    [25]De Luea V, Balsevich L, Tyler PT, Eilert U, Panchuk BD, Kurz WGW. Biosynthesis of indole alkaloids:Developmental regulation of the biosynthetic patway from tabersonine to vindoline in Catharanthus roseus. Journal of Plant Physiology,1986,125(2):147-156.
    [26]Aerts RJ, Alaocr AM, De Luca V. Auxins induce tryptophan deeabroxylase activity in radicles of Cathtaranhtus seedlings. Plant Physiol.1992,100:1014-1019.
    [27]Blom TJM, Sierra M, Vliet TB, Franke-van Dijk MEI, Konging P, Verpoorte R, Libbenga KR. Uptake and accumulation of ajmalicine into serpentine [J]. Planta,1991,183(2):170-177.
    [28]Sottomayor M, De Pinto MC, Salema R, DiCosmo F, Pedreno MA, Ros Barceloa. The vacuolar localization of a basic peroxidase isoenzyme responsible for the synthesis of a-3',4'-an, hydrovinblastine in Catharanthus roseus (L.) G.don leaves. Plant Cell Environment,1996,19(6):761-767.
    [29]周晨,赵淑娟,胡之璧.长春花次生代谢转录调控的分子机制.植物生理学通报,2010,46(3):284-290.
    [30]张福锁.锌营养状况对小麦根细胞摸透性的影响[J].植物生理学报,1992,18(1):24-28.
    [31]吴振球,吴岳轩.铜锌对水稻幼苗生长及超氧物歧化酶的影响[J].植物生理学报, 1990.16(2):139-146.
    [32]王慧忠.郭庆凯.重金属污染土壤的治理方法[J].环境科学报.2001(4):25-26.
    [33]Dahmani-Muller H.. Van-Oort F.. Gelie B.. Balabane M. Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution.2000. 109:231-238.
    [34]Kiipper H.. Lombi E., Zhao F.J.. McGrath S.P. Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta. 2000.212:75-84.
    [35]Zhao F.J., Lombi E., Breedon T., McGrath S. Zinc hyperaccumulation and cellular distribution in Arabidopsis halleri. Plant Cell and Environment.2000,23:507-514.
    [36]Kupper H., Zhao F.J., McGrath S.P. Cellular compartmentation of zinc in leaves of the hyperaccumulator Thlaspi caerulescens. Plant Physiology.1999.119:305-311.
    [37]Vogel-Mikus K., Regvar M., Mesjasz-Przybylowicz J., Przybylowicz W.J., Simcic J.. Pelicon P., Budnar M. Spatial distribution of cadmium in leaves of metal hyperaccumulating Thlaspi praecox using micro-PIXE. NewPhytologist.2008a,179:712-721.
    [38]Vogel-Mikus K., Simcic J., Pelicon P., Budnar M., Kump P., Necemer M., Mesjasz-Przybylowicz J., Przybylowicz W.J., Regvar M.2008b. Comparison of essential and non-essential element distribution in leaves of the Cd/Zn hyperaccumulator Thlaspi praecox as revealed by micro-PIXE. Plant, Celland Environment,31,1484-1496.
    [39]Ma J.F.. Ueno D., Zhao F.J.. McGrath S.P. Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescens. Planta.2005,220:731-736.
    [40]Vazquez M.D., Poschenrieder C., Barcelo J., Baker A.J.M., Hatton P., Cope G.L. Compartmentation of zinc in roots and leaves of the zinc hyperaccumulator Thlaspi caerulescens J& C Presl. Botanica Acta.1994,107:243-250.
    [41]Frey B., Keller C., Zierold K., Schulin R. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant, Cell & Environment. 2000,23:675-687.
    [42]Verbruggen N., Hermans C., Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist.2009,181:759-776.
    [43]Frerot H., Faucon M-P., Willems G., Gode C., Courseaux A., Darracq A.,Verbruggen N., Saumitou-Laprade P. Genetic architecture of zinc hyperaccumulation in Arabidopsis halleri:the essential role of QTL x environment interactions. New Phytologist.2010, 187:355-367.
    [44]宋阿琳.硅提高水稻对高锌胁迫抗性的生理与分子机理.北京:中国农业科学院, 2012.
    [45]宋玉芳,许华夏,任丽萍,等.土壤重金属污染对白菜种子发芽与根伸长抑制的生态毒性效应[J].环境科学,2002.23(1):103-107.
    [46]GHORBANLIM. HAD AD KAVEH S, FARZAMI SEPEHR M. Effects of cadmium and gibberellin on growth and photosynthesis of Glycine max [J]. Photosynthetica.1999, 37(4):627-633.
    [47]林春野.重金属Cu、Cd、Zn的陆生植物毒性比较研究[J].农业环境保护,1996,15(6):266-267.
    [48]KEVRESAN S, KIRSEK S,KANDRAC J, et al. Dynamics of cadmium distribution in the intercellular space and inside cells in soybean roots and leaves [J]. Biologia Plantarum, 2003,46(1):85-88.
    [49]宋志慧,王秀娟.Cu2+和Ni2+单一和联合作用对小麦发芽和幼苗生长的影响[D].青岛:青岛科技大学,2002.
    [50]JIANG XY. Mechanism of heavy metal injury and resistance of plant [J]. Application and Environmental Biology,2001,1:15-18.
    [51]WANG H Y, SUN X Y. Studies on heavy metal pollution in soi-1 plant system [J]. China Forestry,2003,1:20-22.
    [52]KOVACEVIC G, KASTORI R, MERKULOV L. Dry matter and leaf structure in young wheat plants as affected by cadmium, lead and nickel [J]. Biological Plantarum,1992, 42(1):119-123.
    [53]唐咏,王萍萍,张宁.植物重金属毒害作用机理研究现状[J],沈阳农业大学学报,2006,37(4):551-555.
    [54]张义贤.重金属对大麦(Hordeumvul gavte)毒性的研究[J].环境科学学报,1997,17(2):199-204.
    [55]祝沛平,李凤玉,梁海曼.铜对植物器官分化的影响[J].植物生理学通讯,1999,35(4):332-336.
    [56]BARON-AYALA M, SANDMANN G. Activities of Cu-containing proteins in Cudepleted pea leaves [J]. Physiol Plant,1998,72:801-806.
    [57]李德明,郑听,张秀娟.重金属对植物生长发育的影响[A].安徽农业科学,2009,37(1):74-75.
    [58]李裕红,黄小瑜.重金属污染对植物光合作用的影响.环境科研,2006,6:23-24.
    [59]Marcelle R. Effects of stress on photosymthesis. Martinis Nijhoff, The Hague.1983,317-382.
    [60]祁忠占,彭永康,宋玖雪,等.汞对蔬菜幼苗生长及氧化酶同工酶的研究[J].环境科学学报,1991,11(3):370-374.
    [61]李建宏,邰子厚,曾昭琪.Cu2+对蓝藻Spirnlina maxima光合作用的抑制.植物生理 学日报,1997.23(1):77-82.
    [62]李元.王焕校.吴云树,等.Cd、Fe及其复合污染对烟草叶片几项生理指标的影响[J]生态学报.1992.12(2):147-153.
    [63]杨居荣.贺建群等.Cd污染对植物生理化的影响[J].农业环境保.1995.14(15):193-197.
    [64]况琪军,夏宜诤.惠阳.重金属对藻类的致毒效应[J].水生生物学报.1996.20(3):277-283.
    [65]蒋义智,黎继岚.镉对烟草光合特性的影响[J].植物生理学通讯,1989,6:27-31.
    [66]秦天才,吴玉树,王焕校,等.镉、铅及其相互作用对小白菜根系生理化特征的研究[J].生态学报,1994,14(1):46-50.
    [67]周易勇,刘同仇,邓波儿.铬污染对辣椒叶绿素和铁含量及几种酶活性的影响[J].环境科学,1991,11(3):28-29.
    [68]StobarkAk, Grifiths WT. The effect of Cd2+on the biosynthesis of chlorophyll in pleases of bar ley. Plant physiol,1985,63:293-298.
    [69]Bazzaz FA, Rohlfe Gl, Carlson RW. Effect of Cd2+ on photosynthesis and transpiration of excised leaves of corn and sunflower. Physiol Plant,1974,32:373-377.
    [70]Faramarz H B, Mohammad O. Analysis of thickness dependence of the sensitivity in thin film resistive gas sensors [J]. Sensors and Actuators,2003. B89:256-261.
    [71]Shin B, Kwon J. Ultrasonic transducers for continuous-cast billets [J]. Sensors and Actuators,1996, A51:173-177.
    [72]邵关荣.焦东苗.气谱色相法快速色丁空气中乙炔、氟乙烯气体浓度[J].浙江化工1996,27(4):37-38.
    [73]瞿进文,徐海聂,张中亚.空气硫酰氟气体浓度的气相色谱法测定[J].分析仪器,2000(2):32-34.
    [74]Li F M, Xiong Z Y, Zheng Z H. Research on tolerance and bioaccumulation of seven species (cultivars) of plants on lead. Agro-EnvironmentalProtection,1999,18(6):246-250.
    [75]Chapelle EW, Kim MS. Ratio analysis of reflectance spectra (RARS):an algorithm for the remote estimation of the concentration of chlorophyll a, Chlorophyll b and carotenoids in soybean leaves. Remote Sensing of Environment.1992,39:239-247.
    [76]Wellburn AR. The spectral determination of chlorophylls a and b, As well as total carotenoids, using various solvents with spectrophotometers of different resolution. Journal of Plant Physiology.1994,144:307-313.
    [77]Deering D W, Rouse J W, Haas R H, et al. Measuring forage production of grass units from Landsat MSS data [J]. Environment,1975,23:1169-1173.
    [78]任安芝,高玉葆,刘爽.铬、镉、铅胁迫对青菜叶片几种生理生化指标的影响[J].应 用与环境生物学报.2000,6(2):112-116.
    [79]陈怀满.土壤一植物系统中的重金属污染[M].北京:科学出版社,1996:1-14.
    [80]杨世勇.王方,谢建春.重金属对植物的毒害及植物的耐性机制[J].环境科学报,2004(1):71-72。
    [81]何翠屏.环境中重金属污染及其对植物生长发育的影响[J].青海草业,2004,13(2):26-29.
    [82]吴鹏鸣主编.环境监测原理与应用[M],北京:化学工业出版社,1988,212-214.
    [83]Barak P, Helmke P A. The chemistry of zinc [A]. Robson A D (ed). Zinc in soil and plants [M]. Dordrecht, the Netherlands:Kluwer Academic Publishers,1993.1-13.
    [84]Auld D S. Zinc coordination sphere in biochemical zinc sites [J]. Biometals,2001.14:271-313.
    [85]Broadley M R, White P J, Hammond J P et al. Zinc in plants [J]. New Phytol,2007,173: 677-702.
    [86]谢英荷,金志南,齐霞.山西主要枣区土壤概况及其培肥[J].山西林业科技,1994(2):45-48.
    [87]Huang Y Z, Zhu Y G, Hu Y, Liu Y X. Uptake and accumulation of arsenic by different soybean varieties. Journal of Agro-Environment Science,2006,25(6):1397-1401.
    [88]Marschner H. Mineral nutrition of higher plants (2nd) [M]. London:Academic Press,1995.
    [89]龚红梅,沈野.植物对重金属锌耐性机理的研究进展.西北植物学报[A],2010,30(3):0633-0644.
    [90]萨师煊,王珊.数据库系统概论[M].北京:高等教育出版社.2000(3).
    [91]徐英俊.教学设计[M].北京:教育出版社.2001.
    [92]时忠杰,胡哲森,李荣生.铅、锌胁迫对蕹菜光合色素及活性氧代谢的影响.江西农业大学学报(自然科学版),2002,24(2):208-212.
    [93]麦维军,王颖,梁承邺,等.谷胱甘肽在植物抗逆中的作用[J].广西植物,2005,25(6):570-575.
    [94]Katsuhara M, Takeshi O, Bunichi E. Salt stress-induced lipid peroxidation is reduced by glutathione S-transferase, but this reduction of lipid peroxides is not enough for a recovery of root growth in Arabidopsis. Plant Science,2005,169:369-373.
    [95]Jiang MY, Zhang JH, Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. Journal of Experimental Botany,2002,53(379): 2401-2410.
    [96]Aebi H. Catalase in vitro. Methods in Enzymology,1984,105:121-126.
    [97]Bai T, Li C, Ma F, Feng F, Shu H. Responses of growth and antioxidant system to root-zone hypoxia stress in two Malus species. Plant Soil,2009,327 (1-2):95-105.
    [98]Rathmell W G. Sequeira L. Soluble peroxidase in fluid from the intercellular spaces of tobacco leaves. Plant Physiology.1974.53:317-318.
    [99]张志良,瞿伟菁.植物生理学实验指导.高等教育出版社.1980.
    [100]Jl Z B(吉增宝).WANG J X(王进鑫).LI J W(李继文).XUE SH(薛设).ZHANG ML(张慕黎).Dynamic changes of soluble sugar in the seedlings of Robinia pseudoacacia under drought stress and rewatering in different seasons [J]. Acta Bot. Boreal.-Occident. Sin.(西北植物学报),2009,29(7):1358-1363(in Chinese).
    [101]WANG GL(王广林), ZHANGJ CH(张金池),et al. Effects of Cu and Zn stress on physiolo gical indications of Ludvigia prostrate Roxb [J]. Journal of Nanjing Forestry University (Nat. Sci. Edi.)(南京林业大学学报·自然科学版),2009,33(4):43-47(in Chinese).
    [102]XUX(徐旭),SUN ZH Y(孙振元),PAN Y ZH(潘远智),HANL(韩蕾),YANG X J(杨学军).Review on responses of garden plants to heavy metal stress [J]. World. Forestry Research(世界林业研究),2007,20(6):36-41(in Chinese).
    [103]DAZY M, MASFARAUD J F, FERARD J F. Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw [J]. Chemosphere,2009, 75:297-302.
    [104]GUOX Y(郭晓音),YAN CH L(严重玲),YEBB(叶彬彬).Effect of Cd-Zn combined stress on contents of osmotic substancs in Kandelia candel (L.) druce seedlings [J]. Chinese Journal of Applied and Environmental Biology(应用与环境生物学报),2009,15(3):308-312(in Chinese).
    [105]FENG SH L(冯淑利),SHAOY(邵云),LIU Y(刘洋),et al. Effects of Zn2+ stress on physiological activity of wheat seedlings [J]. J. Agro-Environ. Sci.(农业环境科学学报),2007,26(l):140-145(in Chinese).
    [106]DING HD(丁海东),QI N M(齐乃敏),ZHU W M(朱为民),WAN Y H(万延慧).Effect of Cd, Zn stress on the growth, contents of proline and GSH of tomato seedlings [J]. Chinese Journal of Eco-Agriculture(中国生态农业学报),2006,14(2):53-55(in Chinese).
    [107]SUN S CH(孙塞初),WANG H X(王焕校),et al. Primary study on physiological changes and toxicity mechanisms in aquatic vascular plants under cadmium pollution [J]. Acta Phytophysiologica Sinica(植物生理学报),1985,11(2):113-121(in Chinese).
    [108]郑爱珍.镉胁迫对芥蓝根系质膜过氧化及ATPase活性的影响.生态学报,2012,32(2):0483-0488.
    [109]汤叶涛,关丽捷,仇荣亮,应蓉蓉,刘凤杰,胡鹏杰.镉对超富集植物滇苦菜抗氧化系统的影响.生态学报,2010,30(2):324-332.
    [110]Shao X J. Yang H Q, Rang K, Jiang Q Q, Sun X L. Effects of salicylic acid on plasma membrane ATPase and free radical of grape root under cadmium stress. Scientia Agriculture Sinica.2010,43(7):1441-1447.
    [111]生书晶,赵炜,赵树进.药用植物次生代谢工程研究概况.生命的化学,2012.30(6):968-971.
    [112]Sprenger GA. Schorken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Eschericaia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA.1997, 94:12857-12862.
    [113]杨磊,张琳,田浩,牛卉颖,祖元刚.负压空化强化提取长春花中生物碱的工艺参数优化.化工进展[A],2008,27(11):1841-1845.
    [114]余启高.长春花栽培技术.现代农业科技.2008(15):83.
    [115]St-Pierre B, Vazquez-Flota FA, De-Luca V. Multicellular compartmentation of Catharanthus roseus alkaloid biosynthesis predicts intercellular translocati on of a pathway intermediate. The Plant Cell,1999,11:887-900.
    [116]YAN XF, WANG Y, LI YM. Plant secondary metabolism and its response to environment, Acta Ecologica Sinica,2007,27(6):2554-2562.
    [117]Liu ZY, Yang YS, Zhang ML. Development for healthy Sour Soya bean milk with Pana cocts (schw.) wolf material. Nat Sci J XiangtanUniv,2003,25(3):72-86.
    [118]Jiangsu New Medieal College. The Dictionary of Traditional Chinese Medieine. Shanghai:Shanghai Scienle and Technolo Press,1997:3314.
    [119]Neuss N, Neuss MN. The Therapeutic Use of Bisihdole Alkaloids from Catharanthus roseus. In The Alkaloids, New York:Academic Press,1990,137:229-239.
    [120]Waller GR, Nowacki EK. Alkaloid biology and metabolism in plants. New York:Plenum Press,1978.
    [121]Vazquez-Flota F, Carrillo-Pech M, Minero-Garcia Y, Miranda-Ham M L. Alkaloid metabolism in wounded Catharanthus roseus seedlings [J]. Plant Physiology and Biochemistry,2004,42(7-8):623-628.
    [122]张向飞,张荣涛,曹岚,等.不同因子对长春花愈伤组织中药用成分积累的影响.中国药学杂志[J],2004,39(11):817.
    [123]田跃胜.长春花叶片三种生物碱含量及合成基因表达的初步研究.上海交通大学.2011.
    [124]伍春莲,杨军,陈卫英,孙敏.长春花生物碱合成途径调控机制研究进展.药物生物技术[A],2010,17(1):91-94.
    [125]St-Pierre B. Plant Physiol,1995,109(1):131.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700