用户名: 密码: 验证码:
金属耐性植物内生细菌对油菜耐受与富集重金属的影响及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土壤重金属污染生物修复是一种成本低廉、易于操作且环境友好的新兴原位修复技术,而植物内生细菌可以通过多种作用方式影响植物的生长和植物对重金属的耐受和富集,在重金属污染土壤植物-微生物联合修复中起到极其重要的作用。通过分离筛选重金属耐性植物内生植物促生细菌,不仅可以丰富植物促生细菌的菌种资源库,而且为发展重金属污染土壤植物-微生物联合修复提供理论依据和新的技术途径。
     从汤山铜矿废弃地和栖霞山铅锌银矿区周边采集野菊、鬼针草、土荆芥等10种重金属耐性植物,以1-氨基环丙烷-1-羧酸(ACC)为唯一氮源,分离筛选产ACC脱氨酶植物内生细菌,同时研究菌株产吲哚乙酸(IAA)、铁载体、精氨酸脱羧酶以及溶解难溶性磷酸盐等其他植物促生特性。从上述重金属耐性植物中共分离筛选到产ACC脱氨酶并且兼具其他植物促生特性的植物内生细菌20株,其中从铜耐性植物中分离筛选得到8株,铅耐性植物中分离筛选到12株。供试20株植物内生细菌对重金属Cu、Cd、Pb和Ni都有一定的抗性,其中菌株Y1-3-9、Jp3-3、J1-22-2、Q2BJ2, Q2EJ2和Q2BG1表现出较高的ACC脱氨酶活性(120.3-369.6μMh-1mg-1).通过16S rRNA基因序列测定与分析,供试20株植物内生细菌分属于Pantoea、Ralstonia、 Pseudomonas、Bacillus、Acinetobacter和Agrobacterium等6个属。
     砂培条件下,以生物量大、生长快、具有一定耐性的油菜作为供试植物,研究Cu/Pb胁迫下,6株高产ACC脱氨酶植物内生细菌对油菜生长和吸收重金属的影响。结果表明,在不加重金属条件下,与对照相比,供试菌株使油菜的生物量增加了31.5%-166.8%;在Cu (2.5-5.0mg L-1)胁迫下,与对照相比,供试菌株Y1-3-9、Jp3-3和J1-22-2使油菜的生物量增加了24%-167%,铜含量增加了86.4%-192.6%,铜的积累量增加了43.3%-124.4%;在Pb50mg L-1处理下,供试菌株对油菜生物量影响不明显,与对照相比,菌株Q2BJ2, Q2EJ2和Q2BG1使油菜体内Pb浓度和积累量上升了34.6%-175%和84.0%-147%,Pb100mg L-1处理下,菌株Q2BJ2, Q2EJ2和Q2BG1使油菜生物量增加了34.5%-72.2%、Pb含量增加了156%-310%,Pb的积累量增加了28.6%-325%;另外,在Pb50mg L-1处理的砂培条件下,供试菌株Q2EJ2和Q2BJ2使油菜的铅转运系数上升,与不接菌处理的转运系数(0.575)相比,接菌Q2EJ2和Q2BJ2的转运系数分别上升到1.399和1.049,说明菌株在一定程度上增强了油菜的超富集能力。
     采用汤山铜矿废弃地和栖霞山铅锌银矿区周边采集的重金属污染的农田土壤,选取高产ACC脱氨酶的植物内生促生细菌Y1-3-9、Jp3-3和另外两株具有精氨酸脱羧酶活性的植物内生促生细菌Q2EY2和Q1BY6,研究其促进油菜修复土壤重金属污染效应及机制。在原位污染土壤的盆栽修复试验中,与对照相比,菌株Y1-3-9、Jp3-3、Q2EY2和Q1BY6使油菜的生物量增加了24.4%-124%,Cu/Pb吸收浓度提高了55.8%-685%,油菜体内Cu/Pb的积累量上升了46%-494%. PCR-DGGE结果表明,接种植物内生促生菌株对油菜根际土壤细菌群落结构影响不明显,对油菜根内生细菌群落结构产生了一定的影响。
     接种植物内生促生细菌Q1BY6后,油菜的叶绿素含量显著上升。与接灭活菌对照相比,接菌(Y1-3-9、Jp3-3和Q1BY6)处理显著提高了油菜叶内乙酸含量,另外接菌(Q1BY6)处理油菜根内柠檬酸含量比接灭活菌对照提高了16.4%,接菌(Jp3-3、Q1BY6和Q2EY2)处理油菜根内丁二酸含量达2036-4869μgkg-1,而接灭活菌对照根内未检测到丁二酸。接种菌株Y1-3-9和Q2EY2还使油菜体内游离(亚精胺+精胺)/游离腐胺比值有所升高,另外,接菌处理油菜体内游离腐胺含量比对照降低1.7-398.9%;接种菌株Jp3-3和Y1-3-9处理油菜体内植物螯合肽含量分别比对照提高了22.5%和256%。
Phytoremediation is an emerging in-situ remediation technology due to its less cost, convenient operation and friendly-environment for remediation of heavy metal-contaminated soils. A large number of microorganisms which colonized plant tissue interior can affect growth and heavy metal accumulation of plants in heavy metal-polluted environment by many approaches. Therefore, endophytic bacteria play an important role in bacteria-assisted phytoremediation of heavy metal-contaminated soils. By isolating plant growth promoting endophytic bacteria and utilization for remediation, we can not only improve the remediation efficiency and enrich microbial resource librarys, but also elucidate certain mechanisms on how plant growth promoting endophyte improve the biomass of plant and uptake of metals in heavy metal-polluted environments.
     Twenty1-aminocyclopropane-l-carboxylic acid (ACC) deaminase-producing strains were isolated from chrgsanthemum indicum, bidens pilosa and chenopodium ambrosioides heavy metal-tolerant plant species in mining area and characterized with respect to metal resistance, production of ACC deaminase, indole-3-acetic acid (IAA) and siderophores and mineral phosphate solubilization. Eight strains were isolated from Cu-tolerant plants in Tangshan Cu mine wasteland and the other twelve strains were isolated from qixiashan Lead-Zinc mine tailing. All twenty strains have different heavy metal (Cu, Cd, Pb, Ni) resistance, of which six strains (Y1-3-9、Jp3-3、J1-22-2、Q2BJ2、Q2EJ2、Q2BG1) could produce high level of ACC deaminase (120.3-369.6μM h-1mg-1). The twenty strains were identified as Pantoea%Ralstonia、Pseudomonas、Bacillus、Acinetobacter and Agrobacterium based on16S rRNA gene sequencesanalyses.
     We selected Brassica napus for phytoremediation in pot experiment to investigate the effect of ACC deaminase-producing endophytic bacteria on the growth and Cu/Pb accumulation of the plant in quartz sand with copper/lead stress. The results indicated that all six strains with high level of ACC deaminase activity have ability to increase the biomass of Brassica napus in the absence of heavy metal stress, and strains Y1-3-9, Jp3-3and J1-22-2could increase the dry weight (24.3-166.8%), Cu content (86.4-192.6%) and total Cu uptake (43.3-124.4%) of Brassica napus in the presence of2.5and5mg kg-1of Cu2+. In the presence of50mg L"1lead, the test strains did not influence the Brassica napus biomass significantly, however, the strains Q2BJ2, Q2EJ2and Q2BG1increased the Pb contents by34.6%to175%and the total Pb uptake from84.0%to147%. In experiments involving Brassica napus grown in quartz sand containing100mg kg-1of Pb, inoculation with the isolates (Q2BJ2, Q2EJ2and Q2BG1) resulted in the increased dry weights (ranging from34.5%to72.2%), lead contents (ranging from156%to310%) and total lead uptake (ranging from28.6%to325%) of Brassica napus compared to the uninoculated control. Strains Q2EJ2and Q2BJ2increased the translocation factor of Pb (1.399and1.049respectively) in the Brassica napus compared with the uninoculation control (0.575), suggesting that bacterial inoculation may influence the translocation factor and metal hyperaccumulating ability of Brassica napus.
     The mechanism and effect of the growth-promoting endophytic bacteria on microbial-assisted phytoremediation of heavy metal polluted-soil were investigated in pot experiment using in-situ polluted soil collected from Tangshan Cu mine and Qixiashan Pb/Zn mine. Two strains (Y1-3-9and Jp3-3) with high-level of ACC deaminase activity and other two strains (Q2EY2and Q1BY6) that can produce arginine decarboxylase were seleced for pot experiments.
     Pot experiment showed that inoculation with the strains (Y1-3-9, Jp3-3, Q2EY2and Q1BY6) could increase the biomass of rape by24.4-124%, the Cu/Pb contents by55.8-685%and total Cu/Pb uptake by46-494%compare to the controls. In the experiment involving Brassica napus grown in in-situ heavy metal polluted soil, the analyses of PCR-DGGE revealed that the endophytic bacterial community in the roots of Brassica napus was influenced more obviously by the test strains compared with the rhizosphere bacterial community of Brassica napus.
     Inoculation with strain Q1BY6resulted in increased relative chlorophyll cotent in leaves in Brassica napus. The content of acetic acid in shoots of Brassica napus was increased by inoculating strains Y1-3-9, Jp3-3and Q1BY6compared with controls and the content of citric acid was significantly increased by16.4%by inoculation with strain Q1BY6. The strains Y1-3-9, Jp3-3and Q1BY6induced root tissues of Brassica napus to produce succinic acid. Inoculation with strains Y1-3-9, Q2EY2and Q1BY6can reduce free putrescine contents of rape to1.7-398.9%compared to controls and inoculation with the strains Yl-3-9and Q2EY2increased value of (Spd+Spm)/Put. The content of phytochelatin was increased by22.5%-256%by inoculation with strains Y1-3-9and Jp3-3and indicated that srains can alleviate the toxicity of heavy metals to Brassica napus.
引文
1. Adams D, Yang S F. Ethylene biosynthesis:identification of 1-aminocyclopropane-1-carboxylic acid as an intermediate in the conversion of methionine to ethylene [J]. Proceeding of National Academy Science of the USA,1979,76:170-174.
    2. Ahner BA, Price NM, Morel FMM. Phytochelatin production by marine-phytoplankton at low free metal-ion concentrations-labratory studies and field data from Massachusetts Bay [J]. Proceedings of the National Academy of Sciences of The United States of America,1994,91: 8433-8436.
    3. Arshad M, Saleem M and Hussain S. Perspectives of bacterial ACC deaminase in phytoremediation [J]. Trends in Biotechnology,2007,25:356-362.
    4. Aslantas R, Cakmakci R, Sahin F. Effect of plant grow th promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions [J]. Scientia Horticulturae,2007,111: 371-377.
    5. Avery S V, Smith S L, Ghazi A M, Hoptroff M J. Stimulation of strontium accumulation in linoleate-enriched Saccharomyces cerevisiae is a result of reduced Sr2+ efflux[J]. Applied and Environmental Microbiology,1999,65:1191-1197.
    6. Azevedo J L, Maccheroni J J, Pereira O, Ara W L. Endophytic microorganisms:a review on insect control and recent advances on tropical plants [J]. Electr J Biotech,2000,3:40-65.
    7. Baker A J M, Brooks R R. Terrestrial higher plants which hyperaccumulate elements-A review of their distribution, ecology and phytochemistry [J]. Biorecovery,1989,1:81-126.
    8. Baker A J M, Reeves R D, Hajar A S M. Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae)[J]. New Phytologist,1994,127:61-68.
    9. Barber D A, Martin J K. The release of organic substances by cereal roots into soil [J]. New Phytologist,1976,76:69-80.
    10. Belimov A A, Hontzeas N, Safronova V I, Demchinskaya S V, Piluzza G, Bullitta S, Glick B R. Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) [J]. Soil Biology and Biochemistry,2005,37:241-250.
    11. Belimov A A, Safronova V I, Sergeyeva T A, Egorova T N, Matveyeva V A, Tsyganov V E, Borisov A Y, Tikhonovich I A, Kluge C, Preisfeld A, Dietz K J, Stepanok V V. Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-l-carboxylate deaminase [J]. Canadian Journal of Microbiology,2001,47:242-252.
    12. Ben J D, Jan W M, Peter A H, Bakker M and Schippers B. Siderophore-mediated competition for iron and induced resistance in the suppression of fusarium wilt of carnation by fluorescent Pseudomonas spp.. [J]. Netherlands Journal of.Plant Pathology,1993,99:277-289.
    13. Beveridge T J, Schultze L S. Detection of anionic sites on bacterial walls, their ability to bind toxic heavy metals and form sedimentable flocs and their contribution to mineralization in natural freshwater environments[A]. In:Allen H E, Huang C P, Bailey G W. Metal speciation and contamination of soil [M]. BocaRaton:CRG Press/Lewis Publisher,1995
    14. Beveridge T J, Murray R G E. Uptake retention of metal by cell walls of Bacillus Subtilis [J]. Journal of Bacterialogy,1976,27:1502-1518.
    15. Beveridge T J. The response of cell walls of Bacillus subtilis to metals and electron microscopic strains[J]. Canadian Journal of Microbiology,1978,24:89-104.
    16. Bhatia NP, Walsh KB, Baker AJM. Detection and quantification of ligands involved in nickel detoxification in a herbaceous Ni hyperaccumulator Stackhousia tryonii Bailey [J].Journal of Experimental Botany,2005,56:1343-1349.
    17. Bleecker A B, Kende H. Ethylene:a gaseous signal molecule in plants [J]. Annual Review of Cell Develop. Biology,2000,16:1-18.
    18. Bradley R, Burt A J, Read D J. Mycorrhizal infection and resistance to heavy metal toxicity in Calluna vulgaris [J]. Nature,1981,292:335-337.
    19. Burd G I, Dixon D G, Glick B R. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants [J]. Canadian Journal of Microbiology,2000,46:237-245.
    20. Cakmakci R, Erat M, Erdogan O. The influence of plant growth-promoting rhizobacteria on growth and enzyme activities in wheat and spinach plants [J]. Journal of Plant Nutrition and Soil Science,2007,170:288-295
    21. Cattani I, Capri E, Boccelli R, Delre A A M. Assessment of arsenic availability to roots in contaminated Tuscany soils by a diffusion gradient in thin films (DGT) method and uptake by Pteris vittata and Agrostis capillaries [J]. European Journal of Soil Science, August 2009,60: 539-548.
    22. Chanway C P. Inoculation of tree roots with plant growth promoting soil bacteria:an emerging technology for reforestation [J]. Forest Science,1997,43:99-112.
    23. Chen B D, LiX L, Tao H Q, Christie P, Wong M H. The role of arbuscular mycorrhiza in zinc uptake by red clover growing in acalcareous soil spiked with various quantities of zinc [J]. Chemosphere,2003,50:839-846.
    24. Chen Liang, Luo Shenglian, Xiao Xiao, Guo Hanjun, Chen Jueliang, Wan Yong, Li Bo, Xu Taoying, Xi Qiang, Rao Chan, Liu Chengbin, Zeng Guangming. Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils [J]. Applied Soil Ecology,2010,46:383-389.
    25. Chen X, Wu C H, Tang J J, Hu S J. Arbuscular mycorrhizae enhance metal lead uptake and growth of host plants under a sand culture experiment [J]. Chemosphere,2005,60:665-671.
    26. Cheryl L. Patten and Bernard R. Glick. Role of Pseudomonas putida Indoleacetic Acid in Development of the Host Plant Root System [J]. Applied and Environmental Microbiology,68: 3795-3801.
    27. Crowley D E, Wang Y C, Reid C P P, Szaniszlo P J. Mechanism of iron acquisition from siderophores by microorganisms and plants [J]. Plant and Soil,1991,130:179-198.
    28. Davies J. Peter. The plant hormones:their nature, occurrence, and functions [J]. Plant Hormones, 2010, A:1-15.
    29. Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U. Biochemical changes in barley plants after excessive supply of copper and manganese [J], Environmental and Experimental Botany 2004,52:253-266.
    30. Dey R, Pal K K, Bhatt D M, Chauhan S M. Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria[J]. Microbiological Research,2004,159:371-394.
    31. Dimkpa C O, Merten D, Svatos" A, Buchel G, Kothe E. Metal-induced oxidative stress impacting plant growth in contaminated soil is alleviated by microbial siderophores. Soil Biology & Biochemistry,2009,41:154-162.
    32. Dimkpa C, Svatos'A, Merten D, Buchel G, Kothe E. Hydroxamate siderophores produced by Streptomyces acidiscabies El3 bind nickel and promote growth in cowpea(Vigna unguiculata L.) under nickel stress [J]. Canadian Journal of Micro- biology,2008,54:163-172.
    33. Dodd J C, Boddington C L, Rodriguez A, Gonzalez-Chavez C and Mansur I. Mycelium of arbuscular mycorrhizal fungi (AMF) from different genera:form, function and detection [J]. Plant and Soil,2000,226:131-151.
    34. Dominguez M G, Maury L L, Florencio F J, Reyes J C. A Gene Cluster Involved in Metal Homeostasis in the Cyanobacterium Synechocystis sp. Strain PCC 6803 [J]. Journal of Bacteriology,2000,182:1507-1514.
    35. Duijff B J, Gianinazzi-Pearsonand V, Lemanceau P. Involvement of the outer membrane lipopolysaccharides in the endophytic colonization of tomato roots by biocontrol Pseudomonas fluorescens strain WCS417r [J]. New Phytology,1997,135:325-334.
    36. Evans PT, Malmberg RL. Do Polyamines Have Roles in Plant Development [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1989,40:235-269
    37. Forchetti G, Masciarelli O, Alemano S, Alvarez D, Abdala G. Endophytic bacteria in sunflower (Helianthus annuus L.):isolation, characterization, and production of jasmonates and abscisic acid in culture medium [J]. Applied Microbiology and Biotechnology,2007,76:1145-1152.
    38. Galston Arthur W, Kaur-Sawhney Ravindar. Polyamines as endogenous growth regulators [M]. Plant hormones:Physiology, biochemistry and molecular biology,2nd edition.1995,158-178
    39. Glick B R, Jacobson C B, Schwarze M M K, Pasternak J J.1-Aminocyclopropane-l-carboxylic acid deaminase mutants of the plant growth promoting rhizobacterium Pseudomonas putida GR12-2 do not stimulate canola root elongation [J]. Canada Journal of Microbiology,1994,40: 911-915.
    40. Glick, B R, Penrose D M, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria [J]. Journal of Theoretical Biology,1998,190:63-68.
    41. Goldbold D J, Hutterman A. The uptake and toxicity of mercury and lead to spruce (Picea abies) seedlings [J]. Wat air Soil Pollution,1986,31:509-515.
    42. Gordon S A, Weber R P. Colorimetric estimation of indoleacetic acid [J]. Plant Physiology, 1951,26:192-195.
    43. Gravel V, Antoun H, Tweddell R J. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: Possible role of indole acetic acid (IAA) [J]. Soil Biology and Biochemistry,2007,39: 1968-1977.
    44. Grill E; Loffler S; Winnnacker EL. Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by a specific gamma-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase) [J]. Proceedings of the National Academy of Sciences of America,1989,86:6838-6842
    45. Grill E, Winnacker E L and Zenk M H. Phytochelatins:a class of heavy metal binding peptides from plants, are functionally analogous to metallothioneins [J]. Proceedings of the National Academy of Sciences of USA,1987,84:439-443.
    46. Gruenhage L, Jager H J. Effect of heavy metals on growth and heavy metals content of Allium Porrum and Pisum sativum [J]. Angew Bot,1985,59:11-28.
    47. Gupta M, Rai N U and Tripathi D R. Lead induced changes in glutathione and phytochelatin in Hydrilla verticillata (L.f.) Royle [J]. Chemosphere,1995,30:2011-2020.
    48. Hardoim P R, van Overbeek L S, van Elsas J D. Properties of bacterial endophytes and their proposed role in plant growth [J]. Trends in Microbiology,2008,16:467-471.
    49. Ha S B, Smith A P, Howden R, DietrichW M, Bugg S, O'Connell M J, Goldsbrough P B, Cobbett C S. Phytochelatin synthase genes from Arabidopsis and the yeast Schizosaccharomyces pombe [J]. Plant Cell,1999,11:1153-1164.
    50. Hector M C, Angel F. Metal Uptake by Spontaneous Vegetation in Acidic Mine Tailings from a Semiarid Area in South Spain:Implications for Revegetation and Land Management [J]. Water Air Soil Pollution,2011,215:221-227.
    51. Hegedus A, Erdei S, Horvath G. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedings under cadmium stress [J]. Plant Science,2001,160:1085-1093.
    52. He L Y, Chen Z J, Ren G D, Zhang Y F, Qian M, Sheng X F. Increased cadmium and lead uptake of a cadmium hyperaccumulator tomato by cadmium-resistant bacteria [J]. Ecotoxicology and Environmental Safety,2009,1343-1348.
    53. Hetzer A, Daughney C J, Morgan H.W, Cadmium ion biosorption by the thermophilic bacteria Geobacillus stearothermophilus and G. thermocatenulatus [J]. Applied and Environmental Microbiology,2006,72:4020-4027.
    54. Holliday P. A Dictionary of Plant Pathology. Cambridge University Press, Cambridge,1989.
    55. Honma M, Shimomura T. Metabolism of 1-aminocyclopropane-1-carboxylic acid [J]. Agricultural and Biological Chemistry,1978,42:1825-1831.
    56. Huang J W, Chen J, Berti W R. Phytoremediation of lead contaminated soils:role of synthetic chelates in lead phytoextraction [J]. Environmental Science and Technology,1997,31:800-805.
    57. Idris R, Trifonova R, Puschenreiter M, Wenzel W W, Sessitsch A. Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense [J]. Applied and Environmental Microbiology,2004,70:2667-2677.
    58. Janette Onofre-Lemus, Ismael Hernandez-Lucas, Lourdes Girard, and Jesus Caballero-Mellado. ACC (1-Aminocyclopropane-1-Carboxylate) Deaminase Activity, a Widespread Trait in Burkholderia Species, and Its Growth-Promoting Effect on Tomato Plants [J]. Applied and Environmental Microbiology,2009,75:6581-6590.
    59. Jamal, A., Ayub, N., Usman, M., and Khan, A.G.. Arbuscular mycorrhizal fungi enhance zinc and nickel uptake from contaminated soil by soyabean and lentil [J]. International Journal of Phytoremediation,2002,4:205-221.
    60. Janouskova M, Pavli'kova D, Vosatka M. Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil [J]. Chemosphere,2006,65:1959-1965.
    61. Kalpna V K, Singh N, Beh H M, Srivastava S. Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil [J]. Chemosphere,2008,72:678-683.
    62. Kramer U, Cotter-Howells J D, Charnock J M, Baker A J M, Smith A C. Free histidine as a metal chelator in plants that accumulate nickel [J]. Nature,1996,379:635-638.
    63. Kramer U, Pickering I J, Prince R C, Raskin I, Salt D E. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi Species [J]. Plant Physiology,2000, 122:1343-1354.
    64. Lazarovits G, Nowak J. Rhizobacteria for improvement of plant growth and establishment [J]. Hortscience,1997,32:188-192.
    65. Lee Sangman, Moon S. Jae, Ko Tae-Seok, Petros David, Goldsbrough B. Peter, and Korban S. Schuyler. Overexpression of arabidopsis phytochelatin synthase paradoxically leads to hypersensitivity to cadmium stress [J]. Plant Physiology,2003,131:656-663
    66. Lemus J O, Lucas I H, Girard L, Mellado J C, ACC (1-aminocyclopropane-l-carboxylate) deaminase activity, a widespread trait in Burkholderia Species, and its growth-promoting effect on tomato plants [J]. Applied and Environmental Microbiology,2009,75:6581-6590.
    67. Leung H M, Ye Z H, Wong M H. Interactions of mycorrhizal fungi with Pteris vittata (as hyperaccumulator) in As-contaminated soils [J]. Environmental Pollution,2005,139:1-8.
    68. Lewis S, Donkin M E, Depledge M H. Hsp 70 expression in Enteromorpha intestinalis (Chlorophyta) exposed to environmental stressors [J]. Aqua Toxicology,2001,51:277-291.
    69. Li Y J, Dhankher O P, Carreira L, Lee D, Chen A, Schroeder J I, Balish R S, Meagher R B. Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity [J]. Plant Cell Physiology,2004,45:1787-1797.
    70. Lodewyckx C, Mergeay M, Vangronsveld J, Clijsters H, Van der Lelie D. Isolation, characterization, and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. Calaminaria [J]. International Journal of Phytoremediation,2002, 4:101-105.
    71. Madhaiyan M, Poonguzhali S, Ryu J, Sa T. Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-l-carboxylate deaminase-containing Methylobacterium fujisawaense [J]. Planta,2006,224:268-278.
    72. Madhaiyan M, Poonguzhali S, Sa T. Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato(Lycopersicon esculentum L.) [J].Chemosphere,2007,69:220-228.
    73. Mastrettaa C, Taghavib S, Lelieb D V D, et al. Endophytic bacteria from seeds of nicotiana tabacum can reduce cadmium phytotoxicity [J]. International Journal of Phytoremediation,2009, 11:251-267.
    74. Mathys W. The role of malate, oxalte and mustard oil glucosides in the evolution of zinc-resistance in herbage plants [J]. Plant Physiology,1977,40:130-136.
    75. Mayak S, Tirosh T, Glick B R, Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings [J] Plant Growth Regulation,1999,18: 49-53.
    76. Ma Y, Rajkumar M, Freitas H. Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea [J]. Journal of Environmental Management,2009a,90:831-837.
    77. Ma Y, Rajkumar M, Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. [J]. Chemosphere,2009b,75:719-725.
    78. McGrath S P, Zhao F J, Lombi E. Plant and rhizosphere processes involved in phytoremediation of metal contaminated soils [J]. Plant and Soil,2001,232:207-214.
    79. Mendes Rodrigo, Pizzirani-Kleiner Aline A., Araujo Welington L., and Raaijmakers Jos M., Diversity of cultivated endophytic bacteria from sugarcane:genetic and biochemical characterization of Burkholderia cepacia complex isolates [J]. Applied and Environmental Microbiology,2007,73:7259-7267.
    80. Mittler R. Oxidative stress, antioxidants and stress tolerance [J]. Trends in Plant Science,2002, 7:405-410.
    81. Morzck E J, Funicclli N A. Effect of lead and on germination of Spartina alterniflora Losiel seeds at various salinities [J]. Environmental and Experimental Botany 1982,22:23-32.
    82. Munksgaard N C, Lottermoser B G. Effects of wood bark and fertilizer amendment on trace element mobility in mine soils, Broken Hill, Australia:implications for mined land reclamation [J]. Journal of Environmental Quality,2010,39:2054-2062.
    83. Nakos G. Lead pollution:fate of lead in soil and its effects on Pinus haplenis [J]. Plant and Soil 1979,50:159-161.
    84. Nishizono H, Ichikawa H, Suziki S, Ishii F. The role of the root cell wall in the heavy metal tolerance of Athyrium yokosense [J]. Plant and Soil,1987,101:15-20.
    85. Patten C L, Glick B R. Role of Pseudomonas putida indoleacetic acid in the development of the host plant root system [J]. Applied and Environmental Microbiology,2002,68:3795-3801.
    86. Pawlik-Skowronskaa Barbara, Pirszela Jacek, Brownc T. Murray. Concentrations of phytochelatins and glutathione found in natural assemblages of seaweeds depend on species and metal concentrations of the habitat [J]. Aquatic Toxicology,2007,83:190-199.
    87. Perrig D, Boiero M L, Masciarelli O A, Penna C, Ruiz O A, Cassan F D, Luna M V. Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation[J]. Applied Microbiology and Biotechnology,2007,75:1143-1150.
    88. Rajkumar Mani, Ae Noriharu, Freitas Helena. Endophytic bacteria and their potential to enhance heavy metal phytoextraction [J]. Chemosphere,2009,77:153-160.
    89. Rajkumar M, Ae N, Prasad M N V, Freitas H. Potential of siderophore-producing bacteria for improving heavy metal phytoextraction[J]. Trends in Biotechnology,2010,28:42-149.
    90. Rajkumar M, Nagendran R, Lee K J, Lee H W, Kim S Z. Influence of plant growth promoting bacteria and Cr6+ on the growth of Indian mustard [J]. Chemosphere,2006,62:741-748.
    91. Rajkumar Mani, Freitas Helena. Influence of metal resistant-plant growth-promoting bacteria on the growth of Ricinus communis in soil contaminated with heavy metals [J]. Chemosphere, 2008,71:834-842.
    92. Rascio N. Metal Accumulation by some plants growing on zinc-mine deposits [J]. Oikos,1977, 29:250-253.
    93. Reddy A M, Kumar S G, Jyotsnakumari G, Thimmanayak S, Sudhakar C. Lead induced changes in antioxidant metabolism of horsegram(Macrotyloma uniflorum (Lam.) Verde.) and bengalgram (Cicer arietinum L.)[J]. Chemosphe,2005,60:97-104.
    94. Rugh C L, Sencoff J F, Meagher R B, Development of transgenic of yellow poplar for mercury phytoremediation [J]. Nature Biotechnology,1998,16:925-928.
    95. Salt D E, Smith R D, Raskin I. Phytoremediation [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1998,49:643-668.
    96. Sarret G, Willems G, Isaure MP, Marcus MA, Fakra SC, Frerot H, Pairis S, Geoffroy N, Manceau A, Saumitou-Laprade P. Zinc distribution and speciation in Arabidopsis halleri x Arabidopsis lyrata progenies presenting various zinc accumulation capacities [J]. New Phytologist,2009,184:581-595.
    97. Schulz B, Boyle C. What are endophytes? Microbial Root Endophytes (Schulz BJE, Boyle CJC & Sieber TN, eds) [J]. Springer-Verlag, Berlin,2006,1-13.
    98. Shah K. and Nongkynrih J.M. Metal hyperaccumulation and bioremediation [J]. Biologia Plantarum,200751:618-634.
    99. Sheng X F, Xia J J, Jiang C Y, He L Y, Qian M. Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape[J]. Environmental Pollution,2008,156:1164-1170
    100. Sheng X F, Xia J J. Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium-resistant bacteria [J]. Chemosphere,2006,64:1036-1042.
    101. Siegel S M, Galun M, Siegel B. Filamentous fungi as metal biosothents:a review [J]. Water Air soil Pollution,1990,53:335-344.
    102. Silver S. Bacterial resistance to toxic metal ions-a review [J]. Gene,1996,179:9-19.
    103. Simon C Andrews, Andrea K Robinson, Francisco Rodriguez-Quinones. Bacterial iron homeostasis [J]. FEMS Microbiology Reviews,2003,27:215-237.
    104. Sneller F. E. C., Van Heerwaarden L. M., Kraaijeveld-Smit F. J. L., Ten Bookum W. M., Koevoets P. L. M., Schat H., Verkleij J. A. C.. Toxicity of arsenate in Silene vulgaris, accumulation and degradation of arsenate-induced phytochelatins [J]. New Phytologist,1999, 144:223-232.
    105. Stadtman E R, Oliver C N. Metal-catalyzed oxidation of proteins. Physiological consequences [J] Biological Chemistry,1991,266:2005-2008.
    106. Stearns J C, Shah S, Greenberg B M, Dixon D G, Glick B R. Tolerance of transgenic canola expressing 1-aminocyclopropane-l-carboxylic acid deaminase to growth inhibition by nickel [J]. Plant Physiology and Biochemistry,2005,43:701-708.
    107. Steffens J C. The heavy metal-binding peptides of plants [J]. Annual Review of Plant Physiology and Plant Molecular Biology,1990,41:533-575.
    108. Sun Le-Ni, Zhang Yan-Feng, He Lin-Yan, Chen Zhao-Jin, Wang Qing-Ya, Qian Meng, Sheng Xia-Fang, Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland [J], Bioresource Technology, 2010,101:501-509.
    109. Thieken A, Winkelmann G. A novel bioassay for the detection of siderophores containing ketohydroxy bidentate ligands [J]. FEMS Microbiology Letters,1993,111:281-285.
    110. Thomas J C, Davies E C, Malick F K, Endreszl C, Williams C R, Abbas M,Petrella S, Swisher K, Perron M, Edwards R, Ostenkowski P, Urbanczyk N,. Wiesend W N, Murray K S. Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils [J]. Biotechnology Progress,2003,19:273-280.
    111. Tobin J, Coopper D, Neufeld R. Uptake of heavy metal ions by Rhizopus arrhizus biomass [J]. Applied Environment Microbiology,1984,47:821-824.
    112. Tokala R K, Strap J L, Jung C M, Crawford D L, Salove H, Deobald L A, Bailey F J, Morra M.J. Novel plant- microbe rhizosphere interaction involving S. lydicus WYEC108 and the pea plant (Pisum sativum) [J]. Applied and Environmental Microbiology,2002,68:2161-2171.
    113. Trotta A. Falaschi, P., Cornara L., Minganti V., Fusconi A., Drava G., Berta G.. Arbuscular mycorrhizae increase the arsenic translocation factor in the As hyperaccumulating fern Pteris vittata L.[J]. Chemosphere,65:74-81
    114. Turnau Katarzyna and Mesjasz-Przybylowicz Jolanta. Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa [J]. Mycorrhiza,2003,13:185-190.
    115. Verkleij J A C, Koevoets P L M, Blake-Kalff M M A, Chardonnens A N. Evidence for an important role of the tonoplast in the mechanism of naturally selected Zn tolerance in Silene vulgaris [J]. Journal of Plant Physiology,1998,153:188-191.
    116. Verma C Subhash, Ladha K Jagdish, Tripathi K Anil. Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice [J]. Journal of Biotechnology,2001,91:127-141.
    117. Vogeler I, Thayalakumaran T, Scotter D R, Percival H J, Robinson H, Clothier B E, Leaching of copper from contaminated soil following the application of EDTA. II. Intact core experiments and model testing [J], Australian Journal of Soil Research,2001,41:335-350.
    118. Vogel-Mikus K, Pongrac P, Kump P, NecemerM, Regvar M. Colonisation of a Zn, Cd and Pb hyperaccumulator Thlaspi praecox Wulfen with indigenous arbuscular mycorrhizal fungal mixture induces changes in heavy metal and nutrient uptake [J]. Environmental Pollution,2006, 139 (2):362-371.
    119. Walker S G, Flemming C A, Ferris FG, Beveridge T J, Bailey G W. Physicochemical interaction of Escherichia Coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution [J]. Applied and Environmental Microbiology,1989,55:2976-2984.
    120. Wang Chao, Sun Qin, Wang Liya. Cadmium toxicity and phytochelatin production in a rooted-submerged macrophyte Vallisneria spiralis exposed to low concentrations of cadmium [J]. Environmental Toxicology,2009,24:271-278
    121. Wong M H. Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils [J]. Chemosphere,2003,50:775-780.
    122. Yang XE, Baligar VC, Foster JC, Martens DC. Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant and Soil,1997, 196:271-276.
    123. Yehuda Z, Shenker M, Hadar Y, Chen YN. Remedy of chlorosis induced by iron deficiency in plant with the fungal siderophore rhizoferrin [J]. Journal of Plant Nutrition,2000,23: 1991-2006.
    124. Zaidi S, Usmani S, Singh B R, Musarrat J. Significance of Bacillus subtilis strain SJ-01 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea [J]. Chemosphere,2006,64:991-997.
    125. Zhang Y X, Chai T Y. Research advances on the mechanisms of heavy metal tolerance in plants [J]. Acta Botanica Sinica (Journal of Integrative Plant Biology),1999,41:453-457.
    126. 毕德,吴龙华,骆永明,周守标,谭长银,尹雪斌,姚春霞,李娜.浙江典型铅锌矿废弃地优势植物调查及其重金属含量研究[J].土壤,2006,38(5):591-597.
    127. 常学秀,文传浩,王焕校.重金属污染与人体健康[J].云南环境科学,2000,19(1):59-61.
    128. 陈怀满.土壤一植物系统中的重金属污染[M].科学出版社,1996,168-194.
    129. 陈志良,仇荣亮.重金属污染土壤的修复技术[J].环境保护,2002,29(6):21-23.
    130. 东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001
    131. 郜春花,王岗,董云中,张乃明.解磷菌剂盆栽及大田施用效果[J].山西农业科学,2003,31(3):40-43.
    132. 顾继光,林秋奇,胡韧,诸葛玉平,周启星·土壤-植物系统中重金属污染的治理途径及其研究展望[J].土壤通报,2005,36(1):128-133.
    133. 郭学军,黄巧云,赵振华,陈雯莉.微生物对土壤环境中重金属活性的影响[J].应用与环境生物学报,2002,8(1):105-110.
    134. 何红,邱思鑫,胡方平,关雄.植物内生细菌生物学作用研究进展[J].微生物学杂志,2004,24(3):40-45.
    135. 何振立.污染及有益元素的土壤化学平衡[M].北京:中国环境科学出版社,1998.
    136. 黄静.植物内生解磷细菌的分离筛选及其生物多样性[D].南京农业大学硕士学位论文,2009.
    137. 黄艺,陶澍,陈有键,张学青.外生菌根对欧洲赤松苗(Pinus sylvestris) Cu、Zn积累和分配的影响[J].环境科学,2000,21(2):1-6.
    138.黄铮,徐力刚,徐南军,杨劲松.土壤作物系统中重金属污染的植物修复技术研究现状与前景[J].农业环境科学学报,2007,26(增刊):58-62.
    139. 寇永纲,伏小勇,侯培强,展宗城,白炜,姚毅.蚯蚓对重金属污染土壤中铅的富集研究[J]环境科学与管理,2008,33(1):62-73.
    140. 李景岩,张爱君.微量元素与健康[J].中国地方病防治杂志,2003,18(2):94-97.
    141. 李永庚,蒋高明.矿山废弃地生态重建研究进展[J].生态学报,2004,24(1):95-99.
    142. 李战,李坤.重金属污染的危害与修复[J].现代农业科技,2010,16:268-270.
    143. 刘毅,邱昌贵.中药中重金属研究综述[J].微量元素与健康研究,2008,25(4):56-58.
    144. 孟凡乔,史雅娟,吴文良.我国无污染农产品重金属元素土壤环境质量标准的制定与研究进展[J].农业环境保护2000,19(6):356-359.
    145. 全先庆,张洪涛,单雷,等.植物金属硫蛋白及其重金属解毒机制研究进展[J].遗传,2006,28(3):375-382.
    146. 束文圣,张志权,蓝崇钰.中国矿业废弃地的复垦对策研究[J].生态科学,2000,19(2):24-29.
    147. 覃丽萍,黄思良,李杨瑞.植物内生固氮菌的研究进展[J].植物生理科学,2005,21(2):150-153.
    148. 谭万能,李志安,邹碧.植物对重金属耐性的分子生态机理[J].植物生态学报,2006,30(4):703-712.
    149. 唐明灯,吴龙华,李振高,骆永明,胡锋,盛下放,江春玉.无色菌产酸对土壤溶液重金属浓度及海州香薷重金属吸收的影响[J].土壤,2009,41(3):425-431.
    150. 王婧静.金属矿山废弃地生态修复与可持续发展研究[J].安徽农业科学,2010,38(15):8082-8084,8087.
    151. 王平,董飚,李阜棣,胡正嘉.小麦根圈铁载体的检测[J].微生物学通报,1994,21(6):323-326.
    152. 王友保,张莉,沈章军,李晶,刘登义.铜尾矿库区土壤与植物中重金属形态分析[J].应用生态学报,2005,16(12):2418-2422.
    153. 吴国英,贾秀英,郭丹,来凯凯,姜洪芳.蚯蚓对猪粪重金属Cu、Zn的吸收及影响因素研究[J].农业环境科学学报,2009,28(6):1293-1297.
    154. 新楠,连秀芬,樊明寿.非共生生物固氮的重要作用和研究进展[J].内蒙古农业科技,2005,2:18-19.
    155. 杨居荣,贺建群,蒋婉茹.Cd污染对植物生理生化的影响[J].农业环境保护,1995,14(5):193-197.
    156. 杨瑞先,葛晓燕.植物内生细菌生物学作用研究进展及应用前景[J].洛阳大学学报,2006,21(4):78-81.
    157. 叶锦韶,尹华,彭辉,微生物抗重金属毒性研究进展[J].环境污染治理技术与设备,2002,3(4):1-4.
    158. 张开明,黄苏珍,原海燕,顾永华.铜污染的植物毒害、抗性机理及其植物修复[J].江苏环 境科技,2005,18(1):4--6.
    159. 赵福庚,刘友良.胁迫条件下高等植物体内脯氨酸代谢及调节的研究进展[J].植物学通报,1999,16:540-546
    160. 赵福庚,孙诚,刘友良,章文华.盐胁迫下大麦根系多胺代谢与其耐盐性的关系[J].植物学报,2003(b),45:295-300
    161. 郑喜坤,鲁怀安,高翔,赵谨,郑德圣.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    162. 周东美,郝秀珍,薛艳,仓龙,王玉军,陈怀满.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.
    163. 邹文欣,谭仁祥,植物内生菌研究新进展[J].植物学报,2001,43(9):881-892.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700