用户名: 密码: 验证码:
东北黑土重金属污染发生机理及健康动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
东北黑土高有机质含量和巨大而连续的耕作带使它成为中国重要的粮食生产基地。随着人类开发和利用程度的加剧,其直接后果是导致黑土健康质量逐渐下降。土壤重金属污染是导致黑土健康质量下降的重要因素之一。本研究通过对东北黑土重金属污染初步调查,确定黑土分布地区重金属污染的主要类型、来源、污染趋势和分布状况,分析污染黑土中重金属形态、迁移和生物有效性等特点。结果表明:黑土环境中,镉、铅、锌的含量呈明显上升趋势,镉是对土壤健康危害最大的重金属;污染较为严重的区域主要分布在城区和城乡结合部,重金属在这些区域中生物有效性高,工业排放和污水灌溉是其重要来源;而在农区耕作土壤中磷肥的长期施用是造成土壤中镉含量上升的主要原因。
     根据调查结果,选择黑土中主要重金属污染类型—镉,对其在土壤中导致污染发生的主要机理进行了深入研究。从形态、生物有效性和吸附-解吸过程等方面阐述了镉在土壤环境中的主要化学行为,以及这些行为对有机农药交互作用的响应。研究表明,外源镉离子进入土壤后能很快被吸附,由于这种吸附作用,使交换态镉容易向结合态和残渣态转化,被土壤吸附的镉离子有一部分被解吸下来,这也使形态转化呈一个互为可逆的过程。由于黑土特殊的土壤理化性质,镉离子在黑土中的吸附和转化趋势明显强于棕壤。乙草胺的加入能加强这种吸附作用和转化趋势,而敌敌畏的作用则增加了吸附态镉离子释放的风险。镉和乙草胺复合污染条件下对生物的毒性呈拮抗作用。
     最后,采用化学固定修复的方法,对镉污染黑土进行健康调控研究。通过重金属溶出、形态转化、生物毒性和微观构像等实验评估的结果表明,一种富含H2PO4-、HCO3-和CO32-等配位体的人工合成固定剂对镉污染黑土具有一定的修复潜力。对污染程度较低的重金属面源污染耕作土壤的调控,化学固定化修复在时间和成本等方面显示其修复的优越性。
High organic matter contents and large continuous farmland distribution make Phaeozem as an important base for food production in China. The soil health of Phaeozem is being deteriorated with increasing exploitation and utilization, of which heavy metal contamination was one of the reasons for the quality declining of soil health. This work was focused on investigating contaminative mechanisms of heavy metals in Phaeozem in northeast China in order to identify the pollution sources, types, trends and distribution, and making clear about the speciation, mobilization and bioavailability of heavy metals in contaminated Phaeozem. The results showed that cadmium pollution was at the most serious extent in Phaeozem. The contents of cadmium, lead and zinc were increasing in this area, which resulted in the soil contamination mainly distributed in urban area and boundary of the city for their high bioavailability. Industrial emission and wastewater irrigation were the main sources of the contamination in these areas, while the utilization of phosphoric fertilizers for long time was the main reason for cadmium increasing in farmland.
     According to the previous investigation, cadmium was selected as main element for the further study of contaminative mechanisms. The main behaviors including sorption-desorption and transferring of speciation and bioavailability with or without the interaction of organic chemicals in soils were stated. The results indicated that the Cd2+ was quickly absorbed after having introduced into soil. And these make the possibility of transforming from exchangeable cadmium into bounded forms. Some parts of the sorbed cadmium on soil can be desorbed into equilibrium, which make the speciation transformation into a reversible process. The sorption and transformation forces of Cd2+ in Phaeozem were higher than that in burozem for the physicochemical soil properties. The interaction of acetochlor could enhance cadmium sorption and transformation, while the dichlorvos addition could increase cadmium release in soils. The interaction between cadmium and acetochlor was an antagonism, which could lower the biological toxicity.
     Chemical immobilization was selected as a remediation method to adjust soil health of Phaeozem contaminated with heavy metals. A synthetic amendment riched in the ligands of H2PO4-、HCO3- and CO32- was confirmed as a potential additive for chemical fixation after the experiments of toxic characteristic leaching process (TCLP), speciation, biological toxicity and microstructure. Although the bioavailability is the key factor for the remediation strategy, the in situ fixation with exterior amendments in low content of metal may offer a promising option, especially for the non-point and light pollution derived from agricultural sources.
引文
[1] Abedel-Sabour MF, Mortvedt JJ, Kelsoe JJ. Cadmium-Zinc interactions in plants and extractable cadmium and zinc fraction in soil. Soil Science, 1988,145(6): 424-431
    [2] Adriano DC. Trace Elements in Terrestrial Environments:Biogeochemistry, Bioavailability and Risks of Metals. 2nd. edn. Springer, New York,2001
    [3] Agata K, Jacek N. The role of speciation in analytical chemistry. Trends in analytical chemistry,2000,19:69-79
    [4] Aharoni C, Sparks DL, Levinson S. Kinetics of soil chemical reactions: relationshiops between empirical equations and diffusion models. American Journal of Soil Science Sciety, 1991,55:1307-1313
    [5] Albino V, Cioffi R, Marroccoli M, et al. Potential application of ettringite generating systems for hazardous waste stabilization. Journal of Harzardous Materials, 1996,51: 241-252
    [6] Alesii BA, Fuller WH, Boyle MV. Effect of leachate flow rate on metal migration through soil. Journal of Environmental Quality,1980, 9:119–126
    [7] Alpaslan B, Ali YM. Remediation of lead contaminated soils by stabilization/solidification. Water, Air and Soil Pollution,2001,33:253-263
    [8] Asher LE, Bar-Yosef B. Effects of pyrophosphate, EDTA, and DTPA on zinc sorption by montmorillonite. American Journal of Soil Science Sciety, 1982, 46:271-276
    [9] Aslibekian O, Moles R. Environmental risk assessment of metals contaminated soils at silvermines abandoned mine site, Co. Tipperary, Ireland. Environmental Geochemistry and Health,2003,25:247-266
    [10] Baker A, Brooks R. Terrestrial higher plants which hyperaccumlate metallic elements-a review of their distribution, ecology and phytochemistry. Biorecovery, 1989, (1): 81-126
    [11] Bar-Ness E, Cheng Y. Manure and pear based iron-Organo complexesΙ: Characterization and enrichment. Plant and Soil,1991,135:35-43
    [12] Basta NT, Gradwohl R, Snethen KL, et al. Chemical immobilisation of lead, zinc and cadmium in smelter contaminated soils using biosolids and rock phosphate. Journal of Environmental Quality,2001,30: 1222–1230
    [13] Basta NT, McGowen SL. Evaluation of chemical immobilization treatments for reducing heavy metal transport in a smelter-contaminated soil. Environmental Pollution, 2004,127: 73–82
    [14] Benjamin MM, Leckie JO. Effects of complexation by Cl, SO4 and S2O3 on adsorption behavior of Cd oxide surfaces. Environvironmental Science and Technology, 1982, 16(3): 162-170
    [15] Bolan NS, Adriano DC, Duraisamy P, et al. Immobilization and phytoavailability of cadmium in variable charge soils. III. Effect of biosolid compost addition. Plant and Soil, 2003c, 256: 231–241
    [16] Bolan NS, Adriano DC, Duraisamy P, et al. Immobilization and phytoavailability of cadmium in variable charge soils: I. Effect of phosphate addition. Plant and Soil,2003a,250: 83–94
    [17] Bolan NS, Adriano DC, Mani PA, et al. Immobilization and phytoavailability of cadmium in variable charge soils. II. Effect of lime compost. Plant and Soil, 2003b,251: 187–198
    [18] Bradl HB. Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 2004,277:1-18
    [19] Bryant, PS, Petersen JN, Lee JM, et al. Sorption of heavy metals by untreated red sawdust. Applied Biochemistry and Biotechnology,1992,34-35:777-788
    [20] Cao XR, Ma LQ, Chen M, et al. Phosphate-induced metal immobilization in a contaminated site. Environmental Pollution,2003,122: 19–28
    [21] Chang AC, Page AL. Assessment of Ecological and Health Effects of soil-borne Trace Element and Metals. Lewis Publishers, CRC Press, USA, 2001:29-38
    [22] Chen M, Ma LQ, Singh SP, et al. Field demonstration of in situ immobilization of soil Pb using P amendments. Advances in Environmental Research, 2003,8: 93–102
    [23] Cheng Y, Zhou QX. Ecological toxicity of reactive X-3B red dye and cadmium acting on wheat (Triticum aestivum). Journal of Environmental Sciences, 2002,14(1): 136-140
    [24] Chiu KK, Ye ZH, Wong MH. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere,2005,60:1365–1375
    [25] Christie P, Li X, Chen B. Arbuscular mycorrhiza can depress translocation of zinc to shoots of host plants in soils moderately polluted with zinc. Plant and Soil,2004,261:209-217
    [26] Chubin RG, Street JJ. Adsorption of cadmium on soil constituent in the presence of complexing liands. Journal of Environmental Quality, 1981, 10: 225-228
    [27] Ciccu R, Ghiani M, Peretti R, et al. Heavy metal immobilization using fly ash in soils contaminated by mine activity. 2001 International Ash Utilization Symposium, Center for Applied Energy Research, University of Kentucky, Paper #6,2001
    [28] Ciccu R, Ghiani M, Serci A, et al. Heavy metal immobilization in the mining-contaminated soils using various industrial wastes. Minerals Engineering,2003,16:187–192
    [29] Crommentuijn T, Doornekamp A, Van Gestel CAM. Bioavailability and Ecological Effects of Cadmium on Folsomia candida (Willem) in an Artificial Soil Substrates as Influenced by pH and Organic Matter. Applied Soil Ecology, 1997, 5: 261-271
    [30] Daniel H,Gunda M. Limitations of controlled experimental systems as models for natural systems: a conceptual assessment of experimental practices in biogeochemistry and soil science. the Science of Total Environment, 2001,277:199-216
    [31] Deja J. Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cement and Concrete Research,2002,32: 1971–1979
    [32] Dermatas D, Meng X. Stabilization/Solidification (S/S) of heavy metal contaminated soils by means of a quicklime- based treatment approach. Stabilization and solidification of hazardous, radioactive, and mixed wastes. American Society for Testing and Materials, Philadelphia, pp,1996, ASTM STP 1240,vol. 1:449– 513
    [33] Diels L, Van der Lelie N, Bastiaens L. New developments in treatment of heavy metal contaminated soils. Reviews in Environmental Science & Bio/Technology, 2002,1: 75–82
    [34] Diet JN, Moszkowicz P, Sorrentino D. Behaviour of ordinary portland cement during the stabilization / solidification of synthetic heavy metal sludge: macroscopic and microscopic aspects. Waste Management,1998,18: 17-24
    [35] Doran JW, Sarrantonio M, Liebig M. Soil health and sustainability, Advances in Agronomy. Academic Press, San Diego, CA, USA, 1996,Vol. 56: 230-237
    [36] Elzahabi M, Yong RN. pH influence on sorption characteristics of heavy metal in the vadose zone. Engineering Geology,2001,60: 61-68
    [37] Ensenbach U, Snagel R. Toxicity of binary chemical mixtures: effects on reproduction of zebrafish (Brachydanio rerio). Arch Environmental Contamination and Toxicology, 1997,32(2): 204-210
    [38] Ernst WHO. Bioavailability of heavy metals and decontamination of soils by plants. Applied Geochemistry,1996,11:163-167
    [39] Fangueiro D, Bermond A, Santos E, et al. Heavy metal mobility assessment in sediments based on a kinetic approach of the EDTA extractions: search for optimal experimental conditions. Analytica Chimica Acta,2002,459:245-256
    [40] Fargasowa VA, Beinrohr E. Meta-metal interactions in accumulation of V5+, Ni2+, Mo6+, Mn2+ and Cu2+ in under- and above-ground parts of Sinapis Alba. Chemosphere, 1998,36(6): 1305-1317
    [41] Feng L. On the possible falsity of present comprehensive indices of environmental quality. Research of environmental sciences, 1993, 6(6):41-46
    [42] Geebelen W, Vangronsveld J, Adriano DC, et al. Amendment-Induced Immobilization of Lead in a Lead-Spiked Soil: Evidence from Phytotoxicity Studies. Water, Air, and Soil Pollution, 2002,140 (1-4): 261-277
    [43] Ginepro M, Gulmini M, Ostacoli G, et al. Microwave desorption treatment after the oxidation step in Tessier sequential extraction scheme. Journal of Environmental Analytical Chemistry,1996,63:147-154
    [44] Gray CW, Mclaren RC, Roberts AHC, et al. Solubility, sorption and desorption of native and added cadmium in relation to properties of soils in New Zealand. European Journal Soil Science, 1999,50: 127-137
    [45] Gray CW, McLaren RG, Roberts AHC, et al. Effect of soil pH on cadmium phytoavailability in some New Zealand soils. N. Z. J. Crop Hort,1999,27: 169–179
    [46] Hamilton SJ, Buhl KJ. Hazard evaluation of inorganics, singly and in mixtures, to foannelmouth sucker Catastormus latipinnis in the Sen Juan River, New Mexico. Ecotoxicol ogy and Environmental Safety, 1997, 38(3): 296-308
    [47] Harmsen. Behavior of heavy metals in soils. Wageningen:Centre for Agricultural Publishing and Documentation,1977
    [48] Hartley GS, Graham IJ. Physical Principles of Pesticide Behavior. London: Academic Press, 1980
    [49] Heil DM, Samani Z, Hanson AT. Remediation of lead contaminated soil by EDTA. I. Batch and column studies. Water, Air and Soil Pollution, 1999,113(1/4): 77-95
    [50] Houba VJG, Lexmond TM, Novozamsky JJ, et al. State of the art and future developments in soil analysis for bioavailability assessment. The Science of Total Environment,1996,178:21-28
    [51] Huang WL, Yu H, Walter J, et al. Hysteresis in the sorption and desorption of hydrophobic organic contaminants by soils and sedimentsⅠ:A comparative analysis of experimental protocols. Journal of Contaminant Hydrology,1998,31: 129–148
    [52] Hudson T, Borden J, Russ M, et al. Control on As,Pb and Mn distribution in community soils of an historical mining district,Southwestern Colorado. Environmental Geology, 1999, 33(1): 25-42
    [53] Ihnat M, Fernandes L. Trace elemental characterization of composted poultry manures. Bioresource Technology, 1996,57: 143-156
    [54] Illera V, Garrido F, Serrano S, et al. Immobilization of the heavy metals Cd, Cu and Pb in an acid soil amended with gypsum- and lime-rich industrial by-products. European Journal of Soil Science, 2004,55: 135-145
    [55] Imperato M, Adamo P,Naimo D, et al. Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 2003, 124(2): 247-256
    [56] Jahangir I, Naresh S, Michael O. Modeling Biogeochemical Processes in Leachate Contaminated Soils: A Review. Transport in Porous Media, 2001,43:407-440
    [57] Jang A, Choi YS, Kim IS. Batch and column tests for the development of an immobilization technology for toxic heavy metals in contaminated soils of closed mines. Water Science Technology, 1998,37 (8): 81-88
    [58] Janusa MA, Champagne CA, Fanguy JC, et al. Solidification/stabilization of lead with the aid of bagasse as an additive to Portland cement. Microchemical Journal,1998,65: 255-259
    [59] John MK, Van Laerhoven CJ, Chuah H. Factors affecting plant uptake and phytoavailability of cadmium added to soils. Environmental Science and Technology,1972,6: 1005–1009
    [60] John MK, Van Laerhoven CJ. Effects of sewage sludge composition, application rate, and lime regime on plant availability of heavy metals. Journal of Environmental Quality,1976,5:246–251
    [61] John W, Doran. Soil health and global sustainability: translating science into practice. Agriculture Ecosystems & Environment, 2001,1826:1-9
    [62] Kaasalainen M, Yli-Halla M. Use of sequential extraction to assess metal partitioning in soils. Environmental Pollution,2003,126: 225-233
    [63] Karickhoff SW, Morris KR. Sorption dynamics of hydrophobic pollutants in sediment suspensions. Environmental Toxicology and Chemistry,1985,4:469-479
    [64] Kertman SV, Kertman GM, Chibrikova ZS. Peat as a heavy metal sorbent. Journal of Applied Chemistry. U.S.S.R,1993, 66(2): 465-466
    [65] Kot A, Namiesnik J. The Role of Speciation in Analytical Chemistry. Trends in Analytical Chemistry, 2000, 19: 69-79
    [66] Kreb R, Gupta SK,Furrer G, et al. Gravel sludge as an immobilizing agent in soils contaminated by heavy metals: A field study. Water, Air, and Soil Pollution, 1999,115: 465-479
    [67] Kumar V,Singh M. Inhibitiong of soil urease activity and nitrification with some metallic cations. Australian Journal of Soil Research, 1986, 24(4): 527-532
    [68] Lau SSS, Wong JWC. Toxicity evaluation of weathered coal fly ash-amended manure compost. Water, Air, and Soil Pollution,2001,128: 243-254
    [69] Li XD, Poon CS, Liu PS. Heavy metal contamination of urban soils and street dusts in Hong Kong. Applied Geochemistry, 2001a,16:1361-1368
    [70] Li XD, Poon CS, Sun H, et al. Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials A,2001b,82: 215–230
    [71] Lin CF, Lo SS, Lin H Y and Lee YC. Stabilization of cadmium contaminated soils using synthesized zeolite. Journal of Hazardous Materials,1998,60: 217–226
    [72] Lin Z,Roger B,Herbert J. Heavy metal retention in secondary precipitates from amine rock dump and underlying soil,Dalarna,Sweden. Environmental Geology, 1997,33(1):1-12
    [73] Lock K, Janssen CR. Cadmium toxicity for terrestrial invertebrates: taking soil parameters affecting bioavailability into account. Ecotoxicology,2001,10:315-322
    [74] Lombi E, Zhao FJ, Zhang GY, et al. In situ fixation of metals in soils using bauxite residue: chemical assessment. Environmental Pollution, 2002,118: 435–443
    [75] Lu AX, Zhang SZ, Shan XQ, et al. Application of microwave extraction for the evaluation of bioavailability of rare earth element in soils. Chemosphere,2003, 54:54-63
    [76] Ma LQ, Rao GN. Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. Journal of Environmental Quality,1997, 26: 259-264
    [77] Ma QY, Traina SJ, Logan TJ. In situ lead immobilization by apatite. Environmental Science and Technology, 1993,27: 1803-1810
    [78] Maiz I, Arambarri I, Garcia R, et al. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution,2000,110:3-9
    [79] Mark EH, Simon JL, Jeef W. A critical evaluation of the use of the profile model in calculating mineral weathering rates. Water, Air, and Soil Pollution,1997,98:79-104
    [80] Marschner H. Mineral nutrition of higher plant (2nd ed.) Academic San. Diego. CA., 1995:125-178
    [81] McBride MB. Influence of glycine on Cu2+ adsorption by microcrystalline gibbsite and boehmite. Clays Mineral, 1985, 33: 397-402
    [82] Michelle P, Boulet C, Adriene U, et al. A comparative mineralogical and geochemical study of sulfide mine tailing at two sites in New Mexico, USA. Environmental Geology, 1998, 33(2/3):130-142
    [83] Mishra A, Choudhurt MA. Monitoring of phytotoxicity of lead and mercury from germination and early seeding growth indices in two rice cultivators. Water Air and Soil Pollution,1999, 110: 340-345
    [84] Moreau CJ, Klerks PL, Hass CN. Interaction between phenanthrene and zinc in their toxicity to the sheepshead minnow (Cyprinodon variegaus). Environmental Contamination and Toxicology,1999,37(2): 251-257
    [85] Naidu R, Bolan NS, Kookana RS, et al. Ionic strength and pH effects on the adsorption of cadmium and the surface charge of soils. European Journal of Soil Science, 1994,45:419–429
    [86] Naidu R, Malcolm ES, Harter RD. Sorption of heavy metals in strongly weathered soils: an overview. Environmental Geochemistry and Health, 1998,20:5-9
    [87] Navas A, Lindhorfer H. Geochemical speciation of heavy metals in semiarid soils of the central Ebro Valley (Spain). Environment International,2003,29:61-68
    [88] Nishizono H,Kubota K,Suzuki S,et al. Accumulation of heavy metals in cell walls of polygonum cuspidatum roots from metalliferous habitats. Plant Cell Physiology, 1989, 30: 595-598
    [89] Ornella A, Maurizio A, Mery M. Distribution and mobility of metals in contaminated sites. Chemometric ininvestigation of pollutant profiles. Environmental Pollution, 2002, 119: 177-193
    [90] Ouzounidou G, Mousbakas M, Karataglis S. Responses of maize (zea mays L.) plants to copper stress: growth, mineral content and ultrastucture of roots. Environmental Experiment Botany, 1995, 35(2): 167-176
    [91] Pankhurst. CE, Hawke BG, Mc Donald HJ, et al. Evaluation of soil biological properties as potential bioindicatiors of soil health. Austrian Journal of Experimental Agriculture, 1995, 35:1015-1028
    [92] Pinheiro JP, Mota AM, Goncalves MLS. Complexation study of humic acids with cadmium (II) and lead (II). Analytica Chimica Acta,1994,284:525-528
    [93] Prokop Z, Cupr P, Zlevorova ZV, et al. Mobility, bioavailability, and toxic effects of cadmium in soil samples. Environmental Research,2003,91:119-126
    [94] Pueyo M, Lopex-Sanchez JF, Rauret G. Assessment of CaCl2, NaNO3 and NH4NO3 Extraction Procedures for the Study of Cd, Cu, Pb and Zn Extractability in Contaminated Soils. Analytica Chimica Acta, 2004, 504:217-226
    [95] Pyeong KL. Heavy metal contamination of sending particle in a retention pond along the A-71 motorway in Sologne,France. the Science of Total Environment,1997,201(1):1-15
    [96] Qureshi MI, Israr M, Abdin MZ, et al. Responses of Artemisia annua L. to lead and salt-induced oxidative stress. Environmental and Experimental Botany,2005,53:185–193
    [97] Rod A. Introduction: sustainable mining in the future. Journal of Geochemical Exploration, 1995, (1-4):67-76
    [98] Roy D, Greenlaw PN, Shane BS. Adsorption of heavy metals by green algae and ground rice hulls. Journal of Environmental Science and Health. 1993,28(1): 37-50
    [99] Scheidegger AM, Sparks DL. A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface. Soil Science, 1996,161(12):813-831
    [100] Shan XQ,Jun L,Bei W. Effect of organic acids on adsorption and desorption of rare earth elements. Chemosphere, 2002,47: 701-710
    [101] Sharma DC, Forster CF. Removal of hexa-valent chromium using sphagnum moss peat. Water Research, 1993,27(7): 1201-1208
    [102] Sharma SS, Schat H, Voous R. Combination toxicology of copper, zine and cadmium in binary mixtures: concentration dependent antagonistic, nonadditive,and synergistic effects on root growth in Silene vulgaris. Environmental Toxicology Chemistry,1999, 18(2):348-355
    [103] Stewart AR, Malley DF. Effect of metal mixture (Cu, Zn, Pb and Ni) on cadmium partitioning in littoral sediments and its accumulation by the freshwater macrophyte Eriocaulon septangulare. Environmental Toxicology Chemistry, 1999,18(3): 436-447
    [104] Strange J, Macbaur M. Evidence for a role for the cell membrane in copper tollerance. New Physiologist, 1991,119: 383-388
    [105] Suran E, Beiley, Trudy J, et al. A review of potentially low-cost sorbents for heavy metals. Water Research,1998,33(11):2469-2479
    [106] Sverdrup H, Warfvinge P. Calculating field weathering rates using a mechanistic geochemical model PROFILE. Applied Geochemistry, 1993, 18:273-283
    [107] Taylor MD. Accumulation of cadmium derived from fertilizers in New Zealand soil. the Science of Total Environment,1997,208(1/2):123-126
    [108] Tessier A, Campbell PGC, Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals. Analytical Chemistry, 1979,51(7):844-851
    [109] Thomas V,Durkin J,Herrmann G. Focusing on the problem of mining wastes: An introduction to acid mine drainage. Water, Air, and Soil Pollution, 1996, 71:174-182
    [110] Thoraton I. Impacts of mining on the environment,some local regional and global issue. Applied Geochemistry, 1996(3): 355-361
    [111] Ure AM, Quevaviller P, Muntau H, et al. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Journal ofEnvironmental Analytical Chemistry,1993,51:135-151
    [112] USEPA, Federal Register. Toxicity Characteristic Leaching Procedure (TCLP), 40 CFR, 1986, 50, No. 286, Appendix 2, Part 268, pp. 406–943
    [113] Vangronsveld J, Colpaert J, Van Tichelen K. Reclamation of a bare industrial area contaminated by non-ferrous metals: physico-chemical and biological evaluation of the durability of soil treatment and revegetation. Environmental Pollution,1995,94: 131–140
    [114] Verkleij J, Schat H. Mechanisms of metal tolerance in higher plants. In: Shaw A (ed.)heavy metal tolerance in Plant: Evolutionary Aspects. CRC Press,Boca Raton, Florida,1989
    [115] Vogeli-Lange R, Wagner G. Subcelluar localization of cadmium and cadimium- binding peptides. Plant Physiology, 1990, 92: 1086-1093
    [116] Wei SH, Zhou QX. Identification of weed species with hyperaccumulative characteristics of heavy metals. Progress in Natural Science,2004,14(6):404-503
    [117] Wilkins BJ, Brunmel N,Loch JJG. Influence of pH and zinc concentration on cadmium sorption in acid, sandy soils. Water, Air and Soil Pollution, 1998,101(1/4):349-362
    [118] Wu YY, Zhou QX, Adriano DC. Interim environmental guidelines for cadmium and mercury in soils of China. Water, Air, and Soil Pollution,1991,58: 733-743
    [119] Xiao H, Zhou QX, Liang JD. Single and joint effects of acetochlor and urea on earthworm Esisenia foelide populations in Phaeozem. Environmental Geochemistry and Health,2004,26:277-283
    [120] Xing B,Pignatello JJ. Competitive sorption between 1,3-dichlorobenzene or natural aromatic acids in soil organic matter. Environmental Science and Technology, 1998,32:614-619
    [121] Yanful EK, Quigley RM, Nesbitt HW. Heavy metal migration at a landfill site, Sarnia, Ontario, Canada-2: Metal partitioning and geotechnical implications. Applied Geochemistry,1988, 3:623–629
    [122] Yang XE, Feng Y, He ZL. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation. Journal of Trace Elements in Medicine and Biology,2005,18:339-353
    [123] Zupancic N. Lead contamination in the roadside soil of Slovenia. Environmental Geochemistry and Health,1999,21(1):37-50
    [124]蔡思义,米长虹,郑振华.水田环境乙草胺允许浓度研究.农业环境保护,1996,15(3):128-129
    [125]常江,竺伟民.稀土在土壤中吸附和解吸研究.土壤通报,1996,27(2):84-87
    [126]陈清,卢国埕.微量元素与健康.北京:北京大学出版社,1989
    [127]陈素华.矿山废弃物中重金属污染行为及其对白菜品质的影响.中国科学院研究生院博士论文. 2003
    [128]杜式华,于志洁.汞与硒在植物中的相互作用.环境科学,1998,8:43-46
    [129]高拯民.土壤-植物系统污染生态研究.北京:科学技术出版社,1986
    [130]郭栋生,席玉英,王爱英,等.酚-镍污染对玉米幼苗元素吸收及一些生理生化指标的影响.农业环境保护,1997,16(5): 217-220
    [131]何勇田,熊先哲.复合污染研究进展.环境科学,1994,15(6): 79-83
    [132]何振立,周启星,谢正苗.污染及有益元素的土壤化学平衡.北京:中国环境科学出版社, 1998
    [133]胡永定.荆马河区域土壤重金属污染的成因分析.江苏环境科技,1994,(1):9-12
    [134]黄会一,蒋德明,张春兴,等.沈阳镉土地区生物治理的研究.见:高拯民(eds.).土壤-植物系统污染生态研究,1986
    [135]黄元巨,张子丰,韩逢春.乙草胺与苄嘧黄隆混剂对水稻安全性研究.黑龙江农业科学,2000,(4):22-24
    [136]江玉和.普通化学(第二版).北京:高等教育出版社,1992
    [137]焦芳婵,毛雪,李润植.植物清除环境污染物的策略及应用.农业环境保护, 2002,21(3): 281-284
    [138]孔庆新.几种土壤微量重金属化学形态在土体中的分布.农业环境保护,1993,12(6):267-270
    [139]雷国元.重金属离子吸附剂研究进展.国外金属矿探矿, 2000,137 (10): 2-6
    [140]李保国.土壤变化及其过程的定量化.土壤学进展,1995,23(2):33-42
    [141]李德成,黄圣彪,王文华,等.铈(Ⅲ)在不同土壤中的吸附、解吸动力学研究.环境科学学报,2000,20(5):548-553
    [142]李继明,叶学春,张全智,等.农产品的肥料污染与对策.河南农业科学,2002,(9):29-30
    [143]李健,郑春江.环境背景值数据手册.北京:中国环境科学出版社,1988
    [144]李增新,李相仁.天然沸石在环境污染治理中的应用进展.环境污染治理技术与设备,2004,5(3):18-21
    [145]梁继东,周启星.甲胺磷、乙草胺和铜单一与复合污染对黑土环境安全的胁迫研究.环境科学学报,2004,24(3):474-481
    [146]梁继东.黑土环境安全的生态指示与解毒过程研究.中国科学院研究生院硕士学位论文,2003
    [147]梁文举,葛亭魁,段玉玺.土壤健康及土壤动物生物指示的研究与应用.沈阳农业大学学报,2001,32(1):70-72
    [148]梁重山,党志,刘丛强,等.菲在土壤/沉积物上的吸附-解吸过程及滞后现象的研究.土壤学报,2004,41(3):329-336
    [149]林玉锁. Langmuir,Temkin和Freundlich方程应用于土壤吸附锌的比较.土壤,1994, 026(005):269-272
    [150]林玉锁.由Freundlich方程探讨锌在石灰性土壤中的吸附机制和迁移规律.土壤学报,1991,28(4):390-394
    [151]刘凡,谭文峰.几种土壤中铁锰结核的重金属离子吸附与锰矿物类型.土壤学报,2002,39(5):699-706
    [152]刘清,王子键,汤鸿霄.重金属形态与生物毒性及生物有效性关系的研究进展.环境科学,1996,17(1):91-94
    [153]刘小梅,吴启堂,李秉滔.超富集植物治理重金属污染土壤研究进展.农业环境科学学报,2003,22(5):636-640
    [154]鲁如坤.土壤农业化学分析方法.北京:中国农业技术出版社,1999
    [155]陆继龙,周云轩.吉林省黑土某些微量元素环境地球化学特征.土壤通报,2002,33(5):365-368
    [156]孟凯,张兴义.松嫩平原黑土退化的机理及其生态复原.土壤通报,1998,29(3):100-102
    [157]莫争,王春霞,陈琴,等.重金属Cu、Pb、Zn、Cr、Cd在土壤中的形态分布和转化.农业环境保护,2002,(1):9-12
    [158]倪吾钟,龙新宪,杨肖娥.菜园土壤镉吸附-解吸特性的研究.农村生态环境, 2000,007(010):11-15
    [159]齐文启,孙宗光,李国光.日本土壤环境质量标准的制定.上海环境科学,1997,16(3):4-6
    [160]秦天才,吴玉树,王焕校.镉,铅及其相互作用对小白菜根系生理生态效应的研究.生态学报, 1998,18(3):320-325
    [161]冉梦莲,陈友荣,肖敬平.乙草胺对不同品种水稻萌发生长期间水稻呼吸代谢的影响.华南农业大学学报,1999,20(1):68-72
    [162]邵孝侯,邢光熹,侯文华.连续提取法区分土壤重金属形态的研究及其应用.土壤学进展,1994,22(3):40-46
    [163]宋玉芳,宋雪英,张薇,等.污染土壤生物修复中存在问题的探讨.环境科学, 2004,25(2): 129-133
    [164]宋玉芳,许华夏,任丽萍,等.土壤重金属对白菜种子发芽与根伸长抑制的生态毒性效应.环境科学,2002,23(1):103-107
    [165]宋玉芳,周启星,许华夏,等.重金属对土壤中小麦种子发芽与根伸长抑制的生态毒性.应用生态学报, 2002,13(4): 459-462
    [166]孙铁珩,周启星,李培军.污染生态学.北京:中国科学出版社,2001
    [167]唐世荣.超积累植物在时空科属内的分布特点及寻找方法.农村生态环境, 2001, 17(4): 56-60
    [168]汪景宽,张旭东,王铁宇,等.黑土土壤质量演变初探Ⅲ—不同地区黑土主要微量元素状况及其评价.沈阳农业大学学报,2002,33(6):420-424
    [169]王果, Bourgeois S, Bermond A.三种农药对Cu2+在蒙脱石和δ-Al2O3上吸附的影响.土壤学报, 1996, 33(4): 344-350
    [170]王果.络合作用对重金属离子吸附的影响.土壤学进展, 1994, 22(6): 6-13
    [171]王连平,张学询,宋胜焕.黑土中几种重金属的化学形态.生态学杂志,1989,8(6):56-57
    [172]王琪全,刘维屏.乙草氨合异丙甲草胺在土壤中的吸附研究.土壤学报,2000,37(1): 95-101
    [173]王慎强,周东美,王玉军,等.两种土壤中邻苯二胺对铜离子吸附-解吸平衡影响的研究,农业环境保护,2002,21(5):421-423
    [174]王淑芳,胡连生.重金属污染黑土中固氮菌及反硝化菌作用强度的测定.应用生态学报,1991,2(2):174-177
    [175]王文样.山东省耕地重金属元素污染状况及评价.土壤,1993,25(6):315-318
    [176]王新,周启星.土壤重金属污染生态过程、效应及修复.生态科学,2004,23(3):278-281
    [177]邬杨善.城市污水处理—投资与决策.北京:中国环境科学出版社,1992
    [178]吴燕玉,周启星.制定我国土壤环境标准(汞,镉,铅和砷)的探讨.应用生态学报,1991, 2(4): 344—349
    [179]吴永刚,姜志林,罗强.公路边茶园土壤与茶树中重金属的积累与分布.南京林业大学学报,2002,26(4):39-42
    [180]夏汗平.土壤—植物系统中的镉研究进展.应用与环境生物学报,1997,3(3):289-298
    [181]夏家淇.土壤砷的环境基准研究.农村生态环境,1993,4:1-4
    [182]夏时雨,刘清.土壤中不同形态铅的提取及其取样深度.环境污染与防治,1994,16(4):27-29
    [183]夏星辉,陈静生.土壤重金属污染治理方法研究进展.环境科学,1997, 18(3):72-75
    [184]肖红.尿素与过量乙草胺对黑土农田生态系统的毒理效应及机理研究,中国科学院研究生院博士论文,2004
    [185]谢忠雷,赵晓松.草甸黑土对铜镍铅砷的吸附特征.吉林大学自然科学学报,2000,4:99-101
    [186]熊毅,陈家坊.土壤胶体(第三册).北京:科学出版社, 1990
    [187]修瑞琴,许水香,高世荣.砷与镉、锌离子对斑马鱼的联合毒性实验.中国环境科学,1998,18(4):349-352
    [188]徐宁彤,谷思玉.酸碱度对重金属镉,铜,锌在黑土中吸附解吸行为的影响.黑龙江水利科技,1998,26(4):62-64
    [189]徐颖.污泥用作农肥处置及其环境影响.农村生态环境,1993,10(3):32-35, 39
    [190]严健汉,詹重慈.环境土壤学.武汉:华中师范大学出版社,1985
    [191]杨景辉.土壤污染与防治.北京:科学出版社,1995. 25
    [192]杨肖娥,龙新宪,倪吾钟.超积累植物吸收重金属的生理及分子机制.植物营养与肥料学报,2002,8(1): 8-15
    [193]杨亚提,张一平,张卫华.铜在土壤-溶液界面吸附-解吸特性的研究.西北农业学报,1998,7(4):82-85
    [194]叶常明,雷志芳,殷兴军,等.含莠去津和乙草胺河水灌溉对苗期水稻危害的研究.环境科学进展,1997,5(5):51-57
    [195]尹军,高如泰,刘文菊,等.土壤酶活性与土壤Cd污染评价指标.农业环境保护,1999,18(3):130-132
    [196]于建垒,宋国春,万鲁长,等.苯黄隆对土壤微生物的影响研究.微生物学杂志,2000,20(3):63-64
    [197]于磊,张柏.基于GIS的黑土区土壤相对环境容量空间分异特征研究.土壤学报, 2004, 41(4): 511-516
    [198]于颖,周启星,王新.黑土和棕壤对铜的吸附研究.应用生态学报,2003,014(005):761-765
    [199]于颖,周启星.重金属铜在黑土和棕壤中解吸行为的比较.环境科学,2004,25(1):128-132
    [200]于颖.铜-农药污染的土壤生态化学脱毒行为研究.中国科学院研究生院博士论文,2004
    [201]张辉.南京某合金厂土壤铬污染研究.中国环境科学,1997,17(2):80-82
    [202]张惠文,张倩茹,周启星,等.乙草胺及铜离子复合施用对黑土农田生态系统土著微生物的急性毒性效应.农业环境科学学报,2003,22(2):129-133
    [203]张纪伍,梁伟,李德波,等.土壤铜铅锌复合污染对水稻的生态效应.农村生态环境, 1997,13(1): 16-20
    [204]张书贵.土壤重金属污染评价与研究.安徽技术师范学院学报,2001,15(4):23-24
    [205]张玉秀,柴团耀, Gerard Burkard.植物耐重金属机理研究进展.植物学报, 1999,41(5):451-457
    [206]张增强,张一平,朱兆华.镉在土壤中吸持的动力学特征.环境科学学报,2000,20(3):370-375
    [207]郑喜坤,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法.土壤与环境,2002,11(1):79-84
    [208]郑振华,周培疆,吴振斌.复合污染研究新进展.应用生态学报, 2001,12(3): 469-473
    [209]中国科学院南京土壤研究所.中国土壤.北京:科学出版社, 1978
    [210]仲维科,樊耀波,王敏健.我国农作物的重金属污染及其防止对策.农业环境保护, 2001, 20(4): 270-272
    [211]周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用.土壤与环境,2000,9(2): 143-145
    [212]周国华,黄怀曾,何红蓼,等.北京市东南郊自然土壤和模拟污染影响下Cd赋存形态及其变化.农业环境科学学报,2003,22(1):25-27
    [213]周名江,李正炎,颜天,等.海洋环境中的有机锡及其对海洋生物的影响.环境科学进展,1994,2(4):67-71
    [214]周启星,高拯民.土壤—水稻系统Cd—Zn的复合污染及其衡量指标的研究.土壤学报,1995,32(4):430-436
    [215]周启星,黄国宏.环境生物地球化学及全球环境变化.北京:科学出版社, 2000. 155
    [216]周启星,宋玉芳等.污染土壤修复原理与方法.北京:科学出版社,2004
    [217]周启星,孙铁珩.土壤-植物系统污染生态研究与展望.应用生态学报,2004,15(10): 1698-1702
    [218]周启星.复合污染生态学.北京:中国环境科学出版社,1995
    [219]周启星.健康土壤学——土壤健康质量与农产品安全.北京:科学出版社,2005
    [220]周启星.污染土壤修复标准建立的方法体系研究.应用生态学报,2004,15(2): 316-320
    [221]宗良纲,丁园.土壤重金属(Cu/Zn/Cd)复合污染的研究现状.农业环境保护,2001,20(2):126-128
    [222]宗良纲,徐晓炎.土壤中镉的吸附解吸研究进展.生态环境,2003,12(3):331-335

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700