用户名: 密码: 验证码:
膜气提及生物强化技术去除水体中VOCs的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜气提(Membrane Air Stripping,MAS)及生物强化技术对治理与修复水体挥发性有机物(Volatile Organic Compounds,VOCs)污染具有较大的优势和广阔的前景。MAS是一种新兴的水污染修复技术,适于处理含各种浓度范围的VOCs污染水体,从经济角度考虑更宜处理较高浓度污染水体;生物强化处理含VOCs浓度较低的污染水体更为绿色经济。本文以VOCs中典型且难处理的甲基叔丁基醚(Methyl Tert-Butyl Ether,MTBE)污水体系为主要修复对象,从MAS去除MTBE和生物强化去除MTBE两个方面进行了系统研究,并结合它们的特点对MAS与生物强化复合去除MTBE进行了研究。
     根据连续性方程、动量方程和传质方程,建立了MAS过程的二维轴对称数学模型。MAS去除MTBE的实验研究表明:系统温度升高、气液流速增大均能有效促进对MTBE的去除;MTBE初始浓度和气液相压力对去除效果影响很小。模拟结果与实验数据基本吻合,说明该模型能够描述MAS去除MTBE的过程。
     MAS过程也具有膜供氧效果,二者可同步操作。在理论上对氧传质过程进行了四步划分;当气压大于液压时,微气泡层存在且对供氧效果产生影响;氧的体积传质系数在一定条件下随气相操作压力的升高而增大。
     通过对被石化产品污染土壤中的土著微生物进行驯化、分离,得到一株降解MTBE的优势菌株NERC0401,根据菌株形态特征和16S rDNA测序结果,初步鉴定为产酸克雷伯菌(Klebsiella oxytoca)。它的较佳好氧降解条件为:接种量20%,pH 7.0~8.0,温度25~32℃。对该菌株的进一步强化研究表明:初始溶解氧的增大会增强对MTBE的降解去除效果;初始浓度一定的乙醇与MTBE共存时,会促进对MTBE的生物去除;经海藻酸钙包埋固定化的优势菌株对MTBE的去除效果显著提高,同时对污染水体pH和MTBE初始浓度的适应性增强。
     建立了MAS与生物强化复合工艺中固定床生物反应柱的一维数学模型。模型计算结果和实验数据表明,停留时间是影响生物去除效果的一个关键因素。模型对设计合理的生物装填柱长度与选取适宜的废水流量具有指导作用。MAS与生物强化复合去除水中MTBE的实验研究初步表明,复合工艺对去除水中VOCs是切实可行的,具有广阔的应用前景。
Membrane air stripping (MAS) and bioenhancement technology are predominant and promising treatment methods for removing volatile organic compounds (VOCs) from wastewater. MAS is an innovatory removal and recovery technique which fits for treating VOCs contaminated water at a wide range of concentration, especially economic for high VOC levels, whereas bioenhancement technology is more clean and effective at low VOC concentrations. This study mainly focused on the removal of methyl tert-butyl ether (MTBE), which is one of the most typical VOCs, from model wastewater when membrane air stripping or/and bioenhancement involved.
     A two-dimension axial symmetry model was presented to describe mass transfer in the process of membrane air stripping based on equations of continuity, motion and mass transfer. The removal of MTBE from model water was studied using membrane air stripping. Results showed that the increase of temperature, air/liquid flux was helpful to the removal of dissolved MTBE, but the initial concentration, air/liquid pressure was hardly influenced on the the removal of MTBE. Simulation result was in good agreement with the experimental data.
     Oxygen dissolved into wastewater through membrane during the membrane air stripping process. As a result, oxygen supply and removal/recovery VOCs by membrane air stripping could be simultaneouslly performed using one setting. The course of oxygen transfer from air into water through membrane comprised four steps; the layer of micro-bubble could influence the effectiveness of oxygen supply when the pressure of air was larger than that of liquid; and the coefficient of oxygen mass transfer increased as air pressure increased.
     One stain NERC0401 identified as Klebsiella oxytoca that could degrade MTBE quickly was isolated by enriching, screening and culturing from the soil at Dagang Oil Field, Tianjin, China, and the proper conditions for MTBE aerobic biodegradation were determined by experiments. The bioenhancement results showed that the enhancement of dissolved oxygen (DO) could improve the biodegradation of MTBE by strain NERC0401, and the coexiting of ethanol at some concentrations was helpful for the process. In addition, the degradation ability of NERC0401 could be improved when the microbe was immobilized by calcium alginate.
     A one-dimension model of column filled with immobilized microbe, which was used as one part of combined technics of membrane air stripping and bioenhancement, was developed for forecasting the removal of MTBE. Simulation results fitted well with the experimental data, and the residence time was a key factor for MTBE biodegradation. This study will be useful for treating VOCs contaminated water by using the combined technics.
引文
[1] 陈东升. 用膜分离技术处理废水的研究. 膜科学与技术[J],1998,18(5):32-34
    [2] Wallace L, Tai H, Lam S, et al. Personal exposures, indoor-outdoor relationships and breath levels of toxic air pollutants measured for 355 persons in New Jersey [J]. Atomspheric Environment, 1985, 19(11): 652-661
    [3] Banat F A, Simandl J. Removal of Benzene traces from contaminated water by vacuum membrane distillation [J]. Chemical Engineering Science, 1996, 51(8): 1257-1265
    [4] Wilhelm M J, Adams V D, Curtis J G, et al. Carbon adsorption and air stripping removal of MTBE from river water. Journal of Environmental Engineering, 2002, 128(9): 813-823
    [5] 张维吴,徐小清,方涛等. 甲基叔丁基醚对生态环境的影响[J]. 环境科学研究,2002,15(6):56-59
    [6] Rudo K M. Methyl tert-butyl ether evaluation of MTBE carcinogenicity studies [J]. Toxicology and Industrial Health, 1995, 11(2): 167-173
    [7] 林英贤,陈志. 优良的汽油调和组分——甲基叔丁基醚[J]. 山东化工,2001,30(1):10-12
    [8] Bruce B W, McMahon P B. Shallow ground-water quality beneath a major urban center: Denver, Colorado, USA [J]. Journal of Hydrology, 1996, 186(1-4): 129-151
    [9] 吴碧君,刘晓勤. 挥发性有机物污染控制技术研究进展[J]. 电力环境保护,2005,21(4):39-42
    [10] 秦朝远,乔彤森. 生物法处理气体中易挥发性有机物研究进展[J]. 石化技术与应用,2006,24(1):49-53
    [11] 徐怡珊. 甲基叔丁基醚的研究进展. 化工环保,2004,24(6):416-420
    [12] Moolenaar R L, Hefflin B J, Ashley D L, et al. Methyl tertiary butyl ether in human blood after exposure to oxygenated fuel in Fairbanks, Alaska [J]. Archives of Environmental Health, 1994,49(5):402-409
    [13] 段小林. 真空膜蒸馏脱除水溶液中 VOC 的研究[D]:硕士学位论文. 杭州:浙江工业大学,2004
    [14] Zang Y J, Farnood R. Photocatalytic decomposition of methyl tert-butyl ether in aqueous slurry of titanium dioxide [J]. Applied Catalysis B: Environmental, 2005, 57(4): 275-282
    [15] Shih T C, Wangpaichitr M Suffet M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water[J]. Water Research, 2003, 37(2): 375-385
    [16] 何少华,谢水波,刘金香. 物化法去除 MTBE 的特性与影响因素[J]. 中国给水排水,2004,20(8):21-23
    [17] Squillace P J, Zogorski J S, Wilber W G, et al. Preliminary Assessment of the occurrence and possible sources of MTBE in groundwater in the Unite States, 1993-1994 [J]. Environmental Science & Technology, 1996, 30(5): 1721-1730
    [18] 陈井影,赵晓松,王玉军. 甲基叔丁基醚(MTBE)研究新进展[J]. 吉林农业大学学报,2004,26(2):182-186
    [19] Squillace P J, Pankow J F, Korte N E, et al. Review of the environmental behavior and fate of methyl tert-butyl ether [J]. Environmental Toxicology and Chemistry, 1997, 16(9): 1836-1844
    [20] Stocking A J, Suffet I H, Mcguire M J, et al. Implications of an MTBE odor study for setting drinking water standards [J]. Journal AWWA, 2001, 93(3): 95-105
    [21] 刘鹏,周湘梅. VOC 的回收与处理技术简介[J]. 石油化工环境保护,2001,24(3):41-44
    [22] Cardenosa M, Autenrieth R L, Bonner J S. In situ soil reclamation by air stripping and sludge uptake [J]. Journal of Hazardous Materials, 1989, 22(2):256-257
    [23] Mertooetomo E, Valsaraj K T, Wetzel D M, et al. Cascade crossflow air stripping of moderately volatile compounds using high air-to-water ratios [J]. Water Research, 1993, 27(7): 1139-1144
    [24] 姜斌,张英,黄国强等. 曝气处理甲苯的传质机理[J]. 天津大学学报,2005, 38(2):163-166
    [25] 郑艳梅,王战强,黄国强等. 地下水曝气法处理土壤及地下水中甲基叔丁基醚(MTBE)[J]. 农业环境科学学报,2004,23(6):1200-1202
    [26] Demessie E S, Richardson T, Almquist C B, et al. Comparison of liquid and gas-phase photoxidation of MTBE: synthetic and field samples [J]. Journal of Environmental Engineering, 2002, 128(9): 782-790
    [27] Mahmud H, Kumar A, Narbaitz R M, et al. Hollow fiber membrane air stripping: a process for removal of organics from aqueous solutions [J]. Separation Science and Technology, 1998, 33(14): 2241-2255
    [28] 纪志永,李鑫钢,孙津生. 炭材料在水污染修复领域的应用研究[J]. 材料导报,2006,20(7):84-87
    [29] Shih T C, Wangpaichitr M, Suffet M. Evaluation of granular activated carbon technology for the removal of methyl tertiary butyl ether (MTBE) from drinking water [J]. Water Research, 2003, 37(2): 375-385
    [30] Yu J J, Chou S Y. Contaminated site remedial investigation and feasibility removal of chlorinated volatile organic compounds from groundwater by activated carbon fiber adsorption [J].Chemosphere, 2000, 41(3): 371-378
    [31] 曹乃珍,沈万慈,金传波. 新型石墨材料对水中油性物质脱除的实验研究[J]. 中国环境科学,1997,17(2):188-190
    [32] Anderson M A. Removal of MTBE and other organic contaminants from water by sorption to high silica zeolites [J]. Environmental Science & Technology, 2000, 34(4): 725-727
    [33] Li S G, Tuan V A, Noble R D, et al. MTBE adsorption on all-silica β zeolite [J]. Environmental Science & Technology, 2003, 37(17): 4007-4010
    [34] Centi G, Grande A, Perathoner S. Catalytic conversion of MTBE to biodegradable chemicals in contaminated water [J]. Catalysis Today, 2002, 75(1): 69-76
    [35] 周林,蔡妙颜,郭祀远等. 大孔吸附树脂应用的研究进展[J]. 昆明理工大学学报(理工版),2003,28(6):104-107
    [36] Annesini M C, Gironi F, Monticelli B. Removal of oxygenated pollutants from wastewater by polymeric resins: data on adsorption equilibrium and kinetics in fixed beds [J]. Water Research, 2000, 34(11): 2989-2996
    [37] Lin S H, Wang C S, Chang C H. Removal of methyl tert-butyl ether from contaminated water by macroreticular resin [J]. Industrial & Engineering Chemistry Research, 2002, 41(16): 4116-4121
    [38] 李华伟,许昭怡,郑寿荣等. 吸附法处理甲基叔丁基醚污染物的研究进展[J]. 环境科学与技术,2006,29(3):101-104
    [39] Damm J H, Hardacre C, Kalin R M, et al. Kinetics of the oxidation of methyl tert-butyl ether (MTBE) by potassium permanganate [J]. Water Research, 2002, 35(14): 3638-3646
    [40] Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE) [J]. Chemosphere, 2002, 49(4): 413-420
    [41] 徐向荣,顾继东. 石油添加剂甲基叔丁基醚的污染治理技术研究进展[J]. 生态科学,2003,22(2):177-182
    [42] Hagg W R, David Yao C C. Rate constants for reaction of hydroxyl with several drinking water contaminants [J]. Environmental Science & Technology, 1992, 26(5): 1005-1013
    [43] Liang S, Yates R S, Davis D V, et al. Treatability of MTBE-contaminated groundwater by ozone and peroxone [J]. Journal AWWA,2001, 93(6): 110-120
    [44] Amiri A S. O3/H2O2 treatment of methyl-tert-butyl ether (MTBE) in contaminated waters [J]. Water Research, 2001, 35(15): 3706-3714
    [45] Liang S, Soo Palencia L, Davis M K, et al. Oxidation of MTBE by ozone and peroxone processes [J]. Journal AWWA, 1999, 91(6): 104-144
    [46] Juan L, Acero S B, Haderlein T C, et al. MTBE oxidation by conventional ozonation and the combination ozone/hydrogen peroxide: efficiency of the processes and bromate formation [J]. Environmental Science & Technology, 2001, 35(21): 4252-4259
    [47] Cater S R, Stefan M I, Bolton J R, et al. UV/H2O2 treatment of methyl tert-butyl ether in contaminated waters [J]. Environmental Science & Technology, 2000, 34(4): 659-662
    [48] Burbano A A, Dionysiou D D, Suidan M T, et al. Oxidation kinetics and effects of pH on the degradation of MTBE with Fenton reagent [J]. Water Research, 2005, 39(1): 107-118
    [49] Xu X R, Zhao Z Y, Li X Y, et al. Chemical oxidative degradation of methyl tert-butyl ether in aqueous solution by Fenton’s reagent [J]. Chemosphere, 2004, 55(1): 73-79
    [50] Burbano A A, Dionysiou D D, Richardson T L, et al. Degradation of MTBE intermediates using Fenton’s reagent [J]. Journal of Environmental Engineering, 2002, 128(9): 799-805
    [51] Weinstock I A, Barbuzzi E M G, Wemple M W, et al. Equilibrating metal-oxide cluster ensembles for oxidation reactions using oxygen in water [J]. Nature, 2001, 414(6860): 191-195
    [52] Lien H L, Wilkin R. Reductive activation of dioxygen for degradation of methyl tert-butyl ether by bifunctional aluminum [J]. Environmental Science & Technology, 2002, 36(20): 4436-4440
    [53] Lien H L, Zhang W. Novel bifunctional aluminum for oxidation of MTBE and TAME [J]. Journal of Environmental Engineering, 2002, 128(9): 791-798
    [54] Barreto R D, Gray K A, Anders K. Photocatalytic degrada tion of methyl-tert-butyl ether in TiO2 slurries: a proposed reaction scheme [J]. Water Research, 1995, 29(5): 1243-1248
    [55] Lifka J, Hoffmann J, Ondruschka B. Ethers as pollutants in groundwater: the role of reaction parameters during the aquasonolysis [J]. Water Science and Technology, 2001, 44(5): 139-144
    [56] Kim D K, O’Shea K E, Cooper W J. Degradation of MTBE and related gasoline oxygenates in aqueous media by ultrasound irradiation [J]. Journal of Environmental Engineering, 2002, 128(9): 806-812
    [57] Neppolian B, Jung H, Choi H, et al. Sonolytic degradation of methyl tert-butyl ether: the role of coupled fenton process and persulphate ion[J]. Water Research, 2002, 36(19): 4699-4708
    [58] Wu T X, Cruz V, Mezyk S, et al. Gamma radiolysis of methyl t-butyl ether: a study of hydroxyl radical mediated reaction pathways [J]. Radiation Physics and Chemistry, 2002, 65(4): 335-341
    [59] 吴晓芙,胡曰利. 有机废水处理中的环境生物技术及其进展[J]. 中南林学院学报,2003,23(6):41-48
    [60] 刘兴和. 地下水中 MTBE 与 BTEX 电解去除之研究[D]:硕士学位论文. 台湾:朝阳科技大学,2005
    [61] 李国文,胡洪营,郝吉明等. 生物炭降解苯和甲苯混合废气性能研究[J]. 环境科学,2002,23(5):13-17
    [62] 张鹤清,胡洪营,习劲瑛. 6 种挥发性有机物在甲苯驯化微生物中的好氧生物降解性能[J]. 环境科学,2003,24(6):83-89
    [63] Oh Y, Shareefdeen Z, Baltzis B C, et al. Interactions between benzene, toluene, and p-xylene (BTX) during their biodegradation [J]. Biotechnology and Bioengineering, 1994, 44(4): 533-538
    [64] Hamed T A, Bayraktar E, Mehmetoglu U, et al. The biodegradation of benzene, toluene and phenol in a two-phase system [J]. Biochemical Engineering Journal, 2004, 19(2): 137-146
    [65] 胡妙生. 厌氧生物活性炭流化床处理制药废水[J]. 中国给水排水,1996, 12(4):39-41
    [66] 杨云霞,方治华. 多孔高分子载体固定化微生物厌氧流化床处理低浓度废水的研究[J]. 中国沼气,1998,16(2):3-7
    [67] 方治华,柯益华. 厌氧流化床反应器微生物固定化载体筛选的研究[J]. 环境科学学报,1995,15(4):399-406
    [68] McKelvie J R, Lindstrom J E, Beller H R, et al. Analysis of anaerobic BTX biodegradation in a subarctic aquifer using isotopes and benzylsuccinates [J]. Journal of Contaminant Hydrology, 2005, 81(1-4): 167-186
    [69] Johnson S J, Woolhouse K J, Prommer H, et al. Contribution of anaerobic microbial activity to natural attenuation of benzene in groundwater[J]. Engineering Geology, 2003, 70(3-4): 343-349
    [70] Suflita J M, Mormile M R. Anaerobic biodegradation of known and potential gasoline oxygenates in the terrestrial subsurface [J]. Environmental Science & Technology, 1993, 27(5): 976-978
    [71] Deeb R A, Scow K M, Alvarez-Cohen L. Aerobic MTBE biodegradation: an examination of past studies, current challenges and future research directions [J]. Biodegradation, 2000, 11(2-3): 171-185
    [72] 陈建孟,蒲凤莲,陈效等. MTBE 的生物降解技术[J]. 环境污染治理技术与设备,2004,5(1):61-64
    [73] 路佳,徐芳,蔡伟民. 甲基叔丁基醚的污染治理技术研究进展. 环境污染与防治,2006,28(5):365-368
    [74] Salanitro J P, Diaz L A, Billiams M P, et al. Isolation of a Bacterial Culture That Degrades Methyl t-Butyl Ether [J]. Applied and Environmental Microbiology, 1994, 60(7): 2593-2596
    [75] Mo K, Lora C O, Wanken A E, et al. Biodegradation of methyl t-butyl ether by pure bacterial cultures [J]. Applied Microbiology and Biotechnology, 1997, 47(1): 69-72
    [76] Hanson J R, Ackerman C E, Scow K M. Biodegradation of Methyl tert-Butyl Ether by a Bacterial Pure Culture [J]. Applied and Environmental Microbiology, 1999, 65(11): 4788-4792
    [77] Hatzinger P B, McClay K, Vainberg S, et al. Biodegradation of Methyl tert-Butyl Ether by a Pure Bacterial Culture [J]. Applied and Environmental Microbiology, 2001, 67(12): 5601-5607
    [78] Yeh C K, Novak J T. Anaerobic biodegradation of gasoline oxygenates in soils [J]. Water Environment Research, 1994, 66(5): 744-752
    [79] Mormile M R, Liu S, Suflita J M. Anaerobic biodegradation of gasoline oxygenates: extrapolation of information to multiple sites and redox conditions [J]. Environmental Science & Technology, 1994, 28(9): 1727-1732
    [80] Somsamak P, Cowan R M, Haggblom M M. Anaerobic biotransformation of fuel oxygenates under sulfate-reducing conditions [J]. FEMS Microbiology Ecology, 2001, 37(3): 259-264
    [81] Finneran K T, Lovley D R. Anaerobic degradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) [J]. Environmental Science & Technology, 2001, 35(9): 1785-1790
    [82] 彭中良,孟建平,张红. 植物修复技术在环境污染中的应用[J]. 贵州环保科技,2005,11(3):21-24
    [83] 徐明德,张勇. 有机污染物的植物修复技术研究[J]. 科技情报开发与经济. 2005,15(22):148-150
    [84] 魏树和,周启星. 有机污染环境植物修复技术[J]. 生态学杂志,2006,25(6):716-721
    [85] Newman L A, Wang X, Muiznieks I A, et al. Remediation of trichloroethylene in an artificial aquifer with trees: a controlled field study [J]. Environmental Science & Technology, 1999, 33(13): 2257-2265
    [86] Doty S L, Shang T Q, Wilson A M, et al. Metabolism of the soil and groundwater contaminants, ethylene dibromide and trichloroethylene, by the tropical leguminous tree, Leuceana leucocephala [J]. Water Research, 2003, 37(2): 441-449
    [87] Hong M S, Farmayan W F, Dortch I J, et al. Phytoremediation of MTBE from a groundwater plume [J]. Environmental Science & Technology, 2001, 35(6): 1231-1239
    [88] Rubin E, Ramaswami A. The potential for phytoremediation of MTBE [J]. Water Research, 2001, 35(5):1348-1353
    [89] 郑领英,王学松. 膜技术[M]. 北京:化学工业出版社,2000
    [90] 王学松. 膜分离技术及其应用[M]. 北京:科学出版社,1992
    [91] Kesting R E 著,王学松,赵宝泉,张永泰译. 合成聚合物膜[M]. 北京:化学工业出版社,1992
    [92] Mulder M 著,李琳译. 膜技术基本原理[M]. 北京:清华大学出版社,第二版,1999
    [93] Lonsdale H K. The growth of membrane technology [J]. Journal of Membrane Science, 1982, 10(2): 81-181
    [94] Qi Z, Cussler E L. Hollow fiber gas membranes [J]. AIChE Journal, 1985, 31(9): 1548-1533
    [95] Qi Z, Cussler E L. Microporous hollow fibers for gas adsorption: Ⅱ mass transfer across the membrane [J]. Journal of Membrane Science, 1985, 23(3): 333-345
    [96] Mahmud H. Removal of organics from water/wastewater by membrane air stripping [D]: Ph.D. Dissertation. Ottawa: University of Ottawa, 2001
    [97] Matson S L. Method and system for removing radon from radon containing water [P]. US Patent 5,100,555(1992)
    [98] Boswell S T, Vaccari D A. Plate and frame membrane air stripping[C]. In proceedings of the 21st Annual Conference on Water Policy and Proceedings of the 21st Annual Conference on Water Policy Management Solving Problems. 1994, ASCE, New York, NY,1994, pp.726-729
    [99] Masuda T, Takatsuka M, Tang B Z, et al. Pervaporation of organic liquid-water mixtures through substituted polyacrylene membrane [J]. Journal of Membrane Science, 1990, 49(1): 69-83
    [100] Park H C, Ramaker N E, Mulder M H V, et al. Separation of MTBE-methanol mixtures by pervaporation [J]. Separation Science and Technology, 1995, 30(3): 419-433
    [101] Das A, Abou-Nemeh I, Chandra S, et al. Membrane-moderated stripping process for removing VOCs from water in a composite hollow fiber module [J]. Journal of Membrane Science, 1998, 148(2): 257-271
    [102] Dutta B K, Sikdar S K. Separation of Volatile Organic Compounds from Aqueous Solutions by Pervaporation Using S-B-S Block Copolymer Membranes [J]. Environmental Science & Technology, 1999, 33(10): 1709-1716
    [103] 刘茉娥. 膜分离技术[M]. 北京:化学工业出版社,1998
    [104] Semmens M J, Qin R, Zander A. Using a microporous hollow-fiber membrane to separate VOCs from water [J]. Journal AWWA, 1989,,81(4): 162-167
    [105] Yang M C, Cussler E L. Designing hollow-fiber contactors,[J]. AIChE Journal, 1986, 32(11): 1910-1916
    [106] Bhowmick M, Semmens M J. Batch studies on a closed loop air stripping process [J]. Water Research, 1994, 28(9): 2011-2019
    [107] Bhowmick M. A novel closed loop air stripping process [D]: Ph.D. Dissertation. Thesis: University of Minnesota, 1992
    [108] Zander A K, Semmens M J, Narbaitz R M. Removing VOCs by membrane stripping [J]. Journal AWWA,1989, 81(11): 76-81
    [109] Kiani A, Bhave R R, Sirkar K K. Solvent extraction with immobilized interfaces in a microporous hydrophobic membrane [J]. Journal of Membrane Science, 1984, 20(2): 125-145
    [110] Qi Z, Cussler F L. Microporous hollow fibers for gas absorption: Ⅰ. mass transfer in the liquid [J]. Journal of Membrane Science, 1985, 23(3): 321-332
    [111] O`Haver J H, Walk R, Kitiyanan B, et al. Packed column and hollow fiber air stripping of a contaminant-surfactant stream [J]. Journal of Environmental Engineering, 2004, 130(1): 4-11
    [112] Mahmud H, Kumar A, Narbaitz R M, et al. A study of mass transfer in the membrane air-stripping process using microporous polyproplylene hollow fibers [J]. Journal of Membrane Science, 2000, 179(1-2): 29-41
    [113] He J, Arnold R G, Saez A E, et al. Removal of aqueous phase trichloroethylene using membrane air stripping contactors [J]. Journal of Environmental Engineering, 2004, 130(11): 1232-1241
    [114] Mahmud H, Kumar A, Narbaitz R M, et al. Mass transport in the membrane air-stripping process using microporous polypropylene hollow fibers: effect of toluene in aqueous feed [J]. Journal of Membrane Science, 2002, 209(1): 207-219
    [115] Juang R S, Lin S H, Yang M C. Mass transfer analysis on air stripping of VOCs from water in microporous hollow fibers [J]. Journal of Membrane Science, 2005, 255(1-2): 79-87
    [116] Castro K, Zander A K. Membrane air-stripping: effects of pretreatment [J]. Journal AWWA, 1995, 87(3): 50-61
    [117] Keller A A, Bierwagen B G. Hydrophobic hollow fiber membranes for treating MTBE-contaminated water [J]. Environmental Science & Technology, 2001, 35(9): 1875-1879
    [118] Vane L M, Alvarez F R, Mullins B. Removal of methyl tert-butyl ether from water by pervaporation: bench- and pilot-scale evaluations [J]. Environmental Science & Technology, 2001, 35(2): 391-397
    [119] Okeke B C, Frankenberger W T. Biodegradation of methyl tertiary butyl ether (MTBE) by a bacterial enrichment consortia and its monoculture isolates [J]. Microbiological Research, 2003, 158(2): 99-106
    [120] Schirmer M, Butler B J, Church C D, et al. Laboratory evidence of MTBE biodegradation in Borden aquifer material [J]. Journal of Contaminant Hydrology, 2003, 60(3-4): 229-249
    [121] Bradley P M, Landmeyer J E, Chapelle F H. Widespread potential for microbial MTBE degradation in surface-water sediments [J]. Environmental Science & Technology, 2001, 35(4): 658-662
    [122] Borden R C, Daniel R A, LeBrun L E, et al. Intrinsic biodegradation of MTBE and BTEX in a gasoline-contaminated aquifer [J]. Water Resources Research, 1997, 33(5): 1105-1116
    [123] Pruden A, Suidan M. Effect of benzene, toluene, ethylbenzene, and p-xylene (BTEX) mixture on biodegradation of methyl tert-butyl ether (MTBE) and tert-butyl alcohol (TBA) by pure culture UC1 [J]. Biodegradation, 2004, 15(4): 213-227
    [124] Stephenson T, Judd S, Jefferson B, et al(Brindle K)著,张树国,李咏梅译. 膜生物反应器污水处理技术[M]. 北京:化学工业出版社,2003
    [125] 胡家俊,周群英. 环境工程微生物[M]. 北京:高等教育出版社,1988
    [126] Schmidt T C, Schirmer M, WeiB H, et al. Microbial degradation of methyl tert-butyl ether and tert-butyl alcohol in the subsurface [J]. Journal of Contaminant Hydrology, 2004, 70(3-4): 173-203
    [127] Francois A, Mathis H, Godefroy D, et al. Biodegradation of methyl tert-butyl ether and other fuel oxygenates by a new strain, Mycobacterium austroafricanum IFP 2012 [J]. Applied and Environmental Microbiology, 2002, 68(6): 2754-2762
    [128] 林志杰. Klebsiella oxytoca 对四氰化镍之分解能力探讨[D]:硕士学位论文. 台湾:国立中山大学,2001
    [129] 林虹君. 溶氧与氮源对生物修育能力与菌群结构之影响研究[D] :硕士学位论文. 台湾:大叶大学,2006
    [130] Sedran M A. MTBE and BTEX biodegradation in a porous pot and a fluidized bed reactor [D]: Ph.D. Dissertation. Cincinnati: University of Cincinnati, 2004
    [131] LIU C Y, Speitel G E, Georgiou G. Kinetics of methyl t-butyl ether cometabolism at low concentrations by pure cultures of butane-degrading bacteria [J]. Applied and Environmental Microbiology, 2001, 67(5): 2197-2201
    [132] Johnson E L, Smith C A, O’Reilly K T, et al. Induction of methyl tertiary butyl ether (MTBE)-oxidizing activity in Mycobacterium vaccae JOB5 by MTBE [J]. Applied and Environmental Microbiology, 2004, 70(2): 1023-1030
    [133] Sedran M A, Pruden A, Wilson G J, et al. Effect of BTEX on degradation of MTBE and TBA by mixed bacterial consortium [J]. Journal of Environmental Engineering, 2002, 128(9): 830-835
    [134] Piveteau P, Fayolle F, Vandecasteele J P, et al. Biodegradation of tert-butyl alcohol and related xenobiotics by a methylotrophic bacterial isolate [J]. Applied Microbiology and Biotechnology, 2001, 55(3): 369-373
    [135] 纪志永,李鑫钢,孙津生等. 好氧生物处理污染水体的供氧技术[J]. 上海环境科学,2006,25(4):170-173
    [136] Ahmed T, Semmens M J. Use of sealed end hollow fibers for bubbleless membrane aeration: experimental studies [J]. Journal of Membrane Science, 1992, 69(1-2):1-10
    [137] Ahmed T, Semmens M J, Voss M A. Energy loss characteristic of parallel flow bubbleless hollow fiber membrane aerators [J]. Journal of Membrane Science, 2000, 171(1): 87-96
    [138] Hirasa O, Ichijo H, Yamauchi A. Oxygen transfer from silicone fiber membrane to water [J]. Journal of Fermentation and Bioengineering, 1991, 71(3): 206-207
    [139] 王晓东,赵新华,李霞. 膜曝气生物反应器的研究进展[J]. 化工进展,2005,24(10):1141-1146
    [140] Ahmed T, Semmens M J. Use of transverse flow hollow fibers for bubbleless membrane aeration [J]. Water Research, 1996, 30(2): 440-446
    [141] Ahmed T,Boyee S R, Jahan K. Performance of a transverse flow bubbleless membrane aerator[J]. Toxicological and Environmental Chemistry, 1997, 64: 15-32
    [142] Johnson D W, Semmens M J, Gulliver J S. A rotating membrane contactor: experimental studies [J]. Water Environmental Research, 1998, 70(7): 1265-1273
    [143] Voss M A, Ahmed T, Semmens M J. Long-term performance of parallel flow, bubbleless, hollow fiber membrane aerators [J]. Water Environment Research, 1999, 71(1): 23-30
    [144] Johnson D W, Semmens M J. A rotating membrane contactor: application to biologically active system [J]. Water Environmental Research, 1999, 71(2): 163-168
    [145] Peter I Welss, Bryan T Oakley, John S Gulliver, et al. Bubbleless fiber aerator for surface waters [J]. Journal of Environmental Engineering, 1996, 122(7): 631- 639
    [146] 沈志松,钱国芬,朱晓慧等. 无泡式中空纤维膜发酵供氧的初步研究[J]. 膜科学与技术,1998,18(6):42-48
    [147] 柴晓利,赵由才. 膜生物反应气处理生活污水无泡供氧的研究[J]. 上海环境科学,2001,20(10):482-483
    [148] Smith C A, O`Reilly K T, Hyman M R. Cometabolism of methyl tertiary butyl ether and gaseous n-alkanes by Pseudomonas mendocina KR-1 grown on C5 to C8 n-alkanes [J]. Applied and Environmental Microbiology, 2003, 69(12): 7385-7394
    [149] 段明锋,吴卫霞,肖俊霞等. 利用固定化细胞技术处理废水研究进展[J]. 油气田环境保护,2004,14(3):17-20
    [150] 王平,张洪林,蒋林时. 固定化细胞技术在废水处理中的应用[J]. 工业用水与废水,2003,34(2):8-11
    [151] 王洁,孙珮石,孙学习. 固定化微生物技术及其应用研究的进展[J]. 广州环境科学,2004,19(1):1-4
    [152] 沈耀良,黄勇,赵丹等. 固定化微生物污水处理技术[M]. 北京:化学工业出版社,2005
    [153] 王建龙. 生物固定化技术与水污染控制[M]. 北京:科学出版社,2002
    [154] 闫志明,普红平,阳立平. 生物固定化技术研究及应用评述[J]. 四川化工,2004,7(1):12-15
    [155] 朱文芳,李伟光,吕炳南等. 微生物固定化处理低浓度甲醇废水试验研究[J]. 哈尔滨工业大学学报,2004,36(8)1008-1010
    [156] 宋志文,陈冠雄,马放. 微生物固定化处理甲醇废水的实验研究[J]. 微生物学杂志,2000,20(4):30-41
    [157] Shreve G B, Vogel T M. Comparison of substrate utilization and growth kinetics between immobilized and suspended Pseudomonas cells [J]. Biotechnology and Bioengineering, 1993, 41(3): 370-379
    [158] Kharoune M, Pauss A, Lebeault J M. Aerobic biodegradation of an oxygenates mixture: ETBE, MTBE and TAME in an upflow fixed-bed reactor [J]. Water Research, 2001, 35(7): 1665-1674
    [159] 张六六,许春燕,牛津立等. 中空纤维膜无泡供氧过程的传质性能研究[J]. 膜科学与技术,2004,24(5):16-21
    [160] Fischer A, Muller M, Klasmeier J. Determination of Henry’s law constant for methyl tert-butyl ether (MTBE) at groundwater temperatures [J]. Chemosphere, 2004, 54(6): 689-694
    [161] Cote P, Bersillon J L, Huyard A. Bubble-free aeration using membranes: mass transfer analysis [J]. Journal of Membrane Science, 1989, 47(1): 91-106
    [162] 李慧,郑斐,朱文亭. 利用中空纤维膜无泡供氧[J]. 水处理技术,2005,31(9):42-44
    [163] Vladisavljevic G T. Use of polysulfone hollow fibers for bubbleless membrane oxygenation/deoxygenation of water [J]. Separation and Purification Technology, 1999, 17(1): 1-10
    [164] Semmens M J, Gulliver J S, Anderson A. An analysis of bubble formation using microporous hollow fiber membranes [J]. Water Environmental Research, 1999, 71(3): 307-315
    [165] Ahmed T, Semmens M J. The use of independently sealed microporous hollow fiber membranes for oxygenation of water: model development [J]. Journal of Membrane Science, 1992, 69(1): 11-20
    [166] 王绍亭,陈涛. 动量、热量与质量传递[M]. 天津:天津科学技术出版社,1986
    [167] Happel J. Viscous flow relative to arrays of cylinders [J]. AIChE Journal, 1959, 5(2): 174-177
    [168] Fuller E N, Schettler P D, Giddings J C. A new method for prediction of binary gas-phase diffusion coefficients [J]. Industrial & Engineering Chemistry, 1966, 58(5): 19-27
    [169] Schwarzenbach R, Gschwend P, Imboden D. Environmental organic chemistry [M]. New York: John Wiley & Sons, 1993
    [170] Hagg M B. Membrane in chemical processing: a review of applications and novel developments [J]. Separation and Purification Methods, 1998, 27(1): 51- 168
    [171] 郑巨孟. 中空纤维膜及膜接触器传质特性的研究[D]:博士学位论文. 杭州:浙江大学,2003
    [172] Kreulen H, Smolders C A, Versteeg G F, et al. Determination of mass transfer rates in wetted and non-wetted microporous membranes [J]. Chemical Engineering Science, 1993, 48(11): 2093-2102
    [173] Evans R B, Watson G M, Mason E A. Gaseous diffusion in porous media at uniform pressure [J]. The Journal of Chemical Physics, 1961, 35(6): 2076-2083
    [174] Lawson K W, Lloyd D R. Membrane distillation [J]. Journal of Membrane Science, 1997, 124(1): 1-25
    [175] Gabelman A, Hwang S T. Hollow fiber membrane contactors [J]. Journal of Membrane Science, 1999, 159 (1-2): 61-106
    [176] 张秀莉,张卫东,张泽廷. 中空纤维多孔膜基气体吸收传质性能研究[J]. 北京化工大学学报,2004,31(3):4-8
    [177] Othmer D F, Thakar M S. Correlating diffusion coefficients in liquids [J]. Industrial & Engineering Chemistry, 1953, 45(3): 589-593
    [178] Tchobanouglous G, Schroeder E. Water quality [M]. Reading, MA: Addison- Wesley, 1987
    [179] Robbins G A, Wang S Y, Stuart J D. Using the static headspace method to determine Henry’s law constants[J]. Analytical Chemistry, 1993, 65(21): 3113- 3118
    [180] 周大石,夏澜. 活性污泥培养与驯化[J]. 环境科技,1989, 9(2):35-37
    [181] Hinchee R E, Say K O. A rapid in situ respiration test for measuring aerobic biodegradation rates of hydrocarbons in soil [J]. Journal of the Air & Waste Management Association, 1992, 42(10): 1305-1312
    [182] Salanitro J P, Spimnier G E, Neaville C C, et al. Demonstration of the enhanced MTBE bioremediation(FMB) in situ process [C]. Proceedings of the Fifth International in situ and on-site Bioremediation Symposium, 18-21 May, Monterey, CA, 1999, 5:37-46
    [183] 杜连详,王昌禄,鲁梅芳等. 工业微生物学实验技术[M]. 天津:天津科学技术出版社,1992
    [184] 刘兆昌,张兰生,聂永丰等. 地下水系统的污染与控制[M]. 北京:中国环境科学出版社,1989
    [185] 孙衲正. 地下水污染-数学模型与数值方法[M]. 北京:地质出版社,1989
    [186] Bekins B A, Warren E, Michael G E. A comparison of zero-order, first-order, and Monod biotransformation models [J]. Groundwater, 1998, 36(2): 261-268
    [187] Davis J W, Madsen S. Factors affecting the biodegradation of toluene in soil [J]. Chemosphere, 1996, 33(1): 107-130
    [188] Reddy H L, Ford R M. Analysis of biodegradation and bacterial transport: comparison of models with kinetic and equilibrium bacterial adsorption [J]. Journal of Contaminant Hydrology, 1996, 22(3-4): 271-287
    [189] Vayenas D V, Michalopoulou E, Constantinides G N, et al. Visulization experiments of biodegradation in porous media and calculation of the biodegradation rate [J]. Advances in Water Resources, 2002, 25(2): 203-219
    [190] MacQuarrie K T B, Sudicky E A, Frind E O. Simulation of biodegradable organic contaminants in groundwater 1. numerical formulation in principal directions [J]. Water Resources Research, 1990, 26(2): 207-222
    [191] Borden R C, Bedient P B. Transport of dissolved hydrocarbons influenced by oxygen-limited biodegradation 1. theoretical development [J]. Water Resources Research, 1986, 22(13): 1973-1982
    [192] Kissel J C. Numerical simulation of mixed-culture biofilms [D]: Ph.D. Dissertation. Stanford: Stanford University, 1985
    [193] 郭东屏,张石峰. 渗流理论基础[M]. 西安:陕西科学技术出版社,1994
    [194] 王秉忱,杨天行,王宝金等. 地下水污染与地下水水质模拟方法[M]. 北京:北京师范大学出版社,1985
    [195] 郑西来,钱会,杨喜成. 地下水含水介质的弥散度测定[J]. 西安工程学院学报,1998,20(4):33-36
    [196] Kelly W R, Hornberger G M, Herman J S, et al. Kinetics of BTX biodegradation and mineralization in batch and column systems [J]. Journal of Contaminant Hydrology, 1996, 23(1): 113-132
    [197] Simkins S, Alexander M. Models for mineralization kinetics with the variables of substrate concentration and population [J]. Applied and Environmental Microbiology, 1984, 47(6): 1299-1306
    [198] Schirmer M, Butler B J, Roy J W, et al. A relative-least-squares technique to determine unique Monod kinetic parameters of BTEX compounds using batch experiments [J]. Journal of Contaminant Hydrology, 1999, 37(1-2): 69-86

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700