用户名: 密码: 验证码:
一株丁草胺降解菌及其在废水处理和土壤污染修复中的应用基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
丁草胺是我国使用量最大的几种除草剂之一,由于大量生产和广泛使用,造成了水体和土壤的污染,对生态系统和人体健康构成了威胁。因此对水体和土壤中丁草胺污染净化的研究引起了人们的关注。本文分离到了一株丁草胺降解细菌,明确了该菌对丁草胺和丙草胺的降解特性及机理,对其在丁草胺废水处理和污染土壤修复中的应用进行了研究。主要研究结果如下:
     分离到一株能以丁草胺为唯一碳源和能源生长的细菌BD-1,通过形态特征、生理生化特性、Biolog鉴定结果及16S rDNA序列分析将其鉴定为施氏假单胞菌(Pseudomonas stutzeri)。
     在纯培养的条件下测定了细菌BD-1对丁草胺的降解特性,在接种量0.2(OD_(415))、pH 7.0、30℃条件下,BD-1对丁草胺的降解符合一级动力学特征,1.0、10.0和100.0mg L~(-1)丁草胺的降解半衰期分别0.11 d、0.60 d、0.96 d。细菌BD-1在不同pH和温度下对10 mg L~(-1)丁草胺的降解作用为:pH 7.0>pH 6.0>pH 8.0、30℃>20℃>40℃。BD-1菌降解丁草胺的主要产物为2-氯-2′,6′-二乙基乙酰苯胺和2,6-二乙基乙酰苯胺,主要降解机制有脱氯、脱烷基、水解、羟基化等。鉴于BD-1能以丁草胺为唯一碳源和能源生长,因此丁草胺的降解产物可能被进一步分解生成二氧化碳,为一矿化过程。
     细菌BD-1能以丙草胺为唯一碳源和能源生长,在纯培养条件下BD-1对丙草胺的降解受初始浓度、pH和温度的影响。不同条件下BD-1对丙草胺的降解作用顺序为:100 mg L~(-1)>10 mg L~(-1)>1 mg L~(-1)、pH 7.0>pH 6.0>pH 8.0、30℃>20℃>40℃。丙草胺微生物降的主要解产物为2-氯2′,6′-二乙基乙酰苯胺,BD-1对丙草胺的作用方式主要有脱氯、羟基化、脱烷基、水解等。
     利用细菌BD-1构建的膜生物反应器对污染物的去除受进水pH及进水COD_(Cr)影响较大,营养液添加对污染物的去除影响不大。在进水COD_(Cr)为1500 mg L~(-1)、HRT为24 h、pH值8.0,膜生物反应器对废水中COD_(Cr)的去除率在81%左右;对废水中丁草胺等四种农药的总去除率在95%以上,其中丁草胺和对丙草胺的去除率分别高达99%和97%。膜生物反应器经过一年多的运行,对丁草胺等酰胺类除草剂的混合废水及丁草胺的生产废水中的COD_(Cr)、农药、浊度等污染物有稳定的去除效果。
     采用海藻酸钙凝胶将Pseudomonas stutzeri BD-1进行固定化,研究了固定化BD-1对丁草胺的降解效果。在pH 7.0、30℃条件下,固定化和游离态的BD-1对丁草胺的降解符合一级动力学特征,固定化和游离BD-1对100.0 mg L~(-1)的丁草胺的降解半衰期分别为1.55 h和1.93 h。固定化BD-1在试验pH和温度范围内均对丁草胺均有理想去除效果,与游离的BD-1相比有较宽的pH和温度适应性。在经过五次重复使用之后,固定化BD-1对丁草胺降解明显加快,丁草胺的降解半衰期由第一次的1.56 h缩短至第五次的0.91 h。
     用固定化细菌BD-1构建了固定化微生物反应器,研究了该反应器对水中丁草胺的去除效果。结果表明固定化微生物反应器对丁草胺的去除受pH和流速的影响较大,在pH 7.0、流速小于50 mL min~(-1)时,反应器对5 mg L~(-1)丁草胺的去除率在99%以上。
     建立了一种膜生物反应器-固定化微生物复合系统,在最佳操作条件下该系统对丁草胺生产废水中的COD_(Cr)、BOD_5、丁草胺、浊度和臭的去除率分别为97.68%、98.90%、100%、100%和100%,同时废水中的其他化合物也得到了有效的去除。
     室内模拟条件下2.0 mg kg~(-1)、4.0 mg kg~(-1)和10.0 mg kg~(-1)的丁草胺在土壤中的降解符合一级动力学特征,其降解半衰期分别为6.53 d、8.81 d和11.27 d,随着丁草胺浓度的提高,其在土壤中的降解半衰期明显延长。丁草胺处理初期均会对土壤微生物多样性产生明显的抑制作用。
     接种Pseudomonas stutzeri BD-1能明显加快土壤中丁草胺的降解2.0 mg kg~(-1)、4.0mg kg~(-1)和10.0 mg kg~(-1)的丁草胺在BD-1接种土壤中的降解半衰期分别为0.37 d、0.46 d和0.99 d。与未接种土壤相比,丁草胺的降解半衰期分别缩短了94.33%,94.78%和91.22%。BD-1的加入消除了丁草胺对土壤微生物的抑制,提高了土壤微生物多样性。
     田间条件下接种细菌BD-1能有效促进土壤中丁草胺的降解。丁草胺在各处理中的降解均符合一级动力学特征,其在喷药浓度为1.26 kg a.i.ha~(-1)、2.52 kg a.i.ha~(-1)和6.30kg a.i.ha~(-1)土壤中的降解半衰期分别为11.17 d、11.67 d和15.71 d,接种BD-1后3个处理(1.26 kg a.i.ha~(-1)+BD-1、2.52 kg a.i.ha~(-1)+BD-1和6.30 kg a.i.ha~(-1)+BD-1)丁草胺的降解半衰期为4.95 d、4.41 d和5.99 d,分别是丁草胺单独处理时的44.32%,37.79%和38.37%。丁草胺能降低土壤微生物的多样性,而BD-1的加入则能恢复并提高土壤微生物多样性。结果表明接种细菌BD-1进行生物强化是丁草胺污染土壤修复的一种有效方法。
Butachlor is one of the most widely used herbicides in China. As a result of massproduction and extensive use, it has caused considerable pollution to the water and soil andposes a threat to ecosystem and human health. Therefore, there is an increasing concern onthe cleanup of water and soil contaminated by butachlor. One bacterial strain capable ofutilizing butachlor as sole carbon and energy source was isolated. The biodegradationcharacteristics and mechanisms of butachlor and pretilachlor were investigated, and theapplication of the bacterium strain in butachlor wastewater treatment and soil pollutionremediation were also investigated. The results are summarized as follows:
     A bacterial strain BD-1 capable of utilizing butachlor as sole carbon and energysources was isolated from the sludge of a membrane bioreactor after successive enrichmentcultures. BD-1 was identified as Pseudomonas stutzeri based on morphology, physiologicaland biochemical characteristics, Biolog GN2, and the results of the 16S rDNA homologuesequence analysis.
     The degradation characteristics of butachlor by bacterial strain BD-1 was investigatedin pure cultures. The degradation of butachlor by BD-1 was fitted to the fisr-order function.Degradation half-lives of butachlor at concentration of 1.0、10.0 and 100.0 mg L~(-1) by BD-1were measured to be 0.11 d, 0.60 d and 0.96 d, under conditions of pH 7.0, 25℃andbiomass of 0.2 (OD_(415)). The degradation rates of butachlor by bacterial strain BD-1 wereaffected by pH and temperature following an order of pH 7.0>pH 6.0>pH8.0, and of 30℃>20℃>40℃, respectively. Seven metabolites were identified by GC/MS based onmass spectra data and fragmentation patterns. The main biodegradation products ofbutachlor were 2-chloro-2',6'-diethylacetanilide and 2,6-diethylacetanilide. The metabolismof butachlor by strain BD-1 involved dechlorination, dealkylation, hydrolyzation andhydroxylation. According to the capability of the bacterial strain BD-1 to utilize butachloras sole carbon and energy sources, it is reasonable to propose that butachlor is mineralizedby the BD-1.
     Bacterial strain BD-1 was able to use pretilachlor as sole carbon and energy source.The ability of BD-1 to degrade pretilachlor in pure cultures was affected by initialconcentration, pH and temperature. The degradation half-lives of pretilachlor weremeasured to be 0.10 d, 0.23 d and 0.46 d at concentrations of 1, 10 and 100 mg L~(-1),respectively. The optimal conditions for biodegradation of pretilachlor were pH 7.0 and 30 ℃. Five metabolites were detected and identified by GC/MS. 2-chloro-2',6'-diethylacetanilidewas the major biodegradation products of pretilachlor by BD-1. The mainmetabolisms of pretilachlor by BD-1 included dechlorination, dealkylation, hydrolyzationand hydroxylation.
     One membrane bioreactor (MBR) was constructed with the bacterial strain BD-1. TheMBR was used for the treatment of pesticide wastewater containing butachlor and otherchloroacetanilide herbicides. The results showed that MBR had high removal efficiency forCOD_(Cr), pesticide, turbidity and odor in the pesticide wastewater. The pollutant removalefficiency of MBR was significantly affected by influent pH and COD_(Cr). The optimaloperating conditions were pH 8.0 and 1500 mg L~(-1) of influent COD_(Cr). The addition ofnutrient salts had little effects on the removal efficiency of MBR. About 81%, 95 %, 99 %and 100 % of COD_(Cr), total pesticide, butachlor and turbidity in pesticide wastewater wereremoved under the optimal operating conditions. Continuous operation of MBR for morethan 12 months showed stable performance for butachlor wastewater treatment.
     Pseudomonas stutzeri BD-1 was immobilized with calcium-alginate. Degradation ofbutachlor by immobilized BD-1 proved to be more efficient than free BD-1. Thedegradation half lives of butachlor by the immobilized and free BD-1 at concentrations100.0 mg L~(-1) were measured to be 1.55 h and 1.93 h, respectively, under conditions of pH7.0 and 30℃. Immobilized BD-1 showed ideal performance for butachlor removing in testpH and temperature. Compared to the free BD-1, immobilized BD-1 could withstand a widerange of pH and temperature change. Butachlor degradation using immobilized BD-1 wasreused for five times, and enhancing degradation rate was observed. The degradationhalf-life of butachlor was shorten from 1.91 h to 0.91 h after 5th reuse.
     Immobilized microorganism reactor was set up to determine the feasibility of usingimmobilized strain BD-1 to remove of butachlor from simulated wastewater. The butachlorremoval efficiency of the immobilized microorganism reactor was significantly affected bypH and flow rate. A butachlor removal efficiency of greater than 99 % was achieved underthe condition of pH 7.0 and flow rate of below 50 mL min~(-1).
     A membrane bioreactor-immobilized microorganism combined system was constructedby connecting immobilized column to the effluent port of MBR and its use in butachlorwastewater treatment was investigated. At the optimal operating conditions, the COD_(Cr),BOD_5, butachlor, turbidity and odor removal efficiency of this system were 97.68 %, 98.90% 100 %, 100 %, 100 %, respectively, Other chemicals in the butachlor wastewater were also effectively removed.
     Degradation of butachlor at levels of 2.0, 4.0, and 10.0 mg kg~(-1) in laboratory soil wereall fitted to the first-order kinetics, and the corresponding degradation half-lives weredetermined to be 6.53 d, 8.81 d, and 11.27 d, respectively. The degradation half-lives ofbutachlor in soil were extended significantly with the increasing concentration of butachlor.The soil microbial diversity was inhibited significantly 1d after butachlor treatment. Theinhibitory effects were enhanced with the increasing concentration of butachlor.
     The degradation of butachlor in laboratory soil was significantly enhanced by theinoculation of bacterial strain BD-1. Degradation of butachlor in strain BD-1 inoculatedtreatments (2.0 mg kg~(-1)+BD-1, 4.0 mg kg~(-1)+BD-1, and 10.0 mg kg~(-1) mg kg~(-1)+BD-1) werefitted to fist-order kinetics and the corresponding degradation half-lives were measured tobe 6.53 d, 8.81 d, and 11.27 d, respectively. Compared to the un-inoculated controls, thedegradation half-lives of butachlor were shorted by 94.33 %, 94.78 % and 91.22 %,respectively. The addition of bacterial strain BD-1 could eliminate the inhibitive effects ofbutachlor on soil microbes and enhance soil microbial diversity.
     Under the field conditions, bacterial strain BD-1 could effectively enhance thedegradation of butachlor in soil. Degradation of butachlor in all treatments was fitted to thefirst-order kinetics. The degradation half-lives of butachlor in control soil and strain BD-1inoculated soil were 11.17 d, 4.95 d at 1.26 kg a.i. ha~(-1), 11.67 d, 4.95 d at 2.52 kg a.i. ha~(-1)and 15.71 d, 5.99 d at 6.30 kg a.i. ha~(-1), respectively. Biolog analysis showed that butachlorcould reduce the microbial diversity in the soil during initial time of experiment, while theaddition of BD-1 could restore and enhance the soil microbial diversity. The resultsindicated that bacterial strain BD-1 inoculation is a promising method for the remediation ofbutachlor contaminated soil.
引文
卜宁,王丽文,宋海东.除草剂丁草胺对蟾蜍红细胞微核及核异常的影响[J].四川动物,2005,24(3):294-296,293.
    布坎南,R.E.,吉本斯,N.E.伯杰细菌鉴定手册[M].北京:科学出版社,1984.
    陈传红,刘振乾,傅凤,项秀丽,秦永生.丁草胺对杜氏盐藻生理生化的影响[J].生态科学,2007,26(1):18-21.
    陈东海,操庆国.中国农药废水处理技术现状[J].北方环境,2004,29(6):43-46.
    陈林,毕永红,胡征宇.葛仙米对丁草胺胁迫的响应[J].武汉大学学报(理学版),2007,53(2):219-223.
    陈明,陈少华,许宜平,刘俊新,王子健.厌氧滤池-膜生物反应器处理垃圾渗滤液不同工艺段中有机氯农药残留的分析[J].环境化学,2004,23(4):451-454.
    陈中云,闵航,吴伟祥,陈美慈,张夫道,赵兼强.农药污染对水稻田土壤反硝化细菌种群数量及其活性的影响[J].应用生态学报,2003,14(10):1765-1769.
    陈忠孝,樊德方.丁草胺在土壤中渗漏、残留与降解的动态研究[J].环境化学,1988,7(2):30-36.
    程池,杨梅,李金霞,姚粟,胡海蓉.Biolog微生物自动分析系统一细菌鉴定操作规程的研究[J].食品与发酵工业,2006,32(5):50-54.
    程迪.化学农药工业废水处理技术[J].环境保护,1993,(1):14-17.
    程慕如,沈晓霞.酰胺类除草剂除草活性研究[J].天津农业科学,2000,6(2):17-19.
    崔俊涛,张伟,曹天舒.阿特拉津降解融合子的原生质体制备及其筛选[J].农业环境科学学报,2008,27(6):2269-2273.
    单敏,虞云龙,方华,王晓,楚小强,冯波.丁草胺对土壤微生物数量和酶活性的影响[J].农药学学报,2005,7(4):383-386.
    樊德方.农药残留分析与检测[M].上海:上海科学技术出版社,1982.
    耿宝荣,姚丹,张秋金,黄浩.敌敌畏和丁草胺对沼蛙蝌蚪的毒性影响[J].中国环境科学,2005a,25(增刊):118-121.
    耿宝荣,姚丹,薛清清.杀虫剂敌敌畏和除草剂丁草胺对斑腿树蛙蝌蚪的遗传毒性[J].动物学报,2005b,5 1(2):447-454.
    何泽超,章杰,宋昊,梁川.固定化细胞处理含酚废水[J].四川大学学报(工程科学版),2005,37(6):60-64.
    胡庚东,陈家长,吴伟,瞿建宏,范立民,吴进才.除草剂丁草胺对黄鳝的遗传毒性[J].湛江海洋大学学报,2005,25(1).
    胡江,代先祝,李顺鹏.阿特拉津及其降解菌的使用对土壤微生物群落的影响[J].应用生态学报,2005,16(8):1518-1522.
    胡笑行.我国农药工业的现状与发展方向[J].农药,1998,37(6):7-10.
    花日茂,李湘琼,李学德,岳永德,樊德方.丁草胺在不同类型水中的光化学降解[J].应用生态学报,1999a,10(1):57-59.
    花日茂,岳永德,潘学冬,李学德,樊德方.腐殖质对丁草胺在水中的光解效应研究[J].安徽农业大学学报,1999b,26(1):63-67.
    花日茂,岳永德,戚传勇,汤锋,李湘琼,樊德方.九种农药对丁草胺在水溶液中光猝灭降解作用[J].环境科学学报,2000,20(3):360-364.
    黄士忠,李治祥,陈国光,俊亭.国外农药三废处理技术的进展[J].农业环境与发展,1991,(1):40-43.
    黄霞,曹斌,文湘华,魏春海.膜-生物反应器在我国的研究与应用新进展[J].环境科学学报,2008,28(3):416-432.
    黄欣,韩农.六价铬对土壤中丁草胺降解作用的影响[J].农药,1989,28(3):25,42.
    黄欣.Cu,Zn对土壤中丁草胺降解作用的影响[J].农村生态环境,1990,4:52-54.
    黄欣,陆贻通.镉对土壤丁草胺降解作用的影响[J].环境污染与防治,1991,13(1):13-14.5.
    李超敏,韩梅,张良,陈锡时.细胞固定化技术-海藻酸钠包埋法的研究进展[J].安徽农业科学,2006,34(7):1281-1282,1284.
    李川,古国榜,柳松.丁草胺高效真菌的分离及性能研究[J].农业环境科学学报,2004,23(3):611-614.
    李克斌,刘广深,刘维屏.酰胺类除草剂在土壤上吸附的位置能量分布分析[J].土壤学报,2003,40(4):574-580.
    李淑彬,钟英长.固定化假单孢菌降解甲胺磷的研究[J].应用与环境生物学报,1999,5(4):422-426.
    李顺鹏,蒋建东.农药污染土壤的微生物修复研究进展[J].土壤,2004,36(6):577-583.
    李喜荣,杨春平.有机磷农药废水处理技术进展[J].环境科学与管理,2008,33(9):84-87.
    刘长令.世界农药大全-除草剂卷[M].北京:化学工业出版社,2002.
    刘嫦娥,段昌群,王旭,杨媛,刘飞,朱辉清,陈运锋,王汉明.丁草胺和乙草胺对蚯蚓CAT和SOD活性的影响[J].环境化学,2008,27(6):756-761.
    刘惠君,刘维屏.酰胺类除草剂与脲酶的相互作用机制研究[J].浙江大学学报,农业与生命科学版,2004,30(2):210-214.
    刘惠君,詹秀明,刘维屏.四种酰胺类除草剂对土壤酶活性的影响[J].中国环境科学,2005,25(5):611-614.
    刘维屏,季瑾.农药在土壤-水环境归宿的主要支配因素-吸附和脱附[J].中国环境科学,1996,16(1):25-30.
    刘维屏,许惠庆.丁草胺在水稻田植株-水体-表土系统的迁移、降解规律[J].浙江大学学报(自然科学版),1990,24(1):82-92.
    刘维屏.农药环境化学[M].北京:化学工业出版社,2006.
    刘玉焕,钟英长.甲胺磷降解真菌的研究[J].中国环境科学,1999,19(2):172-175.
    刘忠珍,何艳,吴愉萍,汪海珍,徐建明.土壤中丁草胺的吸附动力学[J].中国环境科学,2007,27(4):493-497.
    卢桂宁,陶雪琴,党志,易筱药.农药降解菌及其基因工程研究进展[J].矿物岩石地球化学通报,2005,24(3):258-263.
    陆鹏,洪源范,洪青,蒋新,李川页鹏.遗传稳定型六六六、甲基对硫磷降解基因工程菌的构建及特性研究[J].环境科学,2008,29(7):1973-1976.
    马文漪,翁晓艳,刘方.微生物降解除草剂氯黄隆、甲黄隆和丁草胺的毒性效应(Ames试验)[J].环境化学,1991,3(10):60-63.
    农业部农药鉴定所.新编农药手册[M].北京:农业出版社,1989.
    彭志源.中国农药大典[M].北京,2008.
    沈耀良,黄勇,赵丹,宋吟玲,李勇.固定化微生物污水处理技术[M].北京:化学工业出版社.2002.
    沈耀良,王宝贞.废水生物处理新技术.理论与应用[M].北京:中国环境科学出版社,2006.
    孙铁珩,蒋侃,孙丽娜,王书文,李海波.污水处理和回用技术的应用:中水回用在沈阳的发展前景和存在的问题[J].应用生态学报,2006,17(12):2441-2444.
    孙铁珩,宋雪英.中国农业环境问题与对策[J].农业现代化研究,2008,29(6):646-648.
    谭文捷,李发生,杜晓明,谷庆宝,何绪丈.解淀粉芽孢杆菌对水中丁草胺的降解及影响[J].环境科学研究,2005,18(3):71-74.
    王新,李培军,巩宗强,李彬,鞠京丽,何秀良,台培东.固定化微生物降解土壤中菲和芘的研究[J].应用生态学报,2001,12(4):636-638.
    王新,李培军,巩宗强,张海秉.固定化细胞技术的研究与进展[J].农业环境保护,2001,20(2):120-122.
    王秀红,沈健英,陆贻通.稻田除草剂对固氮蓝藻的毒性研究[J].上海交通大学学报(农业科学版),2004,22(4):4400-405.
    王一茹,刘长武,牛成玉,蔡罗保,李治祥,朱昌寿,贺水济,王琴孙.丁草胺在水体中的光解和稻田中归趋的研究[J].环境科学学报,1996,16(4):475-481.
    王永杰,李川页鹏,沈标,赵勇;.有机磷农药降解菌的紫外诱变育种[J].应用与环境生物学报,1999a,5(6):635-637.
    王永杰,李顺鹏.原生质体转化构建有机磷农药降解工程菌[J].应用与环境生物学报,1999b,5(增刊):162-165.
    吴晓霞,吴进才,金银根,董波,王荣生.除草剂对水生植物的生理生态效应[J].生态学报,2004,24(9):2037-2042.
    吴新杰,岳永德,花日茂,汤锋.丁草胺高效降解细菌的分离[J].应用与环境生物学报,2000,6(6):593-596.
    肖维林,董瑞斌.农药废水处理方法研究进展[J].农业环境科学学报,2007,26(增刊):256-260.
    许育新,李晓慧,滕齐辉,陈义,吴春艳,李顺鹏.氯氰菊酯污染土壤的微生物修复及对土著微生物的影响[J].土壤学报,2008,45(4):693-698.
    杨桂华,卜宁,冯甲棣,李丽妍,王丽文,王勇.除草剂丁草胺对蟾蜍心肌收缩力和心肌酶谱的影响[J].中国医科大学学报,2007,36(6):644-646.
    杨永华,姚健,华晓梅.农药污染对土壤微生物群落功能多样性的影响[J].微生物学杂志,2000,20(2):23-25,47.
    姚斌,汪海珍,徐建民,张超兰.除草剂对水稻土微生物的影响[J].环境科学学报,2004,24(2):349-354.
    叶常明,雷志芳,王杏君.丁草胺在土壤中的吸附及环境物质的影响[J].环境化学,2003,22(1):14-18.
    叶常明,郑和辉,王杏君,雷志芳.作物植株残体还田土壤对除草剂的截留作用[J].环境科学学报,2001,21(3):354-357.
    叶央芳,闵航,杜宇峰.一个硫酸盐还原细菌富集物对丁草胺的厌氧降解[J].环境科学学报,2000,20(3):376-378.
    叶央芳,闵航.代谢指纹评估苯噻草胺对水稻土微生物群落的短期影响[J].土壤学报,2006,43(2):288-294.
    余柳青,徐福强,俞圣康,李扬汉,应存山.丁草胺和杀草丹对稻田土壤放线菌及其白色链霉菌的影响[J].中国水稻科学,1997,30(6):81-83.
    余向阳,王冬兰,徐敦明,刘贤进,张兴.酰胺类除草剂与四种杀虫剂对蚯蚓的联合毒性[J].中国环境科学,2006,26(增刊):117-120.
    俞康宁,戚澄九,唐柯.除草剂丁草胺在稻田环境中的消解和残留动态[J].农药,1988,27(6):28-29.
    虞云龙,樊德方.农药微生物降解的研究现状与发展策略[J].环境科学进展,1996,4(3):28-36.
    张丽青,闫艳春,姜红霞,张庆乐,唐心强.高酯酶活性工程菌的构建及其对有机磷农药的降解[J].工业微生物,2008,38(3):48-50,55.
    张一宾,张怿.世界农药新进展[M].北京:化学工业出版社,2007.
    张为农,三个大吨位除草剂品种市场行情分析.农药市场信息,(21):24.
    赵宇华,梅其志,陈美慈,闵航.丁草胺对水稻土甲烷释放和厌氧细菌的影响[J].微生物学报,1997,37(6):477-479.
    郑和辉,叶常明.甲草胺和丁草胺等除草剂在多介质环境中环境行为综述[J].环境科学进展,1999,7(3):1-10.
    郑和辉,叶常明.乙草胺和丁草胺的水解及其动力学[J].环境化学,2001a,20(2):168-171.
    郑和辉,叶常明.乙草胺和丁草胺在土壤中的移动性[J].环境科学,2001b,22(5):117-121.
    郑和辉,叶常明.乙草胺和丁草胺在土壤中的紫外光化学降解[J].环境化学,2002,21(2):117-122.
    郑重.农药的微生物降解[J].环境科学,1990,11(2):68-72.
    周建平,张大弟.丁草胺在土壤中的残留降解及对蔬菜生长的影响[J].上海环境科学, 1991,10(10):34-36.
    周军英,单正军,石利利,朱忠林.农药行业污染物排放国家标准体系框架与制订进展[J].现代农药,2005,4(1):1-5,13.
    朱伟.农药工业三废处理技术的现状与进展[J].化工环保,1992,12(6):336-340.
    Abegglen, C., Ospelt, M., Siegrist, H. Biological nutrient removal in a small-scale MBR treating household wastewater[J]. Water Research, 2008, 42(1-2): 338-346.
    Alexander, M. Biodegradation and Bioremediation[M]. San Diego: Academica press, 1999.
    Alexander, M. Biodegradation of chemical of environmental concern[J]. Science, 1981, 211(4478): 132-138.
    Ateeq, B., Abul Farah, M., Niamat Ali, M., Ahmad, W. Clastogenicity of pentachlorophenol,2,4-D and butachlor evaluated by Allium root tip test[J]. Mutation Research-genetic Toxicology and Environmental Mutagenesis, 2002a, 514(1-2): 105-113.
    Ateeq, B., Abul farah, M., Niamat Ali, M., Ahmad, W. Induction of micronuclei and erythrocyte alterations in the catfish Clarias batrachus by 2,4-dichlorophenoxyacetic acid and butachlor[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 2002b, 518(2): 135-144.
    Ateeq, B., Abul Farah, M., Ahmad, W. Detection of DNA damage by alkaline single cell gel electrophoresis in 2,4-dichlorophenoxyacetic-acid and butachlor-exposed erythrocytes of Clarias batrachus[J]. Ecotoxicology and Environmental Safety, 2005, 62(3):348-354.
    Ateeq, B., Farah, M. A., Ahmad, W. Evidence of apoptotic effects of 2,4-D and butachlor on walking catfish, Clarias batrachus, by transmission electron microscopy and DNA degradation studies[J]. Life Sciences, 2006, 78(9): 977-986.
    Audus, L. J. The biological detoxication of hormone herbicides in soil[J]. Plant and Soil,1951,3(2): 170-192.
    Awasthi, N., Ahuja, R., Kumar, A. Factors influencing the degradation of soil-applied endosulfan isomers[J]. Soil Biology and Biochemistry, 2000, 32(11-12): 1697-1705.
    Beestman, G. B., Deming, J. M. Dissipation of Acetanilide herbicides from soils[J].Agronomy Journal, 1974, 66(2): 308-311.
    Benitez, J., Rodriguez, A., Malaver, R. Stabilization and dewatering of wastewater using hollow fiber membranes[J]. Water Research, 1995, 29(10): 2281-2286.
    Bickerstaff, G. F., Immobilization of enzymes and cells, Methods in Biotechnology vol. 1,Totowa, Humana Press, 1997.
    Boopathy, R. Factors limiting bioremediation technologies[J]. Bioresource Technology,2000, 74 (1): 63-67.
    Borgheiy, M., Hasani, A., Dinkoo, H. Biological treatment of butachlor by activated sludge method[J]. Journal of Biotechnology, 2005, 118: S179-S179.
    Breitung, J., Bruns-Nagel, D., Steinbach, K., Kaminski, L., Gemsa, D., von L(?)w, E.Bioremediation of 2,4,6-trinitrotoluene-contaminated soils by two different aerated compost systems[J]. Applied Microbiology and Biotechnology, 1996, 44(6): 795-800.
    Brian, J. R., Fermor, T. R., Semple, K. T. Induction of PAH catabolism in mushroom compost and its use in the biodegradation of soil-associated phenanthrene[J].Environmental Pollution, 2002, 118(1): 65-73.
    Brik, M., Schoeberl, P., Chamam, B., Braun, R., Fuchs, W. Advanced treatment of textile wastewater towards reuse using a membrane bioreactor[J]. Process Biochemistry, 2006,41(8): 1751-1757.
    Burgess, J. E., Quarmby, J., Stephenson, T. Micronutrient supplements for optimisation of the treatment of industrial wastewater using activated sludge[J]. Water Research, 1999a,33(18): 3707-3714.
    Burgess, J. E., Quarmby, J., Stephenson, T. Role of micronutrients in activated sludge-based biotreatment of industrial effluents[J]. Biotechnology Advances, 1999b, 17(1): 49-70.
    Carlson, D. L., Than, K. D., Roberts, A. L. Acid- and Base-Catalyzed Hydrolysis of Chloroacetamide Herbicides[J]. Journal of Agricultural and Food Chemistry, 2006,54(13): 4740-4750.
    Cassidy, M. B., Lee, H., Trevors, J. T. Environmental applications of immobilized microbial cells: A review[J]. Journal of Industrial Microbiology & Biotechnology, 1996, 16(2):79-101.
    Cetin, F. D., S(?)r(?)c(?), G. Effects of temperature and ph on the physical properties of activated sludge flocs[J]. International Journal of Environmental Studies, 1989, 34(3): 189-199.
    Chakraborty, S. K., Bhattacharyya, A. Degradation of butachlor by two soil fungi[J].Chemosphere, 1991, 23(1): 99-105.
    Chen, D., Chen, J., Zhong, W., Cheng, Z. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1[J]. Bioresource Technology, 2008,99(11): 4702-4708.
    Chen, D., Chen, J., Zhong, W., Cheng, Z. Degradation of methyl tert-butyl ether by gel immobilized Methylibium petroleiphilum PM1[J]. Bioresource Technology, 2008,99(11): 4702-4708.
    Chen, W. C, Yen, J. H., Chang, C. S., Wang, Y. S. Effects of herbicide butachlor on soil microorganisms and on nitrogen-fixing abilities in paddy soil[J]. Ecotoxicology and Environmental Safety, 2009, 72(1): 120-7.
    Chen, Y. L., Chen, C. C. Photodecomposition of a Herbicide, Butachlor[J]. Journal of Pesticide Science, 1978, 3(2): 143-148.
    Chen, Y. L., Wu, T. C. Degradation of Herbicide Butachlor by Soil Microbes[J]. Journal of Pesticide Science, 1978, 3(4): 411-417.
    Chen, Y. L., Chen, J. S. Degradation and Dissipation of Herbicide Butachlor in Paddy Fields[J]. Journal of Pesticide Science, 1979, 4: 431-438.
    Chen, Y. L., Liu, F. P., Chen, L. C, Wang, Y. S. Effects of butachlor on nitrogen transformation of fertilizers and soil microbes in water-logged soil[J]. Journal of Pesticide Science, 1981, 6(1-7).
    Chen, Y. L., Lo, C. C, Wang, Y. S. Photodecomposition of the Herbicide Butachlor in Aqueous Solution[J]. Journal of Pesticide Science, 1982, 7(1): 41-45.
    Chen, Z., Juneau, P., Qiu, B. Effects of three pesticides on the growth, photosynthesis and photoinhibition of the edible cyanobacterium Ge-Xian-Mi (Nostoc)[J]. Aquatic Toxicology, 2007, 81(3): 256-265.
    Chiang, H. C, Yen, J. H., Wang, Y. S. Sorption of Herbicides Butachlor, Thiobencarb, and Chlomethoxyfen in Soils[J]. Bulletin of Environmental Contamination and Toxicology,1997, 58(5): 758-763.
    Chiemchaisri, C, Yamamoto, K. Performance of membrane separation bioreactor at various temperatures for domestic wastewater treatment[J]. Journal of Membrane Science,1994,87(1-2): 119-129.
    Chiang, H. C, Duh, J. R., Wang, Y. S. Butachlor, Thiobencarb, and Chlomethoxyfen Movement in Subtropical Soils[J]. Bulletin of Environmental Contamination and Toxicology, 2001,66(1): 1-8.
    Cicek, N. A review of membrane bioreactors and their potential application in the treatment of agricultural wastewater[J]. Canadian Biosystems Engineering, 2003, 45(6): 37-49.
    Cope, O. B. Interactions between pesticides and wildlife[J]. Annual Review of Entomology,1971, 16:325-364.
    Das, A. C, Debnath, A. Effect of systemic herbicides on N2-fixing and phosphate solubilizing microorganisms in relation to availability of nitrogen and phosphorus in paddy soils of West Bengal[J]. Chemosphere, 2006, 65(6): 1082-1086.
    Debnath, A., Das, A. C, Mukherjee, D. Persistence and Effect of Butachlor and Basalin on the Activities of Phosphate Solubilizing Microorganisms in Wetland Rice Soil[J].Bulletin of Environmental Contamination and Toxicology, 2002, 68(5): 766-770.
    Diez, M. C, Castillo, G., Aguilar, L., Vidal, G, Mora, M. L. Operational factors and nutrient effects on activated sludge treatment of Pinus radiata kraft mill wastewater[J].Bioresource Technology, 2002, 83(2): 131-138.
    Duquenne, P., Parekh, N. R., Catroux, G, Fournier, J.-C. Effect of inoculant density, formulation, dispersion and soil nutrient amendment on the removal of carbofuran residues from contaminated soil[J]. Soil Biology and Biochemistry, 1996, 28(12):1805-1811.
    El-Fantroussi, S., Agathos, S. N. Is bioaugmentation a feasible strategy for pollutant removal and site remediation?[J]. Current Opinion in Microbiology, 2005, 8(3):268-275.
    Fang, H., Yu, Y. L., Wang, X. G, Chu, X. Q., Yang, X. E. Persistence of the herbicide butachlor in soil after repeated applications and its effects on soil microbial functional diversity[J]. Journal of Environmental Science and Health Part B-Pesticides Food Contaminants and Agricultural Wastes, 2009, 44(2): 123-129.
    Farombi, E. O., Ajimoko, Y. R., Adelowo, O. A. Effect of butachlor on antioxidant enzyme status and lipid peroxidation in fresh water African catfish, {Clarias gariepinus)[J]. Int J Environ Res Public Health, 2008, 5(5): 423-7.
    Feng, Y, Racke, K. D., Bollag, J. M. Use of immobilized bacteria to treat industrial wastewater containing a chlorinated pyridinol[J]. Applied Microbiology and Biotechnology, 1997, 47(1): 73-77.
    Ferguson, J. F., Pietari, J. M. H. Anaerobic transformations and bioremediation of chlorinated solvents[J]. Environmental Pollution, 2000, 107(2): 209-215.
    Fredtickson, J. K., Bolton, H., Brockmon, F. J. In-situ and on-site bioreclamation[J].Environmental Science & Technology, 1993, 27(9): 1711-1716.
    Freedman, D. L., Payauys, A. M., Karanfil, T. The effect of nutrient deficiency on removal of organic solvents form textile manufacturing wastewater during activated sludge treatment[J]. Environmental Technology, 2005, 26(2): 179-188.
    Garland, J. L., Mills, A. L. Classification and Characterization of Heterotrophic Microbial Communities on the Basis of Patterns of Community-Level Sole-Carbon-Source Utilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351-2359.
    Gerhardt, K. E., Huang, X. D., Glick, B. R., Greenberg, B. M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges[J]. Plant Science, 2009, 176(1): 20-30.
    Gonzalez, S., Muller, J., Petrovic, M., Barcelo, D., Knepper, T. P. Biodegradation studies of selected priority acidic pesticides and diclofenac in different bioreactors[J].Environmental Pollution, 2006, 144(3): 926-932.
    Goux, S., Shapir, N., Fantroussi, S. E., Lelong, S., Agathos, S. N., Pussemier, L. Long-Term Maintenance of Rapid Atrazine Degradation in Soils Inoculated with Atrazine Degraders[J]. Water, Air, & Soil Pollution: Focus, 2003, 3(3): 131-142.
    Grau, P. Criteria for nutrient-balanced operation of activated sludge process[J]. Water Science and Technology, 1991, 24(3-4): 251-258.
    Guth, J. A. Experimental approaches to studying the fate of pesticides in soil. In: D.H.Hutson and T.R. Roberts, Editors, Progress in Pesticide Biochemistry Vol. 1, New York:John Wiley & Sons, 1981.
    Ha, J., Engler, C. R., Wild, J. R. Biodegradation of coumaphos, chlorferon, and diethylthiophosphate using bacteria immobilized in Ca-alginate gel beads[J].Bioresource Technology, 2009, 100(3): 1138-1142.
    Hill, A. B., Jefferies, P. R., Quistad, G. B., Casida, J. E. Dialkylquinoneimine metabolites of chloroacetanilide herbicides induce sister chromatid exchanges in cultured human lymphocytes[J]. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 1997,395(2-3): 159-171.
    Hoshino, K., Watanabe, R., Takano, M. Biodegradation of PCP in soil by bioaugmentation method with white-rot fungus Coriolus versicolor[J]. Journal of Biotechnology, 2008,136(Supplement 1): S704-S704.
    Hsu, K. Y., Lin, H. J., Lin, J. K., Kuo, W. S., Ou, Y. H. Mutagenicity study of butachlor and its metabolites using Salmonella typhimurium[J]. J Microbiol Immunol Infect, 2005,38(6): 409-416.
    Iwamoto, T., Nasu, M. Current bioremediation practice and perspective[J]. Journal of Bioscience and Bioengineering, 2001, 92(1): 1-8.
    Jefferson, B., Burgess, J. E., Pichon, A., Harkness, J., Judd, S. J. Nutrient addition to enhance biological treatment of greywater[J]. Water Research, 2001, 35(11):2702-2710.
    Jena, P., Adhya, T., Rao, V. Influence of carbaryl on nitrogenase activity and combination of butachlor and carbofuran on nitrogen-fixing microorganisms in paddy soils[J].Pesticide Science, 1987, 19(3): 179-184.
    Jenkins, D. Toward a comprehensive model of activated sludge bulking and foaming[J]. Water Science and Technology, 1992, 26(5): 215-230.
    Johnson, R. M., Sims, J. T. Influence of surface and subsoil properties on herbicide sorption by Atlantic coastal plain soils[J]. Soil Science, 1993, 155(3): 339-348.
    J(?)rgensen, K. S., Puustinen, J., Suortti, A. M. Bioremediation of petroleum hydrocarbon-contaminated soil by composting in biopiles[J]. Environmental Pollution,2000, 107(2): 245-254.
    Karpouzas, D. G, Walker, A. Factors influencing the ability of Pseudomonas putida epI to degrade ethoprophos in soil[J]. Soil Biology and Biochemistry, 2000, 32(11-12):1753-1762.
    Khenifi, A., Zohra, B., Kahina, B., Houari, H., Zoubir, D. Removal of 2,4-DCP from wastewater by CTAB/bentonite using one-step and two-step methods: A comparative study[J]. Chemical Engineering Journal, 2009, 146(3): 345-354.
    Kim, M. K., Singleton, I., Yin, C. R., Quan, Z. X., Lee, ML, Lee, S. T. Influence of phenol on the biodegradation of pyridine by freely suspended and immobilized Pseudomonas putida MK1[J]. Letters In Applied Microbiology, 2006, 42(5): 495-500.
    Knaebel, D. B., Stormo, K. E., Crawford, R. L. Immobilization of Bacteria in Macro- and Microparticles. Bioremediation Protocols[M]. Totowa, Humana Press, 1997.
    Krishna, K. R., Philip, L. Biodegradation of lindane, methyl parathion and carbofuran by various enriched bacterial isolates[J]. Journal of Environmental Science and Health Part B, 2008, 43(2): 157-71.
    Kumar, A. G, Sekaran, G, Swarnalatha, S., Rao, B. P. Immobilized reactor for rapid destruction of recalcitrant organics and inorganics in tannery wastewater [J]. Journal of Environmental Sciences, 2005, 17(4): 681-685.
    Lee, J. K. A Study on Degradation of Butachlor by a Soil Fungus, Chaetomium globosum Part 1: Identification of major metabolites by GLC-MS[J]. Hanguk Nonhwa Hakhoe Chi, 1978,21(1): 1-10.
    Lee, H. S., Yoon, T. I., Kim, C. G. Comment on "Comparison of the filtration characteristics between attached and suspended microorganisms in submerged membrane bioreactor"[J]. Water Research, 2002, 36(19): 4938-4939.
    Leenen, E. J. T. M., Dos Santos, V. A. P., Grolle, K. C. F., Tramper, J., Wijffels, R.Characteristics of and selection criteria for support materials for cell immobilization in wastewater treatment[J]. Water Research, 1996, 30(12): 2985-2996.
    Lin, Y. J., Lin, C, Yeh, K. J., Lee, A. Photodegradation of the Herbicides Butachlor and Ronstar Using Natural Sunlight and Diethylamine[J]. Bulletin of Environmental Contamination and Toxicology, 2000, 64(6): 780-785.
    Lima, D., Viana, P., Andr, S., Chelinho, S., Costa, C, Ribeiro, R., Sousa, J. P., Fialho, A. M,Viegas, C. A. Evaluating a bioremediation tool for atrazine contaminated soils in open soil microcosms: The effectiveness of bioaugmentation and biostimulation approaches[J]. Chemosphere, 2009, 74(2): 187-192.
    Liu, W., Gan, J., Papiernik, S. K., Yates, S. R. Structural Influences in Relative Sorptivity of Chloroacetanilide Herbicides on Soil[J]. Journal of Agricultural and Food Chemistry,2000, 48: 4320-4325.
    Liu, Z., He, Y., Xu, J., Huang, P., Jilani, G. The ratio of clay content to total organic carbon content is a useful parameter to predict adsorption of the herbicide butachlor in soils[J].Environmental Pollution, 2008, 152(1): 163-171.
    Liu, W., Luo, Y, Teng, Y, Li, Z., Christie, P. Prepared bed bioremediation of oily sludge in an oilfield in northern China[J]. Journal of Hazardous Materials, 2009, 161(1):479-484.
    Macdonald, J. A., Rittmann, B. E. Performance standards for in situ bioremediation[J].Environmental Science & Technology, 1993, 27(10): 1974-1979.
    Magurran. Ecological diversity and its measurement[M]. Princeton: Princeton University Press, 1988.
    Mahmoodi, N. M., Arami, M.. Limaee, N. Y, Gharanjig, K., Nourmohammadian, F.Nanophotocatalysis using immobilized titanium dioxide nanoparticle: Degradation and mineralization of water containing organic pollutant: Case study of Butachlor[J].Materials Research Bulletin, 2007, 42(5): 797-806.
    Marinucci, A. C, Bartha, R. Biodegradation of 1,2,3- and 1,2,4-Trichlorobenzene in Soil and in Liquid Enrichment Culture[J]. Applied and Environmental Microbiology, 1979,38(5): 811-817.
    Marrot, B., Barrios-Martinez, A., Moulin, P., Roche, N. Industrial wastewater treatment in a membrane bioreactor: a review[J]. Environmental Progress, 2004, 23(1): 59-68.
    Meagher, R. B. Phytoremediation of toxic elemental and organic pollutants[J]. Current Opinion in Plant Biology, 2000, 3(2): 153-162.
    Menke, B., Rehm, H.-J. Degradation of mixtures of monochlorophenols and phenol as substrates for free and immobilized cells of Alcaligenes sp. A7-2[J]. Applied Microbiology and Biotechnology, 1992, 37(5): 655-661.
    Min, H., Ye, Y. F., Chen, Z. Y, Wu, W. X., Yufeng, D. Effects of butachlor on microbial populations and enzyme activities in paddy soil[J]. Journal of Environmental Science and Health Part B-pesticides Food Contamin, 2001, 36(5): 581-595.
    Min, H., Ye, Y. F., Chen, Z. Y, Wu, W. X., Du Y. F. Effects of butachlor on microbial enzyme activities in paddy soil[J]. Journal of Environmental Sciences, 2002, 14(3): 413-417.
    Mohammed, T. A., Birima, A. H., Noor, M. J. M. M., Muyibi, S. A., Idris, A. Evaluation of using membrane bioreactor for treating municipal wastewater at different operating conditions[J]. Desalination, 2008, 221(1-3): 502-510.
    Mohanty, S. R., Bharati, K., Moorthy, B. T. S., Ramakrishnan, B., Rao, V. R., Sethunathan,N., Adhya, T. K. Effect of the herbicide butachlor on methane emission and ebullition flux from a direct-seeded flooded rice field[J]. Biology and Fertility of Soils, 2001,33(3): 175-180.
    Moorman, T. B. A review of pesticide effects on microorganisms and microbial processes related to soil fertility[J]. Journal of Production Agriculture, 1989, 2(1): 14-23.
    Ng, A. N. L., Kim, A. S. A mini-review of modeling studies on membrane bioreactor (MBR) treatment for municipal wastewaters[J]. Desalination, 2007, 212(1-3): 261-281.
    Ortiz-Hernandez, M. L., Quintero-Ramirez, R., Nava-Ocampo, A. A., Bello-Ramirez, A. M.Study of the mechanism of Flavobacterium sp for hydrolyzing organophosphate pesticides[J]. Fundamental & Clinical Pharmacology, 2003, 17(6): 717-723.
    Ou, Y. H., Chung, P. C, Chang, Y.-C, Ngo, F. Q. H., Hsu, K.-Y, Chen, F.-D. Butachlor, a Suspected Carcinogen, Alters Growth and Transformation Characteristics of Mouse Liver Cells[J]. Chemical Research in Toxicology, 2000, 13(12): 1321-1325.
    Pal, R., Das, P., Chakrabarti, K., Chakraborty, A., Chowdhury, A. Butachlor Degradation in Tropical Soils: Effect of Application Rate, Biotic-Abiotic Interactions and Soil Conditions[J]. Journal of Environmental Science and Health Part B-pesticides Food Contamin, 2006, 41(7): 1103-1113.
    Pernyeszi, T., Kasteel, R., Witthuhn, B., Klahre, P., Vereecken, H., Klumpp, E. Organoclays for soil remediation: Adsorption of 2,4-dichlorophenol on organoclay/aquifer material mixtures studied under static and flow conditions[J]. Applied Clay Science, 2006,32(3-4): 179-189.
    Prieto, M. B., Hidalgo, A., Serra, J. L., Llama, M. J. Degradation of phenol by Rhodococcus erythropolis UPV-1 immobilized on Biolite?in a packed-bed reactor[J]. Journal of Biotechnology, 2002, 97(1): 1-11.
    Pu, X., Cutright, T. J. Degradation of pentachlorophenol by pure and mixed cultures in two different soils[J]. Environ Sci Pollut Res Int, 2007, 14(4): 244-50.
    Raina, V., Suar, M., Singh, A., Prakash, O., Dadhwal, M., Gupta, S., Dogra, C, Lawlor, K., Lal, S., van der Meer, J., Holliger, C, Lal, R. Enhanced biodegradation of hexachlorocyclohexane (HCH) in contaminated soils via inoculation with Sphingobium indicum B90A[J]. Biodegradation, 2008, 19(1): 27-40.
    Ryan, J. R., Loehr, R. C, Rucker, E. Bioremediation of organic contaminated soils[J].Journal of Hazardous Materials, 1991,28(1-2): 159-169.
    Reddy, G. V. B., Joshi, D. K., Gold, M. H. Degradation of chlorophenoxyacetic acids by the lignin-degrading fungus Dichomitus squalens[J]. Microbiology, 1997, 143(7):2353-2360.
    Sato, T., Kohnosu, S., Hartwig, J. F. Adsorption of butachlor to soils[J]. Journal of Agricultural and Food Chemistry, 1987, 35(3): 397-402.
    Scott, J. A., Smith, K. L. A bioreactor coupled to a membrane to provide aeration and filtration in ice-cream factory wastewater remediation[J]. Water Research, 1997, 31(1):69-74.
    Semple, K. T., Reid, B. J., Fermor, T. R. Impact of composting strategies on the treatment of soils contaminated with organic pollutants[J]. Environmental Pollution, 2001, 112(2):269-283.
    Shivaramaiah, H. M., Kennedy, I. R. Biodegradation of endosulfan by a soil bacterium[J].Journal of Environmental Science and Health Part B, 2006, 41(6): 895-905.
    Silva, E., Fialho, A. M., Sa-Correia, I., Burns, R. G, Shaw, L. J. Combined Bioaugmentation and Biostimulation To Cleanup Soil Contaminated with High Concentrations of Atrazine[J]. Environmental Science & Technology, 2004, 38(2): 632-637.
    Singh, B. K., Walker, A., Wright, D. J. Bioremedial potential of fenamiphos and chlorpyrifos degrading isolates: Influence of different environmental conditions[J]. Soil Biology and Biochemistry, 2006, 38(9): 2682-2693.
    Singh, J., Singh, D. K. Bacterial, azotobacter, actinomycetes, and fungal population in soil after diazinon, imidacloprid, and lindane treatments in groundnut {Arachis hypogaea L.) fields[J]. Journal of Environmental Science and Health Part B, 2005, 40(5): 785-800.
    Singh, L. J., Tiwari, D. N. Effects of selected rice-field herbicides on photosynthesis,respiration, and nitrogen assimilating enzyme systems of paddy soil diazotrophic cyanobacteria[J]. Pesticide Biochemistry and Physiology, 1988, 31(2): 120-128.
    Sinha, S., Panneerselvam, N., Shanmugam, G. Genotoxicity of the herbicide butachlor in cultured human lymphocytes[J]. Mutation Reserch, 1995, 344(1-2): 63-67.
    Tu, C. M. Effect of fungicides, captafol and chlorothalonil, on microbial and enzymatic activities in mineral soil[J]. Journal of Environmental Science and Health Part B-pesticides Food Contamin, 1993, 28(1): 67-80.
    Van Eerd, L. L., Hoagland, R. E., Zablotowicz, R. M., Hall, J. C. Pesticide metabolism in plants and microorganisms[J]. Weed Science, 2003, 51(4): 472-495.
    Venkata Mohan, S., Prasanna, D., Purushotham Reddy, B., Sarma, P. N. Ex situ bioremediation of pyrene contaminated soil in bio-slurry phase reactor operated in periodic discontinuous batch mode: Influence of bioaugmentation[J]. International Biodeterioration & Biodegradation, 2008, 62(2): 162-169.
    Verma, K., Agrawal, N., Farooq, M., Misra, R. B., Hans, R. K. Endosulfan degradation by a Rhodococcus strain isolated from earthworm gut[J]. Ecotoxicol Environ Saf, 2006,64(3): 377-81.
    Visvanathan, C, Aim, R. B., Parameshwaran, K. Membrane Separation Bioreactors for Wastewater Treatment[J]. Critical Reviews In Environmental Science and Technology,2000,30(1): 1-48.
    Vogel, T. M. Bioaugmentation as a soil bioremediation approach[J]. Current Opinion in Biotechnology, 1996, 7(3): 311-316.
    Vogelsang, C, (?)stgaarda, K. Stability of alginate gels applied for cell entrapment in open systems. Progress in Biotechnology[M], Amsterdam: Elsevier, 1996.
    Weisburg, W. G, Barns, S. M., Pelletier, D. A., Lane, D. J. 16S ribosomal DNA amplification for phylogenetic srudy[J]. Journal of bacteriology, 1991, 173(2):697-703.
    Weymann, D. F. Biosparging used in aquifer remediation[J]. Pollution Engineering, 1995,27(5): 36-41.
    Wilson, K. (2001). Preparation of genomic DNA from bacteria. Current Protocols in Molecular Biology[M], John Wiley & Sons, Inc. . Chapter 2: Unit 2.4.
    Wilson, R. I., Mabury, S. A. Photodegradation of metolachlor: isolation, identification, and quantification of monochloroacetic acid[J]. Journal of Agricultural and Food Chemistry,2000, 48(3): 944-950.
    Xu, D. P., Xu, Z. H., Zhu, S. Q., Cao, Y. Z., Wang, Y., Du, X. M., Go, Q. B., Li, F. S.Adsorption behavior of herbicide butachlor on typical soils in China and humic acids from the soil samples[J]. Journal of Colloid and Interface Science, 2005, 285(1): 27-32.
    Yang, C, Dong, M., Yuan, Y, Huang, Y, Guo, X., Qiao, C. Reductive transformation of parathion and methyl parathion by Bacillus sp[J]. Biotechnology Letters, 2007, 29(3):487-493.
    Yin, X. H., Li, S. N., Zhang, L., Zhu, G N., Zhuang, H. S. Evaluation of DNA damage in Chinese toad (Bufobufo gargarizans) after in vivo exposure to sublethal concentrations of four herbicides using the comet assay[J]. Ecotoxicology, 2008, 17(4): 280-6.
    Zargar, Y., Dar, H. Effect of benthiocarb and butachlor on growth and nitrogen fixation by cyanobacteria[J]. Bulletin of Environmental Contamination and Toxicology, 1990,45(2): 232-234.
    Zhao, G., Zhou, L., Li, Y., Liu, X., Ren, X., Liu, X. Enhancement of phenol degradation using immobilized microorganisms and organic modified montmorillonite in a two-phase partitioning bioreactor[J]. Journal of Hazardous Materials, In Press,Accepted Manuscript.
    Zheng, H., Ye, C. Photodegradation of Acetochlor and Butachlor in Waters Containing Humic Acid and Inorganic Ion[J]. Bulletin of Environmental Contamination and Toxicology, 2001a, 67(4): 601-608.
    Zheng, H. H., Ye, C. M. Identification of UV Photoproducts and Hydrolysis Products of Butachlor by Mass Spectrometry[J]. Environmental Science & Technology, 2001b,35(14): 2889-2895.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700