用户名: 密码: 验证码:
掺杂焦碳及纳米氧化铁吸附生态环境水体中重金属试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重金属污染已经成为目前危害显著的水污染问题之一,例如砷(As)、汞(Hg)、铅(Pb)和铬(Cr)等,这些元素因居民生活用水排放,以及一些工业企业不顾国家相关政策而进行非法排放导致的,类似的报道在电视报纸上均长期多次报道过,但目前来看这样的排放还没有得到有效的遏制,对环境和生态造成了严重的污染,直接影响了人类和生态动植物的生存健康。目前治理重金属污染水体方法众多,其中吸附法是一种传统经典方法。活性炭和氧化铁材料是经典的吸附材料,具有原料来源广泛、价格低廉、使用方便的优势。迄今,已有许多采用活性炭和氧化铁材料分离、吸附重金属的报道,但是直接采用这些原材料处理重金属污染废水还存在吸附量较小、材料不成形、不利于流态化处理等问题。
     基于上述材料目前存在的问题,考虑到纳米材料以其优越的理化性能已经被应用于催化、分离、光电等领域,本文选用对重金属有较好吸附富集能力的焦碳和纳米氧化铁材料作为基体,采用镧系元素掺杂技术,希望得到分离富集性能更好的重金属吸附材料。主要研究内容和结果如下:
     1.镧、铈掺杂焦碳的制备及其对铜、铅、锌、铬、镉的吸附研究结果表明:铈掺杂焦碳对铜、铅、锌、铬、镉的吸附效果比未掺杂焦碳吸附效果平均高约30%左右。镧掺杂焦碳对痕量金属离子铜、铅、锌、铬和镉的吸附效果比未掺杂焦碳吸附效果平均高约40%左右。实验结果计算得到若以100mg/L作为金属离子浓度,去除一吨水所需镧掺杂焦碳为10kg,可见掺杂焦碳用于处理重金属污染水是可行的,可以作为传统方法的补充和完善。焦碳(铈)对混合铜、铅、锌、铬、镉离子的吸附实验表明,各元素间存在一定的竞争吸附关系。总的来说,镧、铈掺杂焦碳对痕量铜、铅、锌、铬、镉的吸附能力比未掺杂焦碳均有提高,部分元素吸附有显著提高。
     2.镧、铈掺杂纳米氧化铁的制备及其对痕量砷、汞的吸附性能研究表明:IR、SEM、XRD、BET等分析表征表明,稀土元素镧、铈成功地掺杂到纳米氧化铁基体上。与未改性的纳米氧化铁相比较,镧或铈改性的纳米氧化铁对砷、汞的吸附均有明显提高。掺杂稀土元素镧、铈的纳米氧化铁对痕量砷、汞的吸附符合准二级动力学方程。铈改性、镧改性及未改性的纳米氧化铁对砷的最大吸附量分别可达到28.33、28.49、22.22mg/g,与相应的理论吸附容量相符,同时得到三种材料对砷吸附过程准二级吸附速率常数。未改性的纳米氧化铁对砷、汞吸附反应的标准摩尔焓变分别为10.20(砷)kJ/mol、7.53(汞)kJ/mol;铈改性纳米氧化铁对砷、汞吸附反应的标准摩尔焓变分别为16.74.11.60kJ/mol;镧改性的纳米氧化铁对砷、汞的吸附反应的标准摩尔焓变分别为11.36.10.17kJ/mol.说明在20至500C之间,三种纳米氧化铁材料对砷、汞的吸附过程都是吸热过程。
     3.镧、铈掺杂纳米氧化铁对痕量铅、铬的吸附容量及吸附动力学的研究表明:镧掺杂纳米氧化铁的吸附铅离子的能力显著增强,比掺杂焦碳对铅的吸附容量更大。稀土改性后,纳米氧化铁的吸附铬离子的能力显著增强,其中铈改性的纳米氧化铁对铅的吸附容量最大,但低于镧掺杂焦碳对Cr吸附效果。在25℃的水溶液中各种纳米氧化铁吸附铅离子的动力学方程都符合准二级方程,并且都能很快的达到吸附平衡。
     综上所述,本研究制备的新型掺杂材料具有原材料价廉易得、操作简单、成本低廉、制备工艺易于放大等优点。改性后的焦碳和纳米氧化铁材料对几种重要的重金属离子的吸附性能明显提高,吸附过程快速。为高效吸附材料的合成或制备提供了有价值的参考途径,并为重金属污染废水的有效处理提供了可供选择的新材料和有意义的参考数据。
The pollution of heavy metals has become one of the most considerable problems of water pollution, such as As Hg Pb and Cr elements, these elements are cause by water emissions including residential water emissions, in particular, the result of illegal discharges of a number of industrial enterprises regardless of national policy,such reports frequently reported on TV and newspaper,but such emissions has never been effectively curbed, which have caused serious pollution to the environment and ecosystem,and have caused direct impact on human and ecological health of animal and plant. Activated carbon and iron oxide adsorbent materials are classic materials, have the advantages of wide range of sources of raw materials, low cost, easy to use. Today, There are many reported applications of activated carbon and iron oxide materials to separation, adsorption of heavy metals. However, there are problems of directly using of these materials for heavy metals in polluted wastewater treatment,such as small adsorption capacity, fix difficult and hard to deal with fluidization process.
     Based on those problems,considering nanomaterials its superior physical and chemical properties have been applied to fields as catalysis, separation, optoelectronics and so on, This paper selected coke and iron oxide materials as the matrix for their good ability of adsorption of heavy metals in wastewater,. used the modified technology with La and Ce, we hope to get better performance separation and enrichment of heavy metals adsorption materials. The main contents and results are as follows:
     1. The results of rare earth doped coke adsorption of copper, lead, zinc, chromium, cadmium show:The Efficiency of Cerium modified coke increased by average of about30%comparing with the unmodified material.The adsorption of rare earth elements lanthanum-doped coke of trace metal ions Cu Pb Cr Cd show the lanthanum modified coke is better than the unmodified coke's adsorption efficiency,which increased average about40%. Calculated in terms of100mg/L as the concentration of metal ions in waste water by the experimental results, to removal of these elments in one ton of water need lanthanum modified coke10kilogram,so which means that modified coke can be used to treat heavy metal contaminated water is feasible, and can used as a supplement and improvement to method of traditional methods. Experiments of coexistence of multi-element show that there is a certain degree of competitive adsorption relationship between each element. Sum up, the results of rare earth doped coke adsorption of copper, lead, zinc, chromium, cadmium show:rare earth elements lanthanum, cerium doped coke adsorption of trace amounts of copper, lead, zinc, chromium, cadmium has greatly inproved than the undoped coke, while to some elements,the adsorption improved significantly.
     2. Preparation of lanthanum, Cerium doped nano-iron oxide and the reaserch on adsorption of trace amounts of arsenic, mercury proved:analyse results of IR,SEM,XRD,BET and so on show that rare earth elements lanthanum,cerium are doped into iron oxide matrix successfully.Compare with undoped iron oxide,the modified nano iron oxide adsorption of mercury has been greatly improved. The adsorption of trace amounts of arsenic, mercury in simulated wastewater of nano iron oxide doped with rare earth elements lanthanum, cerium is accord with pseudo-second-order rate equation and the theoretical maximum amount of adsorption of arsenic of Cerium, lanthanum doped and undoped nano-iron oxide is28.33,28.49,22.22mg/g respectively, and the pseudo-second-order rate equation rates constant gained. Standard molar enthalpy change of reaction(ΔrHmθ) of unmodified nano iron oxide adsorption of arsenic, mercury is10.20,7.53kJ/mol respectively; Standard molar enthalpy change of reaction(ΔrHmθ) of cerium-modified nano iron oxide adsorption of arsenic, mercury is16.74,11.60kJ/mol; while Standard molar enthalpy change of reaction(ΔrHmθ) of lanthanum-modified nano iron oxide adsorption of arsenic, mercury is11.36,10.17kJ/mol respectively. Thus between20and50℃, the adsorption of arsenic, mercury of three nano-iron oxide is endothermic reaction.
     3. Preparation of lanthanum, Cerium doped nano-iron oxide and the reaserch on adsorption of trace amounts of lead, chromium showed that the capacity of La-doped iron oxide adsorption of lead ions enhanced significantly, better than the adsorption capacity of the modified coke. Rare earth modified iron oxide adsorption of chromium ions enhanced significantly, then Ce-doped iron oxide adsorption capacity for lead is the best, but less than the La-doped coke adsorption of chromiu. At temperature of25℃,the kinetics of the various iron oxide adsorption of lead ions in aqueous solution are found to follow the pseudo-second-order rate equations, and can reach equilibrium quickly. At temperature of25℃,the kinetics of the various iron oxide adsorption of chromium ions in aqueous solution are found to accord with follow the pseudo-second-order rate equations, and can reach equilibrium quickly.
     In summary, In this study, a new type of doped material has prepared with the advantages of cheap raw material, operation simple, low cost, easy preparation amplification, etc. Modified coke and iron oxide materials adsorption performance on several important heavy metal ion has improved significantly, and the adsorption process is fast. It provide a valuable reference for efficient adsorbent material preparation, and provide a choice of new materials and meaningful reference data for treatment on many important heavy metals incontaminated wastewater.
引文
[1]谭义秋,黄祖强,农克良等.木薯羧甲基淀粉对铜离子的吸附性能[J].化学研究与应用.2010,22(2):171-175.
    [2]金娜,印万忠.铅的危害及国内外除铅的研究现状[J].有色矿冶.2006,22(S1):114-115.
    [3]艾军,李德龙.流动注射在线液—液萃取火焰原子吸收法测定水中痕量铅[J].分析科学学报.2001,17(5):414-417.
    [4]周方钦,龙斯华,杨学群.硫化棉富集火焰原子吸收光谱法测定水中痕量铅镉铜的研究[J].湘潭大学自然科学学报.2001,23(4):81-83.
    [5]高甲友.流动注射-在线富集火焰原子吸收分光光度法测定痕量铅[J].分析科学学报.2007,23(4):489-491.
    [6]苏耀东,黄燕,赫冰冰等.吡咯烷二硫代氨基甲酸铵-Ni(Ⅱ)快速共沉淀分离富集和原子吸收光谱法测定痕量铜、铅和镉[J].分析科学学报.2007,23(2):173-176.
    [7]蒋桂华,刘春明,王晓菊.准液膜分离富集—火焰原子吸收法测定痕量镁,铅[J].光谱学与光谱分析.1999,19(5):732-733.
    [8]Silva JB, Quinaia S P, R Illemberg M, Fresenius J. Anal. Chem.,2001,369:657.
    [9]Lemos V A, Guardia M, Ferreira S L C. Ta/anta,2002,58:475
    [10]刘见峰,宋卫锋.铅锌硫化矿浮选废水处理研究进展[J].科技导报.2010,28(10):111-114.
    [11]闫旭,李亚峰.含铬废水的处理方法[J].辽宁化工.2010,39(2):143-146.
    [12]赵吉寿,颜莉,戴建辉.纳米磷酸铝合成及对Cr(Ⅵ)的吸附性能应用研究[J].环境污染与防治.2003,25(2):71-73.
    [13]Ottaway J M, Fell G S. Pure and Applied Chemist ry,1986,58:1707.
    [14]杨际.粉煤灰处理含铬废水的研究与试验[J].自然科学版.2001,28(4):371-374.
    [15]Liang Shena, Yu Liua,, Etienne Paulb,c,d, A simple geometric approach for simplification of Langmuir kinetics for adsorption, Colloids and Surfaces A:PHysicochem. Eng. Aspects 349 (2009) 78-82.
    [16]高玉红,刘卫洁,王建森.用焦碳吸附处理含铬废水的试验研究[J].湿法冶金.2010,29(1):52-55.
    [17]殷勇,易军鹏,李欣等.食品中铜铅镉锌同时测定的神经网络方法研究[J].食品科学.2005,26(8):271-274.
    [18]张卓勇,陈杭亭,王丹.电感耦合等离子体发射光谱法测定东北大豆中的微量元素[J].光谱学与光谱分析.2002,22(4):673-675.
    [19]Hu J, Chen G H, Irene M C. Removal and recovery of Cr (VI) from wastewater by maghemite nanoparticles[J]. Water Research,2005,39(18):4528-4536.
    [20]国家环境保护总局等.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社, 2002.
    [21]王秀红,边建朝.微量元素砷与人体健康[J].国外医学(医学地理分册),2005,26(3):101-105.
    [22]曹会兰.砷对人体的危害与防治[J].化学世界,2003(10):559-560.
    [23]李志萍,刘翠,Pieter J.等.荷兰地下水中的砷对饮用水供给的影响[J].水资源保护.2010,26(1):75-83.
    [24]赵素莲,王玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学.2002,29(5):651-652.
    [25]Dr J F Risher. Elemental Mercury and Inorganic Mercury Compounds:Human Health Aspect s[M]. Geneva:WHO,2003:7.
    [26]敬育民.环境监测常用检测检验数据手册[M].哈尔滨:黑龙江文化音像出版社,2003:7.
    [27]栾广忠,李宏军.铬-人体重要的保健微量元素[J].中国乳品工业.1999,27(6):17-19.
    [28]MARTINE L.RENE OJEAN GUptake of lead, cadmium and zinc by a novel bacterial exopolysaeeharide[J]. Water Research.1997,31 (5):1171-1179.
    [29]高太忠,李景印.土壤重金属研究与现状[J].土壤与环境.1999,8(2):137-140.
    [30]X.Q. Li, W.X. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles-a study with high resolution X-ray pHotoelectron spectroscopy (HR-XPS), J. PHys. Chem. 2007,(11)1:6939-6946.
    [31]B.Gregory,Olson.Designing a new material world.Science.2000,288:993-999.
    [32]师昌绪,李恒德,周廉.材料科学与工程手册.北京:化学工业出版社,2004.
    [33]R.Bininger,H.Gleiter,H.P.Klein.Classification of nanometer materials and its basis[J].Phys Lett.A.1984,102:365-369.
    [34]IOANNIS A. Removal of arsenic from contaminated water sourees by sorption onto iron-oxide-coated polymeric materials [J].Water Research.2002,36(20):5141-5155.
    [35]Manning B A,Fendorf S E,Goldberg S.Surface structures and stability of arsenic(III)on goethite:spectroscopic evidence for inner-sphere complexes[J].Environ.Sci.Technol.1998,32:2383-2388.
    [36]Manceau A.The amchenisal of ardon adsorption on iron oxides[J].Geochim Cosmochim Acta.1995,59(17):1647-3653.
    [37]Waychunas G A,Davis J A,Fuller C C.Removal of arsenic from water using granular ferric hydroxide:macroscopic and microscopic studies[J].Geochim Cosmochim Acta.1995,59(17): 3655-3661.
    [38]Axel L,Bunker G B,Anderson P R,et al.An XAFS analysis of strontium at the hydrous ferric oxide surface[J]. Colloid Interface Sci.1998(199):44-52.].
    [39]Barron V,Torrent.Surface hydroxyl configuration of various crystal faces of hematite and goethite[J]. Colloid Interface Sci.1996(177):407-410.
    [40]Rustad A R,Rustad J R,Hay B P.Molecular statics calculations of proton binding to goethite surfaces:a new approach to estimation of stability constants for multisite surface complexation models[J].Geochim Cosmochim Acta.1996,60(9):1553-1562.
    [41]LI Qi. As(Ill)removal by palladium-modified nitrogen-doped titanium oxide nanoparticle pHotocatalyst[J]. Environ Sci Teehnol.2009,43(5):1528-1533.
    [42]Hardiljeet K. Boparai, Meera JosepH, Denis M. O'Carroll,Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J],Journal of Hazardous Materials.186(2011) 458-465.
    [43]Sekha K C,Chary N S.Fraction studies and bioaccumulation of sediment-bound heavy metals in Kollern Lake by edible fish[J].Environmental Internastional.2003,29:1001-1008.
    [44]李志勇,郭祀远,李琳等.藻类对微量元素的生物富集及应用[J].微生物学通报.1997,24(6):368-369.
    [45]叶锦韶,尹华,彭辉等.重金属的生物吸附研究进展[J].城市环境与城市生态.2001,14(3):30-32.
    [46]刘瑞霞,汤鸿宵,劳伟雄.重金属的生物吸附机理及吸附平衡模式研究[J].化学进展.2002,14(2):87-92.
    [47]黄翔,宗浩,陈文祥等.花生壳对水溶液中铜离子的吸附特性[J].四川师范大学学报:自然科学版.2007,30(3):380-383.
    [48]祝春水,魏涛,陈文宾等.花生壳吸附Cu2+的动力学和热力学研究[J].环境污染与防治.2008,30(8):14-18.
    [49]孟祥和,胡国飞.重金属废水处理[M].北京:化学工业出版社,2000.
    [50]沈耀良.废水处理中的几种廉价吸附剂[J].重庆环境科学.1995,17(3):49-53.
    [51]王焰新.去除废水中重金属的低成本吸附剂:生物质和地质材料的环境利用[J].地学前缘.2001,8(2):301-306.
    [52]Kapoor A,Viraraghvan T.Treatment of metal industrial wastewater by fly ash and cement fixation[J].J.Environ. Eng. Div.-ASCE.1988,114(4):962-974.
    [53]王桂芳,包明峰,韩泽志.活性炭对水中重金属离子去除效果的研究[J].环境保护科学.2004,30(2):26-29.
    [54]Kadirvelu K, Thamaraiselvi K,Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste[J]. Bioresouree Technology.2001(76):63-65.
    [55]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术最新进展[J].现代机械.2003(4):80-82.
    [56]Abdusalam Uheida,German Salazar-Alvarez, Eva Bjorkman,Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+from aqueous solution[J],Journal of Colloid and Interface Science. 2006,29(8):501-507.
    [57]莎菲,宋洪昌.纳米α-Fe2O3的制备方法及应用概况[J].江苏化工.2003,31(5):12-15.
    [58]刘长宝,刘学,胡期伟等.纳米氧化铁在推进剂中的应用研究进展[J].化学推进剂与高分子材料.2012,10(2):30-34.
    [59]许艳霞,胡成国,胡胜水.纳米氧化铁修饰玻碳电极检测痕量镉离子[J].分析测试学报.2012,31(2):221-224
    [60]Hind Al-Johani,Mohamed Abdel Salam.Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution[J]. Journal of Colloid and Interface Science.2011 (360):760-767.
    [61]Mohamed Kheireddine Aroua, S.P.P. Leong a, L.Y. Teo, Chun Yang Yin,Wan Mohd Ashri Wan Daud.Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode[J]. Bioresource Technology.2008 (99):5786-5792.
    [62]J. Goering, U. Burghaus. Adsorption kinetics of thiopHene on single-walled carbon nanotubes (CNTs) [J]. Chemical PHysics Letters.2007 (447):121-126.
    [63]Wen-Ming Liu, Ya-Nan Xue, Wen-Tao He.Dendrimer modified magnetic iron oxide nanoparticle/dna/pei ternary complexes:A novel strategy for magnetofection [J].Journal of Controlled Release.2011(152):159-160.
    [64]Gordon Nangmenyi, Xuan Li, Sharifeh Mehrabi, Eric Mintz, James Economy.Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water [J].Materials Letters.2011(65):1191-1193.
    [65]K. Mandel, F. Hutter, C. Gellermann, G Sextl. Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions [J].Colloids and Surfaces A: PHysicochemical and Engineering Aspects.2011(390):173-178.
    [66]李广坡,徐铁峰,聂秋华等.掺Er3+碲酸盐玻璃的光谱性质与Judd-Ofelt理论分析[J].发光学报.2006,27(02):164-168.
    [67]龙泓羽,向萍,杨怡等.La和Ce改性四针状氧化锌晶须抗菌纤维的制备与抗菌性[J].高科技纤维与应用.2006,35(2):23-25.
    [68]姜莉,梁艳,刘奎仁等.La、Ho掺杂Ti02光催化抗菌材料的制备与抗菌性能[J].稀土,2007,28(1):7-10.
    [69]吴士筠.La(111)的抑菌作用研究[J].中南民族大学学报(自然科学版).2005,24(3):23-26.
    [70]马林转,宁平,姜培曦等.改性膨润土在污水脱磷中的应用研究[J].武汉理工大学学报.2007,29(8):67-69.
    [71]孟传奎.新型稀土功能材料在饮水中的应用[J].上海有色金属.2001,22(1):26-28.
    [72]林雅铃,张安强,王炼石.稀土掺杂炭黑填充型粉末天然橡胶(Ⅰ)制备与粒径分布[J].弹性体.2009,19(1):1-5.
    [73]谢复青,梁柏林.改性焦碳处理亚甲基蓝染料废水研究[J].广西梧州师范高等专科学校学 报.2005,21(3):95-97.
    [74]路培,李彩亭,曾光明等.只负载稀土元素活性碳纤维在微型反应器中净化NO废气[J].化工环保.2006,26(6):455-458.
    [75]Poweli Dogma C.A,Heuer A.H.Microslructure of 96% alumina ceramics characterization of the sintered materials[J].J.Am.Ceram..Soc.1990,73(12):3760.
    [76]M.Thompson A,Soni K.K,Chart H.M,et al.Dopant distribulion in rare earth-doped alumina[J]. Am.Ceram.Soc.1997,4(2):73-376.
    [77]Xiao-Dong Sun,Chen Gan,Jingsong Wang,et al.Identification and optimization of advanced phosphors using combinatorial libraries[J].Appl.Phys.Lett..1997,70(25):3353-3355.
    [78]R.Schmechel,H.Winkler,Li Xaomao,et al.Photoluminescence properties of nanocrystalline Y2O3:Eu3+ in different environments[J].Scripta Materialia.2001,44(8):1213-1217.
    [79]D.Landheer,X.Wu J.Morais,et al.Thermal stability and diffusion in gadolinium silicate gate dielectric films[J].Appl.Phys.Lett..2001,79(16):2618-2620.
    [80]J.J.Croat.Preparation and coercive force of melt-spun Pr-Fe alloys[J].Appl.Phys.Lett..1980,37:1096-1098.
    [81]N.Kamegashira,H.Nakano,GChen,et al.Phase behavior of rare earth manganites[J].Journa of Rare Earth.2004,22(5):582-585.
    [82]Bhargava R N. Journal of Luminescence.1997(46):72-74.
    [83]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术最新进展[J].现代机械.2003(4):80-82.
    [84]Abdusalam Uheida, German Salazar-Alvarez, Eva Bjorkman,Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+from aqueous solution[J],Journal of Colloid and Interface Science.2006,29(8):501-507.
    [85]莎菲,宋洪昌.纳米α-Fe2O3的制备方法及应用概况[J].江苏化工.2003,31(5):12-15.
    [86]刘长宝,刘学,胡期伟等.纳米氧化铁在推进剂中的应用研究进展[J].化学推进剂与高分子材料.2012,10(2):30-34.
    [87]许艳霞,胡成国,胡胜水.纳米氧化铁修饰玻碳电极检测痕量镉离子[J].分析测试学报.2012,31(2):221-224.
    [88]Manning B A,Fendorf S E,Goldberg S.Surface structures and stability of arsenic(III)on goethite:spectroscopic evidence for inner-sphere complexes[J].Environ.Sci.Technol.1998,32:2383-2388.
    [89]Manceau A.The amchenisal of ardon adsorption on iron oxides[J].Geochim Cosmochim Acta.1995,59(17):1647-3653.
    [90]Waychunas G A,Davis J A,Fuller C C.Removal of arsenic from water using granular ferric hydroxide:macroscopic and microscopic studies[J].Geochim Cosmochim Acta.1995,59(17):3655-3661
    [91]Axel L,Bunker G B,Anderson P R,et al.An XAFS analysis of strontium at the hydrous ferric oxide surface[J].J Colloid Interface Sci.l998(199):44-52.
    [92]Hind Al-Johani a,b, Mohamed Abdel Salam a,(?). Kinetics and thermodynamic study of aniline adsorption by multi-walled carbon nanotubes from aqueous solution[J]. Journal of Colloid and Interface Science.2011 (360):760-767.
    [93]Mohamed Kheireddine Aroua, S.P.P. Leong a, L.Y. Teo, Chun Yang Yin,Wan Mohd Ashri Wan Daud.Real-time determination of kinetics of adsorption of lead(II) onto palm shell-based activated carbon using ion selective electrode[J]. Bioresource Technology.2008 (99):5786-5792.
    [94]J. Goering, U. Burghaus. Adsorption kinetics of thiopHene on single-walled carbon nanotubes (CNTs) [J]. Chemical PHysics Letters.2007 (447):121-126.
    [95]Matheson L J,et al.Reductive dehalogenation of chlorinated methanes by iron metal[J].Environ.Sci.Technol..1994,28(12):2045-2053.
    [96]Wen-Ming Liu, Ya-Nan Xue, Wen-Tao HeDendrimer modified magnetic iron oxide nanoparticle/dna/pei ternary complexes:A novel strategy for magnetofection [J].Journal of Controlled Release.2011(152):159-160.
    [97]Gordon Nangmenyi, Xuan Li, Sharifeh Mehrabi, Eric Mintz, James Economy.Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water [J].Materials Letters.2011(65):1191-1193.
    [98]K. Mandel, F. Hutter, C. Gellermann, G. Sextl.Synthesis and stabilisation of superparamagnetic iron oxide nanoparticle dispersions [J].Colloids and Surfaces A: PHysicochemical and Engineering Aspects.2011(390):173-178.
    [99]郑娅娜,何茂强,孙中溪.Pb2+在稀土掺杂纳米氧化铁表面的吸附行为[J].济南大学学报(自然科学版).2010,24(2):127-130.
    [100]Hardiljeet K. Boparai, Meera Joseph etal. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles[J], Journal of Hazardous Materials.2011 (186):458-465.
    [101]冯婧微,梁成华,王黎等.零价纳米铁对水中Cr(Ⅵ)的吸附动力学研究[J].科技导报2011,29(24):37-40.
    [102]黄方映,罗莉,戴强钦.铕掺杂纳米氧化锌晶体结构和荧光光谱的研究[J].光谱学与光谱分析.2011,31(11):2978-2980.
    [103]王元生.掺杂对纳米氧化铁晶化相的影响[J].功能材料.1999,30(1):60-62.
    [104]Xu C.Tarnaki J,Miura N. el.J Mater Sci.1992(27):963.
    [105]蒋荣立,陈文龙,张宗祥等.镝掺杂铁氧体纳米晶的制备、表征和磁性[J].化学学报.2008,66(11):1322-1326.
    [106]TOKUNAGA S, HARDONM J, WASAY S A. Removal of fluoride ions from aqueous solution by mulfivalent metal compounds [J]. International Journal of environmental Studies.1995,48(1):17-28.
    [107]TOKUNAGA S, WASAY S A, PARK S W. Removal of arsenic (V) ion form aqueous solutions by lanthanum compounds[J]. Water Science and Technology.1997,35(7):71-78.
    [108]郑娅娜,何茂强,孙中溪.Pb2*在稀土掺杂纳米氧化铁表面的吸附行为[J].济南大学学报(自然科学版).2010(24)2:127-130.
    [109]舒小林,胡望宇,王玲玲等.掺杂对纳米Zn0粉末晶粒度和结构的影响[J].湖南大学学报:自然科学版.2001.28(4):39-42.
    [110]张昱,杨敏,高迎新等.用于地下水中砷去除的铈铁复合材料的制备和作用机制.中国科学B.2003,33(22):127-133.
    [111]蒋继穆.“八五”期间重有色金属冶炼技术进展概述[J].世界有色金属.1997,(12):4-9.
    [112]黄园英,刘丹丹,刘菲.纳米铁应用于饮用水中As(Ⅲ)去除效果[J].生态环境学报.2009,18(1):83-87.
    [113]Rai UN,Sinha S.Distribution of metals in aquatie edible Plants:rapa Natans(Roxb.) Makino and pomoea Aquatica Forsk[J].Enviromental Monitoring and Assessment.2001(70):241-252.
    [114]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术最新进展[J].现代机械.2003(4):80-82.
    [115]Abdusalam Uheida,German Salazar-Alvarez, Eva Bjorkman,Fe3O4 and y-Fe2O3nanoparticles for the adsorption of Co2+ from aqueous solution,Journal of Colloid and Interface Science.2006(298):501-507.
    [116]张昱,豆小敏等.砷在金属氧化物/水界面上的吸附机制Ⅰ.金属表面羟基的表征和作用[J].环境科学学报.2006,26(10):1586-1591.
    [117]Xu Jing. Preparation and magnetic properties of magnetite nanop - articles by solgel method[J]. Journal of Magnetism and Magnetic Materials.2007(309):307-311.
    [118]韩利军,崔育倩,骆德馨等.半导体工业废水中除砷的研究[J].青岛大学学报(工程技术版).2004,19(1):87-90.
    [119]稀土元素家族系列档案(2)—镧[J].稀土信息.2005,(02).
    [120]窦学宏.稀土元素镧及其应用[J].稀土信息.2005,(02).
    [121]雪红.稀土元素家族系列档案(1)—铈[J].稀土信息.2005,(01).
    [122]林河成.金属铈的生产及应用[J].中国有色冶金.2005,(03):31-34.
    [1235]曹建新,张煜,聂登攀.磁性氧化铁纳米粒子制备技术最新进展[J].现代机械.2003(4):80-82.
    [124]Abdusalam Uheida, German Salazar-Alvarez, Eva Bjorkman,Fe3O4 and γ-Fe2O3 nanoparticles for the adsorption of Co2+ from aqueous solution,Journal of Colloid and Interface Science.2006 (298):501-507.
    [125]X.Q. Li, W.X. Zhang, Sequestration of metal cations with zerovalent iron nanoparticles—a study with high resolution X-ray pHotoelectron spectroscopy (HR-XPS), J. PHys. Chem.2007 (111):6939-6946.
    [126]古元梓,翟永军.磷化铟纳米材料的研究现状与展望[J].广东化工.2011,38(10):234-235.
    [127]肖丽华,李大光.纳米Ti02对铅镉离子的吸附性能研究[J].广州化工.2006,34(03):35-37.
    [128]郝存江,冯青琴,元炯亮等.纳米γ-Al2O3的制备及其对铅(Ⅱ)镉(Ⅱ)铬(Ⅵ)的吸附性能[J].应用化学.2004,(9):957-961.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700