用户名: 密码: 验证码:
基于烯基桥联反应多分离特性杂化整体柱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为微分离领域核心之一的整体柱技术,它以其高效的传质性能和卓越的分离性能,日益受到研究者们的重视,已成功应用于蛋白质组学,药用植物学,代谢组学等领域。整体柱主要包括有机基质整体柱和硅胶基质整体柱两种,有机基质整体柱虽然种类繁多但是柱床稳定性较差,硅胶基质整体柱虽然有稳定柱床,但是由于表面衍生繁琐等问题,导致硅胶基质整体柱种类较少。尽管整体柱的应用越来越广,但因为柱材料稳定性和官能团多样性不能统一的,大大限制了整体柱的可持续发展。近年出现的结合有机整体柱和硅胶整体柱优点的简单硅胶基质杂化整体柱(如乙烯基硅胶杂化整体柱(VTMS整体柱),巯丙基整体柱等)和聚合物有机硅胶杂化整体柱在一定程度上能解决柱材料稳定性和多样性结合问题,因此具有很大发展前景,但是目前这类整体柱相关研究不多,应用也有限,基于这种情况,本文中我们基于杂化技术展开硅基整体柱多元化研究及应用。主要内容如下:
     首先以纯硅胶整体柱(TMOS整体柱)为研究对象,详细考察了体系中致孔剂PEG、脲以及温度对整体柱结构的影响,我们进一步以VTMS杂化整体柱为研究对象考察了添加有机硅烷后,制备体系中PEG,脲以及温度对整体柱结构的影响。基于上述研究结果,用甲基丙烯酰氧乙基三甲氧基硅烷(γ-MAPS)替代乙烯基三甲氧基硅烷(VTMS)作为前驱体合成γ-MAPS-TMOS杂化整体柱。相比VTMS杂化整体柱,γ-MAPS-TMOS杂化整体柱表面含有高反应活性烯键,因而能在更温和条件下跟其他含烯键的化合物进行自由基聚合,以及跟含巯基的化合物进行巯-烯点击化学反应,从而将各种分子固定到整体柱表面。
     酶固定化一直是生化研究者们关注的焦点,其容易变性的弱点对固定化基质和反应提出了很高的要求,本部分中我们采用前一工作中发展的γ-MAPS-TMOS杂化整体柱作为固定基质,通过巯-烯点击化学反应将胰蛋白酶固定在γ-MAPS整体柱上制成酶微反应器,γ-MAPS-TMOS杂化整体柱表面包含的烯键为高活性烯键,因而能够在常温下高效的和酶表面的自由巯基发生反应而将酶键合到整体柱表面。最后我们将制备的酶反应器应用到蛋白的在线酶解中,结果表明具有较好的酶解效率。
     我们发展了一种以VTMS杂化整体柱为基础的新型的双相杂化整体柱,整体柱的前段通过在VTMS杂化柱预聚液中添加含磺酸基的高分子单体和引发剂的方法引入阴离子聚合物,后段为不添加高分子单体的VTMS杂化整体柱,通过一步法将聚合物有机硅胶杂化整体柱和VTMS杂化柱无缝连接在一起,由于后段表面含未反应双键,因而可以通过巯-烯点击反应键合不同的功能基。合成的双相整体柱应用于柱上同时富集、分离碱性化合物。进一步蛋白水解物富集分离试验表明该双相整体柱能够应用于复杂体系富集与分离的研究。
     基于乙烯基杂化整体柱除采用表面衍生的办法改性表面外,还可以通过一步法合成得到表面含高分子链的聚合物有机硅胶杂化整体柱,但是通常添加单体性质对整体柱孔结构形成具有影响,本章以水溶性可离子化单体为对象,研究了添加不同性质单体时,在保证整体柱形成良好孔结构的前提下,影响单体添加量的决定性因素,研究结果表明,对于强酸性单体和磺酸基两性离子单体在中性盐的状态下有利于增加单体添加量,与之不同的是季铵类单体则在酸性较强的条件下有利单体的添加。通常水解酸为弱酸,因此弱酸单体可以以水解酸的身份大量的添加到预聚合液中。弱碱性单体添加规律受多种条件的综合影响。通过这些规律的研究使得我们能够可控地制备此类杂化整体柱,也为其他类型聚合物有机硅胶杂化整体柱制备提供参考。
     两性离子由于其强亲水性一直备受研究者们的关注,基于两性离子单体,目前已经发展了多种有机基质的亲水整体柱,但是亲水分离中高浓度有机相常常容易导致有机柱的溶胀。在第五章中我们以磺酸基两性离子单体(N,N-二甲基-N-甲基丙烯酰胺基丙基-N,N-二甲基-N-丙烷磺酸内盐,DMMPPS)为添加单体合成了poly(DMMPPS)有机硅胶杂化整体柱,与有机基质相比这种杂化基质能在高浓度有机相中保持更好的机械稳定性。在本章中对poly(DMMPPS)有机硅胶杂化整体柱进行了详细的亲水性评价,并应用于酸性、碱性、中性小分子以及蛋白酶解物的亲水分离。结果表明poly(DMMPPS)有机硅胶杂化整体柱具有较强亲水性和优异的分离性能,且具有分离复杂性亲水化合物的潜力。
As one of the core technologies in nano/micro-separation field,monolithic columntechnology is increasingly attracting the attention of researchers, due to its high mass transferand excellent separation performance. Up to date, it has been successfully applied in almostall field of life sciences, such as proteomics, metabolomics etc. Monolithic columns aremainly divided into two types, organic polymer-based monoliths and silica-based monoliths.To the best of our knowledge, the organic monolithic column, characterized by a richdiversity of surface groups, is easy to swell when exposed to organic solvents. Compared tothe organic polymer monolith, the silica monolithic column has a more stable column bed, butthe monolith types are very limited, due to the small number of silanes and cumbersomederivation. So more wide application of monolithic column is greatly limited. As an emergingtechnology, the silica matrix hybrid monolithic column, which takes advantage of bothorganic monolith and silica monolith, can resolve the problem to some extent. However,related researches and applications are limited. Given this situation, we focus on thediversification of the silica-based monolith based on hybrid technology. The main content isas follows:
     1. effects of the porogen (PEG, urea) and temperature on pore structure formation ofTMOS monolithic column were investigated in detail. Further investigation was carried outusing vinyltrimethoxysilane (VTMS) and tetramethoxysilane (TMOS) as precursor forpreparation of VTMS hybrid monolithic column. The effects of porogen (PEG, urea) andtemperature on pore structure formation of VTMS monolith were also examined. A novelγ-MAPS-TMOS hybrid monolith was synthesized by using γ-methacryloxypropyltrimeth-oxysilane (γ-MAPS) instead of VTMS. Highly reactive vinyl groups were formed on thesurface, and further modification via thiol-ene click reaction and radical polymer reactionunder mild condition was achieved.
     2. Based on the hybrid organic-inorganic monolithic capillary column, a novel thiol-ene“click” strategy for the preparation of monolithic trypsin microreactor was proposed. It wasfound that the thio-ene click strategy is feasible and simple. In contrast to the conventionalazide-alkyne click reaction, the microreactor can give high catalytic efficiency and stability.The proposed thiol-ene click chemistry strategy is proved to be a promising method for thehighly selective immobilization of proteins under mild conditions, especially for enzymeswith free thiol radicals.
     3. A novel method to synthesize sulfo/vinyl biphasic silica hybrid monolithic column byone step was developed for on-column preconcentration. In this method, sulfo-based segmentis located at the inlet of capillary column, which acts as preconcentration column. Close to thepreconcentration column, a vinyl functionalized segment is formed and serves as separationcolumn. Vinyl groups on vinyl functionalized segment are modified with ligand containingsulfhydryl group, such as octadecanethiol and6-mercapto-1-hexanol, via thiol-ene clickreaction. The applicability of this system is demonstrated by successful separation of closelyrelated amines. Good separation and enrichment are obtained. The proposed system is alsosuccessfully applied to complex biological samples, such as peptide, diluted bovine serumalbumin (BSA) hydrolysate, and the results indicate that the system has a capability forpreconcentration of low abundance peptides.
     4. A novel strategy for surface modification of silica-based monolith via one-pot methodwas developed in recent year. With this method, a polymer organic silica hybrid monolith canbe fabricated by adding polymer monomer into pre-condensation solution of VTMS monolith.The polymer integrated in monolith could provide better interaction between analytes andstationary phase. However, the adding monomer will lead to a change of composition inpre-condensation solution, and this change usually has greatly impact on pore structureformation of monolith. So the effect of adding monomer on the pore structure is veryimportant for the fabrication of monolith. In this work, the effect of monomer on the porestructure of monolith was investigated in detail. For stronger acidic monomer, the resultindicates that the adding amount of monomer would be depressed by the low pH value ofpre-condensation solution. In contrast, the adding amount of quaternary ammonium monomerwould be promoted under the strong acid conditions (pH <2). For weak acidic monomer,good pore structure of monolith can be obtained in a wide range of monomer concentrations.For weak alkaline monomer, adding amount was affected by many factors, such as porogen(PEG, urea) and temperature.
     5. A novel sulfoalkylbetaine-based zwitterionic organic-silica hybrid monolith wassynthesized by using N, N-dimethyl-N-methacrylamidopropyl-N-(3-sulfopropyl) ammoniumbetaine (DMMPPS, netural sulfoalkyl-betaine monomer). The key factors for effect of addingamount of zwitterionic monomer were proved to be pH value of monomer and temperature.The adding amount of zwitterionic monomer was significantly increased when DMMPPS wasused instead of N, N-dimethyl-N-methacryloxyethyl-N-(3-sulfopropyl) ammonium betaine(SPE), and this led to a significantly improved hydrophilicity of the monolith. Within thelinear velocity ranging from1to7mm/s, the DMMPPS-based organic-silica hybrid monolithexhibited good mechanical stability and excellent separation performance. The proposed monolithic column was successfully applied to separate purines/pyrimidines, benzoic acidderivatives and nucleotides, as well as tryptic digest of bovine hemoglobin (BHb) in a nano-hydrophilic chromatography (HILIC) mode, and the result demonstrated that such monolithhas the potential for separation of a variety of hydrophilic substances.
引文
[1] Kameoka J, Craighead H G, Hongwei Zhang, et al. A Polymeric Microfluidic Chip forCE/MS Determination of Small Molecules. Analytical Chemistry,2001,73(9):1935-1941.
    [2] Yin H, Killeen K, Brennen R, et al. Microfluidic Chip for Peptide Analysis with anIntegrated HPLC Column, Sample Enrichment Column, and Nanoelectrospray Tip.Analytical Chemistry,2005,77(2):527-533.
    [3] Ekstr m S, Nnerfjord P, Nilsson J, et al. Integrated Microanalytical TechnologyEnabling Rapid and Automated Protein Identification. Analytical Chemistry,2000,72(2):286-293.
    [4] Peterson D S, Rohr T, Svec F, et al. Enzymatic Microreactor-on-a-Chip: ProteinMapping Using Trypsin Immobilized on Porous Polymer Monoliths Molded inChannels of Microfluidic Devices. Analytical Chemistry,2002,74(16):4081-4088.
    [5] Dodge A, Fluri K, Verpoorte E, et al. Electrokinetically Driven Microfluidic Chips withSurface-Modified Chambers for Heterogeneous Immunoassays. Analytical Chemistry,2001,73(14):3400-3409.
    [6] Mikkers F E P, Everaerts F M, Verheggen T P E M. Concentration distributions in freezone electrophoresis. Journal of Chromatography A,1979,169(1):1-10.
    [7] Jorgenson J W, Lukacs K D. Zone electrophoresis in open-tubular glass capillaries.Analytical Chemistry,1981,53(8):1298-1302.
    [8] Hjertén S. High-performance electrophoresis: the electrophoretic counterpart ofhigh-performance liquid chromatography. Journal of Chromatography A,1983,270(1):1-6.
    [9] Terabe S, Otsuka K, Ichikawa K. Electrokinetic separations with micellar solutions andopen-tubular capillaries.. Analytical Chemistry,1984,56(1):111-113.
    [10] Amini A. Recent developments in chiral capillary electrophoresis and applications ofthis technique to pharmaceutical and biomedical analysis. Electrophoresis,2001,22(15):3107-3130.
    [11] Boer T D, Zeeuw R a D, Jong G J D, et al. Recent innovations in the use of chargedcyclodextrins in capillary electrophoresis for chiral separations in pharmaceuticalanalysis. Electrophoresis,2000,21(15):3220-3239.
    [12] Heegaard N H. Affinity in electrophoresis. Electrophoresis,2009,30(Suppl1):229-239.
    [13] Geiser L, Veuthey J L. Non-aqueous capillary electrophoresis2005-2008..Electrophoresis,2009,30(1):36-49.
    [14] Colón L A, Burgos G, Maloney T D, et al. Recent progress in capillaryelectrochromatography. Electrophoresis,2000,21(18):3965-3993.
    [15] Peters E C, Petro M, Svec F, et al. Molded Rigid Polymer Monoliths as SeparationMedia for Capillary Electrochromatography. Analytical Chemistry,199769(17):3646-3649.
    [16] Gebauer P, Mala Z, Bocek P. Recent progress in analytical capillary isotachophoresis.Electrophoresis,2011,32(1):83-89.
    [17] Schmerr M J, Cutlip R C, Jenny A. Capillary isoelectric focusing of the scrapie prionprotein. Journal of Chromatography A,1998,802(1):135-141.
    [18] Wang D X, Yang G L, Engelhardt H, et al. Micellar electrokinetic capillarychromatography of psoralen and isopsoralen. Electrophoresis,1999,20(9):1895-1899.
    [19] Altria K D, Clark B J, Mahuzier P E. The effect of operating variables in microemulsionelectrokinetic capillary chromatography. Chromatographia,2000,52(11-12):758-768.
    [20] Miksik I, Sedlakova P, Mikulikova K, et al. Matrices for capillary gel electrophoresis-a brief overview of uncommon gels. Biomedical Chromatography,2006,20(6-7):458-465.
    [21] Cintron J M, Colon L A. Organo-silica nano-particles used in ultrahigh-pressure liquidchromatography. Analyst,2002,127(6):701-704.
    [22] Nagele E, Vollmer M, Horth P. Two-dimensional nano-liquid chromatography-massspectrometry system for applications in proteomics. Journal of Chromatography A,2003,1009(1-2):197-205.
    [23] Fanali S, Camera E, Chankvetadze B, et al. Separation of tocopherols by nano-liquidchromatography. Journal of Pharmaceutical and Biomedical Analysis,2004,35(2):331-337.
    [24] Kwon S W. Profiling of soluble proteins in wine by nano-high-performance liquidchromatography/tandem mass spectrometry. Journal of Agricultural and FoodChemistry,2004,52(24):7258-7263.
    [25] Horváth C G, Preiss B A, Lipsky S R. Fast Liquid Chromatography Investigation ofOperating Parameters and the Separation of Nucleotides on Pellicular Ion Exchangers.Analytical Chemistry,1967,39(12):1422~1428.
    [26] Lee H J, Kown M S, Lee E Y, et al. Proteomic analysis of rat liver microsomal proteins by a liquid-based two-dimensional chromatography combined with nano-LC-ESI-MS/MS. Molecular&Cellular Proteomics,2006,5(10): S291-S291.
    [27] Wang Y J, Balgley B M, Rudnick P A, et al. Integrated capillary isoelectricfocusing/nano-reversed phase liquid chromatography coupled with ESI-MS forcharacterization of intact yeast proteins. Journal of Proteome Research,2005,4(1):36-42.
    [28] Huang X, Zhang J, Horvath C. Capillary electrochromatography of proteins andpeptides with porous layer open-tubular columns. Journal of Chromatography A,1999,858(1):91-101.
    [29] Guo Y, Colon L A. A stationary-phase for open-tubular liquid-chromatography andelectrochromatography using sol-gel technology. Analytical Chemistry,1995,67(15):2511-2516.
    [30] Crego a L, Diezmasa J C, Dabrio M V. Preparation of open tubular columns forreversed-phase high-performance liquid chromatography. Analytical Chemistry,1993,65(11):1615-1621.
    [31] Pesek J J, Matyska M T. Electrochromatography in chemically modified etchedfused-silica capillaries. Journal of Chromatography A,1996,736(1-2):255-264.
    [32] Rogeberg M, Wilson S R, Greibrokk T, et al. Separation of intact proteins on porouslayer open tubular (PLOT) columns. Journal of Chromatography A,2010,1217(17):2782-2786.
    [33] Unger K K, Skudas R, Schulte M M. Particle packed columns and monolithic columnsin high-performance liquid chromatography-comparison and critical appraisal. Journalof Chromatography A,2008,1184(1-2):393-415.
    [34] Vissers J P C. Recent developments in microcolumn liquid chromatography. Journal ofChromatography A,1999,856(1-2):117-143.
    [35] Carney R A, Robson M M, Bartle K D, et al. Investigation into the formation of bubblesin capillary electrochromatography. Journal of High Resolution Chromatography,1999,22(1):29-32.
    [36] Tang Q L, Lee M L. Column technology for capillary electrochromatography. Trends inAnalytical Chemistry,2000,19(11):648-663.
    [37] Zou H F, Huang X D, Ye M L, et al. Monolithic stationary phases for liquidchromatography and capillary electrochromatography. Journal of Chromatography A,2002,954(1-2):5-32.
    [38] Tanaka N, Kobayashi H, Ishizuka N, et al. Monolithic silica columns forhigh-efficiency chromatographic separations. Journal of Chromatography A,2002,965(1-2):35-49.
    [39] Guiochon G. Monolithic columns in high-performance liquidchromatography Journal ofChromatography A,2007,1168(1-2):101-168.
    [40] Kobayashi H, Tokuda D, Ichimaru J, et al. Faster axial band dispersion in a monolithicsilica column than in a particle-packed column. Journal of Chromatography A,2006,1109(1):2-9.
    [41] Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation Journalof Porous Materials,1997,4(2):67-112.
    [42] Aoki H, Tanaka N, Kubo T, et al. Polymer-based monolithic columns in capillaryformat tailored by using controlled in situ polymerization. Journal of Separation Science,2009,32(3):341-358.
    [43] Hosoya K, Hira N, Yamamoto K, et al. High-performance polymer-based monolithiccapillary column. Analytical Chemistry,2006,78(16):5729-5735.
    [44] Ren L B, Liu Z, Liu Y C, et al. Ring-Opening Polymerization with SynergisticCo-monomers: Access to a Boronate-Functionalized Polymeric Monolith for theSpecific Capture of cis-Diol-Containing Biomolecules under Neutral Conditions.Angewandte Chemie-International Edition,2009,48(36):6704-6707.
    [45] Fujita K, Konishi J, Nakanishi K, et al. Strong light scattering in macroporous TiO2monoliths induced by phase separation. Applied Physics Letters,2004,85(23):5595-5597.
    [46] Konishi J, Fujita K, Nakanishi K, et al. Monolithic TiO2with controlled multiscaleporosity via a template-free sol-gel process accompanied by phase separation.Chemistry of Materials,2006,18(25):6069-6074.
    [47] Hoth D C, Rivera J G, Colon L A. Metal oxide monolithic columns. Journal ofChromatography A,2005,1079(1-2):392-396.
    [48] Konishi J, Fujita K, Oiwa S, et al. Crystalline ZrO2monoliths with well-definedmacropores and mesostructured skeletons prepared by combining the alkoxy-derivedsol-gel process accompanied by phase separation and the solvothermal process.Chemistry of Materials,2008,20(6):2165-2173.
    [49] Randon J, Huguet S, Piram A, et al. Synthesis of zirconia monoliths forchromatographic separations. Journal of Chromatography A,2006,1109(1):19-25.
    [50] Ishizuka N, Kobayashi H, Minakuchi H, et al. Monolithic silica columns forhigh-efficiency separations by high-performance liquid chromatography. Journal ofChromatography A,2002,960(1-2):85-96.
    [51] Ishizuka N, Minakuchi H, Nakanishi K, et al. Designing monolithic double-pore silicafor high-speed liquid chromatography. Journal of Chromatography A,1998,797(1-2):133-137.
    [52] Hayes J D, Malik A. Sol-gel monolithic columns with reversed electroosmotic flow forcapillary electrochromatography. Analytical Chemistry,2000,72(17):4090-4099.
    [53] Wu M, Wu R A, Wang F, et al.“One-Pot” Process for Fabrication of Organic-SilicaHybrid Monolithic Capillary Columns Using Organic Monomer and Alkoxysilane.Analytical Chemistry,2009,81(9):3529-3536.
    [54] Ping G, Zhang L, Zhang L, et al. Separation of acidic and basic compounds in capillaryelectrochromatography with polymethacrylate based monolithic columns. Journal ofChromatography A,2004,1035(2):265-270.
    [55] Huang H Y, Lin H Y, Lin S P. CEC with monolithic poly(styrene-divinylbenzene-vinylsulfonic acid) as the stationary phase. Electrophoresis,2006,27(23):4674-4681.
    [56] Eeltink S, Herrero-Martinez J M, Rozing G P, et al. Tailoring the Morphology ofMethacrylate Ester-Based Monoliths for Optimum Efficiency in LiquidChromatography. Analytical Chemistry,200577(22):7342-7347.
    [57] Klampfl C W. Review coupling of capillary electrochromatography to massspectrometry. Journal of Chromatography A,2004,1044(1-2):131-144.
    [58] Geiser L, Eeltink S, Svec F, et al. Stability and repeatability of capillary columns basedon porous monoliths of poly(butyl methacrylate-co-ethylene dimethacrylate). Journal ofChromatography A,2007,1140(1-2):140-146.
    [59] Ueki Y, Umemura T, Iwashita Y, et al. Preparation of low flow-resistantmethacrylate-based monolithic stationary phases of different hydrophobicity and theapplication to rapid reversed-phase liquid chromatographic separation of alkylbenzenesat high flow rate and elevated temperature. Journal of Chromatography A,2006,1106(1-2):106-111.
    [60] Gu B, Armenta J M, Lee M L. Preparation and evaluation of poly(polyethylene glycolmethyl ether acrylate-co-polyethylene glycol diacrylate) monolith for protein analysis.Journal of Chromatography A,2005,1079(1-2):382-391.
    [61] Li Y, Tolley H D, Lee M L. Poly[hydroxyethyl acrylate-co-poly(ethylene glycol)diacrylate] Monolithic Column for Efficient Hydrophobic Interaction Chromatographyof Proteins. Analytical Chemistry,200981(22):9416-9424.
    [62] Kahle V, Vazlerova M, Welsch T. Automated microgradient system for capillaryelectrochromatography. Journal of Chromatography A,2003,990(1-2):3-9.
    [63] Kvasnickova L, Glatz Z, Sterbova H, et al. Application of capillaryelectrochromatography using macroporous polyacrylamide columns for the analysis oflignans from seeds of Schisandra chinensis. Journal of Chromatography A,2001,916(1-2):265-271.
    [64] Zhu G, Zhang L, Liang Z, et al. Macroporous polyacrylamide-based monolithic columnwith immobilized pH gradient for protein analysis. Molecular&Cellular Proteomics,2006,5(10): S141-S141.
    [65] Zhu G J, Yuan H M, Zhaol P, et al. Macroporous polyacrylamide-based monolithiccolumn with immobilized pH gradient for protein analysis. Electrophoresis,2006,27(18):3578-3583.
    [66] Hoegger D, Freitag R. Acrylamide-based monoliths as robust stationary phases forcapillary electrochromatography. Journal of Chromatography A,2001,914(1-2):211-222.
    [67] Freitag R. Comparison of the chromatographic behavior of monolithic capillarycolumns in capillary electrochromatography and nano-high-performance liquidchromatography. Journal of Chromatography A,2004,1033(2):267-273.
    [68] Lammerhofer M, Svec F, Frechet J M J, et al. Capillary electrochromatography inanion-exchange and normal-phase mode using monolithic stationary phases. Journal ofChromatography A,2001,925(1-2):265-277.
    [69] Que a H, Konse T, Baker a G, et al. Analysis of bile acids and their conjugates bycapillary electrochromatography/electrospray ion trap mass spectrometry. AnalyticalChemistry,2000,72(13):2703-2710.
    [70] Zeng C M, Liao J L, Nakazato K I, et al. Hydrophobic-interaction chromatography ofproteins on continuous beds derivatized with isopropyl groups. Journal ofChromatography A,1996,753(2):227-234.
    [71] Hoegger D, Freitag R. Investigation of mixed-mode monolithic stationary phases for theanalysis of charged amino acids and peptides by capillary electrochromatography.Journal of Chromatography A,2003,1004(1-2):195-208.
    [72] Tegeler O J, Mechref Y, Boraas K, et al. Microdeposition Device Interfacing CapillaryElectrochromatography and Microcolumn Liquid Chromatography withMatrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Analytical Chemistry,200476(22):6698-6706.
    [73] Que a H, Novotny M V. Separation of Neutral Saccharide Mixtures with CapillaryElectrochromatography Using Hydrophilic Monolithic Columns. Analytical Chemistry,2002,74(20):5184-5191.
    [74] Jiang Z, Smith N W, Ferguson P D, et al. Hydrophilic Interaction ChromatographyUsing Methacrylate-Based Monolithic Capillary Column for the Separation of PolarAnalytes. Analytical Chemistry,200779(3):1243-1250.
    [75] Jiang Z, Smith N W, Ferguson P D, et al. Novel highly hydrophilic zwitterionicmonolithic column for hydrophilic interaction chromatography. Journal of SeparationScience,2009,32(15-16):2544-2555.
    [76] Viklund C, Sjogren A, Irgum K, et al. Chromatographic interactions between proteinsand sulfoalkylbetaine-based zwitterionic copolymers in fully aqueous low-salt buffers.Analytical Chemistry,2001,73(3):444-452.
    [77] Gunasena D N, Rassi Z E. Organic monoliths for hydrophilic interactionelectrochromatography/chromatography and immunoaffinity chromatography.Electrophoresis,2012,33(1):251-261.
    [78] Nordborg A, Hilder E F. Recent advances in polymer monoliths for ion-exchangechromatography Analytical and Bioanalytical Chemistry,2009,394(1):71-84.
    [79] Ou J, Gibson G T T, Oleschuk R D. Fast preparation of photopolymerized poly(benzylmethacrylate-co-bisphenol A dimethacrylate) monoliths for capillaryelectrochromatography. Journal of Chromatography A,2010,1217(22):3628-3634.
    [80] Smith N W, Jiang Z. Developments in the use and fabrication of organic monolithicphases for use with high-performance liquid chromatography and capillaryelectrochromatography. Journal of Chromatography A,2008,1184(1-2):416-440.
    [81] Kato M, Sakai Kato K, Toyo'oka T, et al. Effect of preparatory conditions on the performance of photopolymerized sol-gel monoliths for capillary electrochromatography. Journal of Chromatography A,2002,961(1):45-51.
    [82] Dulay M T, Quirino J P, Bennett B D, et al. Photopolymerized Sol Gel Monoliths forCapillary Electrochromatography. Analytical Chemistry,2001,73(16):3921-3926.
    [83] Chambers S D, Holcombe T W, Svec F, et al. Porous Polymer MonolithsFunctionalized through Copolymerization of a C60Fullerene-Containing MethacrylateMonomer for Highly Efficient Separations of Small Molecules. Analytical Chemistry,2011,83(24):9478-9484.
    [84] Wu M H, Wu R A, Li R B, et al. Polyhedral Oligomeric Silsesquioxane as aCross-linker for Preparation of Inorganic-Organic Hybrid Monolithic Columns.Analytical Chemistry,2010,82(13):5447-5454.
    [85] Boonpangrak S, Whitcombe M J, Prachayasittikul V, et al. Preparation of molecularlyimprinted polymers using nitroxide-mediated living radical polymerization. Biosensorsand Bioelectronics,200622(3):349–354.
    [86] Wang M M, Wang H F, Jiang D Q, et al. A strong inorganic acid-initiated methacrylatepolymerization strategy for room temperature preparation of monolithic columns forcapillary electrochromatography. Electrophoresis,2010,31(10):1666-1673.
    [87] Dubinsky S, Petukhova A, Gourevich I, et al. A Study of Polymerization Induced PhaseSeparation as a Route to Produce Porous Polymer Metal Materials. MacromolecularRapid Communications,2010,31(18):1635-1640.
    [88] Dulay M T, Quirino J P, Bennett B D, et al. Photopolymerized Sol Gel Monoliths forCapillary Electrochromatography. Analytical Chemistry,2001,73(16):3921-3926.
    [89] Nakanishi K. Pore Structure Control of Silica Gels Based on Phase Separation Journalof Porous Materials,1997,4(2):67-112.
    [90] Kaji H, Nakanishi K, Soga N. Polymerization-Induced Phase Separation in SilicaSol-Gel Systems Containing Formamide. Journal of Sol-Gel Science&Technology,1993,1(1):35-46.
    [91] Kaji H, Nakanishi K, Soga N. Formation of porous gel morphology by phase separationin gelling alkoxy-derived silica. Affinity between silica polymers and solvent. Journalof Non-Crystalline Solids,1995,181(1-2):16-26.
    [92] Nakanishi K. Crystallization of silica gels containing sodium poly-4-styrene sulfonate.Journal of Non-Crystalline Solids,1989,108(2):157-162.
    [93] Nakanishi K, Soga N. Phase Separation in Gelling Silica–Organic Polymer Solution:Systems Containing Poly(sodium styrenesulfonate). Journal of the American CeramicSociety,1991,74(10):2518-2530.
    [94] Nakanishi K, Saga N, Matsuoka H, et al. Smal I-Angle X-ray Scatter i ng Study ofCelIing SiIica-0rganic Polymer Solution: Systems Containing Poly(SodiumStyrenesulfonate). Journal of the American Ceramic Society,1992,75(4):971-975.
    [95] Nakanishi K, Soga N. Phaseseparation in silicasol-gelsystemcontainingpolyacrylicacid.III. Effect of catalytic condition. Journal of Non-Crystalline Solids,1992,142(1-2):36-44.
    [96] Nakanishi K, Soga N. Phaseseparation in silicasol-gelsystemcontainingpolyacrylicacidII. Effects of molecular weight and temperature. Journal of Non-Crystalline Solids,1992,139(1):14-24.
    [97] Nakanishi K, Soga N. Phaseseparation in silicasol-gelsystemcontainingpolyacrylicacid I.Gel formaation behavior and effect of solvent composition. Journal of Non-CrystallineSolids,1992,139(1):1-13.
    [98] Nakanishi K, Soga N. Phase separation in silica sol-gel system containing polyacrylicacid. IV. Effect of chemical additives. Journal of noncrystalline solids,1992,142(1-2):45-54.
    [99] Nakanishi K, Yamasaki Y, Kaji H, et al. Phase separation kinetics in silica sol-gelsystem containing polyethylene oxide. I. Initial stage. Journal of SolGel Science andTechnology,1994,2(1):227-231.
    [100] Nakanishi K, Komura H, Takahashi R, et al. Phase Separation in Silica Sol-Gel SystemContaining Poly(ethylene oxide). I. Phase Relation and Gel Morphology. Bulletin of theChemical Society of Japan,1994,67(5):1327-1335.
    [101] Nakanishi K. Sol–Gel Process of Oxides Accompanied by Phase Separation. Bulletin ofthe Chemical Society of Japan,2006,79(5):673-691.
    [102] Hayes J D, Malik A. Sol Gel Monolithic Columns with Reversed Electroosmotic Flowfor Capillary Electrochromatography. Analytical Chemistry,2000,72(17):4090-4099.
    [103] Yan L J, Zhang Q H, Zhang W B, et al. Hybrid organic-inorganic phenyl monolithiccolumn for capillary electrochromatography. Electrophoresis,2005,26(15):2935-2941.
    [104] Yu S, Geng J, Zhou P, et al. Application of a new hybrid organic-inorganic monolithiccolumn for efficient deoxyribonucleic acid purification. Analytica Chimica Acta,2008,611(2):173
    [105] Colon H, Zhang X, Murphy J K, et al. Allyl-functionalized hybrid silica monoliths.Chemical Communications,2005,(22):2826-2828.
    [106] Tian Y, Zhang L, Zeng Z, et al. Calix[4] open-chain crown ether-modified,vinyl-functionalized hybrid silica monolith for capillary electrochromatography.Electrophoresis,2008,29(4):960-970.
    [107] Yan L, Zhang Q, Zhang J, et al. Hybrid organic-inorganic monolithic stationary phasefor acidic compounds separation by capillary electrochromatography. Journal ofChromatography A,2004,1046(1-2):255-261.
    [108] Ma J, Liang Z, Qiao X, et al. Organic-inorganic hybrid silica monolith basedimmobilized trypsin reactor with high enzymatic activity. Analytical Chemistry,2008,80(8):2949-2956.
    [109] Wu M, Chen Y, Wu R A, et al. The synthesis of chloropropyl-functionalized silicahybrid monolithic column with modification of N,N-dimethyl-N-dodecylamine forcapillary electrochromatography separation. Journal of Chromatography A,2010,1217(26):4389-4394.
    [110] Dong M M, Wu M H, Wang F J, et al. Coupling Strong Anion-Exchange MonolithicCapillary with MALDI-TOF MS for Sensitive Detection of Phosphopeptides in ProteinDigest. Analytical Chemistry,2010,82(7):2907-2915.
    [111] Lin Z, Pang J, Yang H, et al. One-pot synthesis of an organic–inorganic hybrid affinitymonolithic column for specific capture of glycoproteins. Chemical Communications,2012,479675-9677.
    [112] Baek S K, Choi S J, Kim J S, et al. Analysis of tofisopam in human serum bycolumn-switching semi-micro high-performance liquid chromatography and evaluationof tofisopam bioequivalency. Biomedical Chromatography,2002,16(4):277-281.
    [113] Garcia-Borregon P F, Lores M, Cela R. Analysis of barbiturates bymicro-high-performance liquid chromatography with post-column photochemicalderivatization. Journal of Chromatography A,2000,870(1-2):39-44.
    [114] Zheng M M, Lin B, Feng Y Q. Hybrid organic-inorganic octyl monolithic column forin-tube solid-phase microextraction coupled to capillary high-performance liquidchromatography. Journal of Chromatography A,2007,1164(1-2):48-55.
    [115] Lin Z A, Pang J L, Yang H H, et al. One-pot synthesis of an organic-inorganic hybridaffinity monolithic column for specific capture of glycoproteins. ChemicalCommunications,2011,47(34):9675-9677.
    [116] Zhao Y X, Zhao R, Shangguan D H, et al. A new type of capillary column foropen-tubular electrochromatography. Electrophoresis,2002,23(17):2990-2995.
    [117] Feng R, Shen M, Chen H, et al. Liquid Crystal Modified Organic-inorganic HybridSilica Monolithic Column for Capillary Electrochromatography. Chemical Journal ofChinese Universities-Chinese,2011,32(1):50-55.
    [118] Yan L J, Zhang Q H, Zhang H, et al. Hybrid organic-inorganic monolithic stationaryphase for acidic compounds separation by capillary electrochromatography. Journal ofChromatography A,2004,1046(1-2):255-261.
    [119] Zakaria P, Hutchinson J P, Avdalovic N, et al. Latex-Coated Polymeric MonolithicIon-Exchange Stationary Phases.2. Micro-Ion Chromatography. Analytical Chemistry,2005,77(2):417-423.
    [120] Armenta J M, Gu B, Humble P H, et al. Design and evaluation of a coupled monolithicpreconcentrator-capillary zone electrophoresis system for the extraction ofimmunoglobulin G from human serum. Journal of Chromatography A,2005,1097(1-2):171-178.
    [121] Zhang L, Zhang L, Zhang W, et al. On-line concentration of peptides and proteins withthe hyphenation of polymer monolithic immobilized metal affinity chromatography andcapillary electrophoresis. Electrophoresis,2005,26(11):2172-2178.
    [122] Thabano J R E, Breadmore M C, Hutchinson J P, et al. Capillary electrophoresis ofneurotransmitters using in-line solid-phase extraction and preconcentration using amethacrylate-based weak cation-exchange monolithic stationary phase and a pH stepgradient. Journal of Chromatography A,2007,1175(1):117-126.
    [123] Rodríguez G E, Domínguez L J, Ruano M L, et al. In-capillary preconcentration ofpirimicarb and carbendazim with a monolithic polymeric sorbent prior to separation byCZE. Electrophoresis,2008,29(19):4066-4077.
    [124] Peterson D S, Rohr T, Svec F, et al. High-Throughput Peptide Mass Mapping Using aMicrodevice Containing Trypsin Immobilized on a Porous Polymer Monolith Coupledto MALDI TOF and ESI TOF Mass Spectrometers. Journal of Proteome Research,2002,1(6):563-568.
    [125] K venková J, Bilková Z, Foret F. Chararacterization of a monolithic immobilizedtrypsin microreactor with on-line coupling to ESI-MS. Journal of Separation Science,2005,28(14):1675-1684.
    [126] Duan J, Liang Z, Yang C, et al. Rapid protein identification using monolithic enzymaticmicroreactor and LC-ESI-MS/MS. Proteomics,2006,6(2):412-419.
    [127] Hoyle C E, Bowman C N. Thiol-ene click chemistry. Angewandte Chemie InternationalEdition,2010,49(9):1540-1573.
    [128] Auvergne R, Morel M H, Menut P, et al. Reactivity of wheat gluten protein duringmechanical mixing: radical and nucleophilic reactions for the addition of molecules onsulfur. Biomacromolecules,2008,9(2):664-671.
    [129] Heidecke C D, Lindhorst T K. Iterative synthesis of spacered glycodendrons asoligomannoside mimetics and evaluation of their antiadhesive properties. Chemistry-AEuropean Journal,2007,13(32):9056-9067.
    [130] Killops K L, Campos L M, Hawker C J. Robust, efficient, and orthogonal synthesis ofdendrimers via thiol-ene "click" chemistry. Journal of the American Chemical Society,2008,130(15):5062-5064.
    [131] Lutolf M P, Hubbell J A. Synthesis and physicochemical characterization of end-linkedpoly(ethylene glycol)-co-peptide hydrogels formed by Michael-type addition.Biomacromolecules,2003,4(3):713-722.
    [132] Lutolf M P, Tirelli N, Cerritelli S, et al. Systematic modulation of Michael-typereactivity of thiols through the use of charged amino acids. Bioconjugate Chemistry,2001,12(6):1051-1056.
    [133] Polizzotti B D, Fairbanks B D, Anseth K S. Three-dimensional biochemical patterning of click-based composite hydrogels via thiolene photopolymerization. Biomacromolecules,2008,9(4):1084-1087.
    [134] Salinas C N, Anseth K S. Mixed Mode Thiol-Acrylate Photopolymerizations for theSynthesis of PEG-Peptide Hydrogels. Macromolecules,200841(16):6019-6026.
    [135] Triola G, Brunsveld L, Waldmann H. Racemization-free synthesis of S-alkylatedcysteines via thiol-ene reaction. Journal of Organic Chemistry,2008,73(9):3646-3649.
    [136] Jonkheijm P, Weinrich D, Kohn M, et al. Photochemical surface patterning by thethiol-ene reaction. Angewandte Chemie International Edition,2008,47(23):4421-4424.
    [137] Wittrock S, Becker T, Kunz H. Synthetic vaccines of tumor-associated glycopeptideantigens by immune-compatible thioether linkage to bovine serum albumin.Angewandte Chemie International Edition,2007,46(27):5226-5230.
    [138] Floyd N, Vijayakrishnan B, Koeppe a R, et al. Thiyl Glycosylation of Olefinic Proteins:S-Linked Glycoconjugate Synthesis. Angewandte Chemie-International Edition,2009,48(42):7798-7802.
    [139] Hodgson R J, Besanger T R, Brook M A, et al. Inhibitor screening using immobilizedenzyme reactor chromatography/mass spectrometry. Analytical Chemistry,2005,77(23):7512-7519.
    [140] Liu D N, Li L, Lu W P, et al. Capillary electrophoresis with laser-induced fluorescencedetection as a tool for enzyme characterization and inhibitor screening. AnalyticalSciences,2008,24(3):333-337.
    [141] Tang Z M, Kang J W. Enzyme inhibitor screening by capillary electrophoresis with anon-column immobilized enzyme microreactor created by an ionic binding technique.Analytical Chemistry,2006,78(8):2514-2520.
    [142] Ma J, Liang Z, Qiao X, et al. Organic-inorganic hybrid silica monolith basedimmobilized trypsin reactor with high enzymatic activity. Analytical Chemistry,2008,80(8):2949-2956.
    [143] Peterson D S, Rohr T, Svec F, et al. Enzymatic microreactor-on-a-chip: proteinmapping using trypsin immobilized on porous polymer monoliths molded in channels ofmicrofluidic devices. Analytical Chemistry,2002,74(16):4081-4088.
    [144] Spross J, Sinz A. Immobilized monolithic enzyme reactors for application in proteomicsand pharmaceutics. Analytical and Bioanalytical Chemistry,2009,395(6):1583-1588.
    [145] Krenkova J, Svec F. Less common applications of monoliths: IV. Recent developmentsin immobilized enzyme reactors for proteomics and biotechnology. Journal ofSeparation Science,2009,32(5-6):706-718.
    [146] Ma J, Zhang L, Liang Z, et al. Monolith-based immobilized enzyme reactors: recentdevelopments and applications for proteome analysis. Journal of Separation Science,2007,30(17):3050-3059.
    [147] Ma J F, Zhang L H, Liang Z, et al. Recent advances in immobilized enzymatic reactorsand their applications in proteome analysis. Analytica Chimica Acta,2009,632(1):1-8.
    [148] Monzo A, Sperling E, Guttman a S. Proteolytic enzyme-immobilization techniques forMS-based protein analysis Trends in Analytical Chemistry,200928(7):854-864.
    [149] Spro J, Sinz A. Immobilized monolithic enzyme reactors for application in proteomicsand pharmaceutics Analytical and Bioanalytical Chemistry,2009,395(6):1583-1588.
    [150] Ichihara T, Akada J K, Kamei S, et al. A novel approach of protein immobilization forprotein chips using an oligo-cysteine tag. Journal of Proteome Research,2006,5(9):2144-2151.
    [151] Soellner M B, Dickson K A, Nilsson B L, et al. Site-Specific Protein Immobilization byStaudinger Ligation. Journal of the American Chemical Society,2003,12511790-11791.
    [152] Duckworth B P, Xu J, Taton T A. Site-Specific, Covalent Attachment of Proteins to aSolid Surface. Bioconjugate Chemistry,2006,17(4):967-974.
    [153] Feng S, Ye M L, Jiang X N, et al. Coupling the Immobilized Trypsin Microreactor ofMonolithic Capillary with μRPLC-MS/MS for Shotgun Proteome Analysis. Journal ofProteome Research,2006,5(2):422-428.
    [154] Schoenherr R M, Ye M L, Vannatta M, et al. CE-microreactor-CE-MS/MS for proteinanalysis. Analytical Chemistry,2007,79(6):2230-2238.
    [155] Wojcik R, Vannatta M, Dovichi N J. Automated Enzyme-Based Diagonal CapillaryElectrophoresis: Application to Phosphopeptide Characterization. Analytical Chemistry,2010,82(4):1564-1567.
    [156] Ye M L, Hu S, Schoenherr R M, et al. On-line protein digestion and peptide mappingby capillary electrophoresis with post-column labeling for laser-induced fluorescencedetection. Electrophoresis,2004,25(9):1319-1326.
    [157] Kato M, Inuzuka K, Sakai-Kato K, et al. Monolithic bioreactor immobilizing trypsin forhigh-throughput analysis. Analytical Chemistry,2005,77(6):1813-1818.
    [158] Duan J C, Liang Z, Yang C, et al. Rapid protein identification using monolithicenzymatic microreactor and LC-ESI-MS/MS. Proteomics,2006,6(2):412-419.
    [159] Schlossbauer A, Schaffert D, Kecht J, et al. Click chemistry for high-densitybiofunctionalization of mesoporous silica. Journal of the American Chemical Society,2008,130(38):12558-12565.
    [160] Tegeler T, El Rassi Z. On-column trace enrichment by sequential frontal and elutionelectrochromatography-II. Enhancement of sensitivity by segmented capillaries withz-cell configuration-application to the detection of dilute samples of moderately polarand nonpolar pesticides. Journal of Chromatography A,2002,945(1-2):267-279.
    [161] Li J, Thibault P, Martin A, et al. Development of an on-line preconcentration methodfor the analysis of pathogenic lipopolysaccharides using capillary electrophoresis-electrospray mass spectrometry-Application to small colony isolates. Journal ofChromatography A,1998,817(1-2):325-336.
    [162] Zhang Y K, Zhu J, Zhang L H, et al. High-efficiency on-line concentration technique ofcapillary electrochromatography. Analytical Chemistry,2000,72(22):5744-5747.
    [163] Janini G M, Zhou M, Yu L R, et al. On-column sample enrichment for capillaryelectrophoresis sheathless electrospray ionization mass spectrometry: Evaluation forpeptide analysis and protein identification. Analytical Chemistry,2003,75(21):5984-5993.
    [164] Liang Z, Zhang L H, Duan J C, et al. On-line concentration of proteins in pressurizedcapillary electrochromatography coupled with electrospray ionization-massspectrometry. Electrophoresis,2005,26(7-8):1398-1405.
    [165] Hernandez E, Benavente F, Sanz-Nebot V, et al. Analysis of opioid peptides by on-lineSPE-CE-ESI-MS. Electrophoresis,2007,28(21):3957-3965.
    [166] Tempels F W A, Underberg W J M, Somsen G W, et al. On-line coupling of SPE andCE-MS for peptide analysis. Electrophoresis,2007,28(9):1319-1326.
    [167] Morales C G, Simonet B M, Cardenas S, et al. Electrical field-assisted solid-phaseextraction coupled on-line to capillary electrophoresis-mass spectrometry.Electrophoresis,2008,29(10):2033-2040.
    [168] Petersen D, Foote R S, Geschke O, et al. An integrated microdevice for on-chippreconcentration, separation and labeling of proteins. Micro Total Analysis Systems2005,(296):117-119.
    [169] Leung S A, De Mello a J. On-column pre-concentration of alcohol dehydrogenase incapillary electrophoresis. Journal of Separation Science,2002,25(18):1346-1350.
    [170] Zhao Y, Mclaughlin K, Lunte C E. On-Column Sample Preconcentration Using SampleMatrix Switching and Field Amplification for Increased Sensitivity of CapillaryElectrophoretic Analysis of Physiological Samples. Analytical Chemistry,1998,704578-4585.
    [171] Zhao Y, Lunte C E. pH-Mediated Field Amplification On-Column Preconcentration ofAnions in Physiological Samples for Capillary Electrophoresis. Analytical Chemistry,1999,713985-3991.
    [172] Quirino J P, Terabe S. Approaching a million-fold sensitivity increase in capillaryelectrophoresis with direct ultraviolet detection: Cation-selective exhaustive injectionand sweeping. Analytical Chemistry,2000,72(5):1023-1030.
    [173] Lin C H, Kaneta T. On-line sample concentration techniques in capillary electrophoresis:Velocity gradient techniques and sample concentration techniques for biomolecules.Electrophoresis,2004,25(23-24):4058-4073.
    [174] Breadmore M C, Quirino J P.100000-fold concentration of anions in capillary zoneelectrophoresis using electroosmotic flow controlled counterflow isotachophoreticstacking under field amplified conditions. Analytical Chemistry,2008,80(16):6373-6381.
    [175] Xu Z Q, Nakamura K, Timerbaev a R, et al. Another Approach Toward over100000-Fold Sensitivity Increase in Capillary Electrophoresis: ElectrokineticSupercharging with Optimized Sample Injection. Analytical Chemistry,2011,83(1):398-401.
    [176] Quirino J P, Dulay M T, Zare R N. On-line preconcentration in capillaryelectrochromatography using a porous monolith together with solvent gradient andsample stacking. Analytical Chemistry,2001,73(22):5557-5563.
    [177] Tegeler T, El Rassi Z. On-column trace enrichment by sequential frontal and elutionelectrochromatography.1. Application to carbamate insecticides. Analytical Chemistry,2001,73(14):3365-3372.
    [178] Oguri S, Tanagaki H, Hamaya M, et al. On-line preconcentration prior to on-columnderivatization monolith octadecasiloxane capillary electrochromatography for thedetermination of biogenic amines. Analytical Chemistry,2003,75(19):5240-5245.
    [179] Knudsen C B, Beattie J H. On-line solid-phase extraction-capillary electrophoresis forenhanced detection sensitivity and selectivity: application to the analysis ofmetallothionein isoforms in sheep fetal liver. Journal of Chromatography A,1997,792463-473.
    [180] Breadmore M C, Macka M, Avdalovic N, et al. On capillary ion-exchangepreconcentration of inorganic anions in open-tubular capillary electrochromatographywith elution using transient-isotachophoretic gradients.2. Characterization of theisotachophoretic gradient. Analytical Chemistry,2001,73(4):820-828.
    [181] Yu C, Davey M H, Svec F, et al. Monolithic porous polymer for on-chip solid-phaseextraction and preconcentration prepared by photoinitiated in situ polymerization withina microfluidic device. Analytical Chemistry,2001,73(21):5088-5096.
    [182] Breadmore M C, Palmer a S, Curran M, et al. On-column ion-exchangepreconcentration of inorganic anions in open tubular capillary electrochromatographywith elution using transient-isotachophoretic gradients.3. Implementation and methoddevelopment. Analytical Chemistry,2002,74(9):2112-2118.
    [183] Hutchinson J P, Zakaria P, Bowiet a R, et al. Latex-coated polymeric monolithicion-exchange stationary phases.1. Anion-exchange capillary electrochromatographyand in-line sample preconcentration in capillary electrophoresis. Analytical Chemistry,2005,77(2):407-416.
    [184] Muna G W, Quaiserova M V, Swain G M. Chlorinated phenol analysis using off-linesolid-phase extraction and capillary electrophoresis coupled with amperometricdetection and a boron-doped diamond microelectrode. Anal Chem,2005,77(20):6542-6548.
    [185] Zhang L H, Wu X Z. Capillary electrophoresis with in-capillary solid-phase extractionsample cleanup. Analytical Chemistry,2007,79(6):2562-2569.
    [186] Yamamoto S, Hirakawa S, Suzuki S. In Situ Fabrication of Ionic Polyacrylamide-BasedPreconcentrator on a Simple Poly(methyl methacrylate) Microfluidic Chip for CapillaryElectrophoresis of Anionic Compounds. Analytical Chemistry,2008,80(21):8224-8230.
    [187] Yang C M, El Rassi Z. Electrically driven microseparation methods for pesticides andmetabolites. II: On-line and off-line preconcentration of urea herbicides in capillaryelectrochromatography. Electrophoresis,1999,20(12):2337-2342.
    [188] Wang F J, Dong J, Ye M L, et al. Online multidimensional separation with biphasicmonolithic capillary column for shotgun proteome analysis. Journal of ProteomeResearch2008,7(1):306-310.
    [189] Feng S, Ye M L, Jiang X N, et al. Coupling the Immobilized Trypsin Microreactor ofMonolithic Capillary with μRPLC-MS/MS for Shotgun Proteome Analysis. Journal ofProteome Research,2006,5(2):422-428.
    [190] Colon H, Zhang X, Murphy J K, et al. Chemistry Communication,2005,2826-2828.
    [191] Wu M H, Wu R A, Wang F J, et al.“One-Pot” Process for Fabrication of Organic-SilicaHybrid Monolithic Capillary Columns Using Organic Monomer and Alkoxysilane.Analytical Chemistry,2009,81(9):3529-3536.
    [192] Lin H, Ou J, Zhang Z, et al. Facile Preparation of Zwitterionic Organic-Silica HybridMonolithic Capillary Column with an Improved “One-Pot” Approach forHydrophilic-Interaction Liquid Chromatography (HILIC). Analytical Chemistry,2012,
    [193] Alpert a J. Hydrophilic-interaction chromatography for the separation of peptides,nucleic acids and other polar compounds. Journal of Chromatography A,1990,499(19):177-196.
    [194] Yoshida T. Journal of Biochemical and Biophysical Methods,2004,60265-280.
    [195] Jiang Z J, Smith N W, Ferguson P D, et al. Novel highly hydrophilic zwitterionicmonolithic column for hydrophilic interaction chromatography. Journal of SeparationScience,2009,32(15-16):2544-2555.
    [196] Berthoda A, Changb S S C, Kullmanb J P S, et al. Practice and mechanism of HPLColigosaccharide separation with a cyclodextrin bonded phase. Talanta,1998,47(4):1001-1012.
    [197] Hemstrom P, Irgum K. Hydrophilic interaction chromatography. Journal of SeparationScience,2006,29(12):1784-1821.
    [198] Alpert a J, Shukla M, Shukla a K, et al. Hydrophilic-interaction chromatography ofcomplex carbohydrates. Journal of Chromatography A,1994676(1):191-202.
    [199] Churms S C. Recent progress in carbohydrate separation by high-performance liquidchromatography based on hydrophilic interaction. Journal of Chromatography A,1996,720(1-2):75-91.
    [200] Lindner H, Sarg B, Meraner C, et al. Separation of acetylated core histones byhydrophilic-interaction liquid chromatography. Journal of Chromatography A,1996,743(1):137-144.
    [201] Oyler a R, Armstrong B L, Cha J Y, et al. Hydrophilic interaction chromatography onamino-silica phases complements reversed-phase high-performance liquidchromatography and capillary electrophoresis for peptide analysis. Journal ofChromatography A,1996,724378-383.
    [202] Yoshida T. Peptide separation in normal phase liquid chromatography. AnalyticalChemistry,1997,69(15):3038-3043.
    [203] Yoshida T. Peptide separation by Hydrophilic-Interaction Chromatography: a review.Journal of Biochemical and Biophysical Methods,2004,60(3):265-280.
    [204] Strege M A. Hydrophilic Interaction Chromatography Electrospray Mass SpectrometryAnalysis of Polar Compounds for Natural Product Drug Discovery. AnalyticalChemistry,1998,70(13):2439-2445.
    [205] Olsen B A. Hydrophilic interaction chromatography using amino and silica columns forthe determination of polar pharmaceuticals and impurities. Journal of ChromatographyA,2001,913(1-2):113-122.
    [206] Guo Y, Gaiki S. Retention behavior of small polar compounds on polar stationaryphases in hydrophilic interaction chromatography. Journal of Chromatography A,2005,1074(1-2):71-80.
    [207] Guo Z M, Lei a W, Zhang Y P, et al."Click saccharides'': novel separation materials forhydrophilic interaction liquid chromatography. Chemical Communications,2007,(24):2491-2493.
    [208] Naidong W, Shou W, Chen Y L, et al. Novel liquid chromatographic-tandem massspectrometric methods using silica columns and aqueous-organic mobile phases forquantitative analysis of polar ionic analytes in biological fluids. Journal ofChromatography B,2001,754(2):387-399.
    [209] Tanaka H, Zhou X J, Masayoshi O. Characterization of a novel diol column forhigh-performance liquid chromatography. Journal of Chromatography A,2003,987(1-2):119-125.
    [210] Zhang Y P, Guo Z M, Ye J X, et al. Preparation of novel beta-cyclodextrin chiralstationary phase based on click chemistry. Journal of Chromatography A,2008,1191(1-2):188-192.
    [211] Guo Z M, Jin Y, Liang T, et al. Synthesis, chromatographic evaluation and hydrophilicinteraction/reversed-phase mixed-mode behavior of a "Click beta-cyclodextrin"stationary phase. Journal of Chromatography A,2009,1216(2):257-263.
    [212] Viklund C, Irgum K. Synthesis of porous zwitterionic sulfobetaine monoliths andcharacterization of their interaction with proteins. Macromolecules,2000,33(7):2539-2544.
    [213] Jiang W, Irgum K. Tentacle-type Zwitterionic stationary phase, prepared bysurface-initiated graft polymerization of3-[N,N-dimethyl-N-(methacryloyloxyethyl)-ammonium] propanesulfonate through peroxide groups tethered on porous silica.Analytical Chemistry,2002,74(18):4682-4687.
    [214] Jiang Z J, Smith N W, Ferguson P D, et al. Hydrophilic interaction chromatographyusing methacrylate-based monolithic capillary column for the separation of polaranalytes. Analytical Chemistry,2007,79(3):1243-1250.
    [215] Skerikova V, Jandera P. Effects of the operation parameters on Hydrophilic InteractionLiquid Chromatography separation of phenolic acids on zwitterionic monolithiccapillary columns. Journal of Chromatography A,2010,1217(51):7981-7989.
    [216] Wang X C, Lin X C, Xie Z H. Preparation and evaluation of a sulfoalkylbetaine-basedzwitterionic monolithic column for CEC of polar analytes. Electrophoresis,2009,30(15):2702-2710.
    [217] Wang X C, Ding K, Yang C M, et al. Sulfoalkylbetaine-based monolithic column withmixed-mode of hydrophilic interaction and strong anion-exchange stationary phase forcapillary electrochromatography. Electrophoresis,2010,31(17):2997-3005.
    [218] Jiang Z J, Reilly J, Everatt B, et al. Novel zwitterionic polyphosphorylcholinemonolithic column for hydrophilic interaction chromatography. Journal ofChromatography A,2009,1216(12):2439-2448.
    [219] Lin H, Ou J, Zhang Z, et al. Facile Preparation of Zwitterionic Organic-Silica HybridMonolithic Capillary Column with an Improved “One-Pot” Approach forHydrophilic-Interaction Liquid Chromatography (HILIC). Analytical Chemistry,2012,
    [220] Wal S V D. Low viscosity organic modifiers in reversed-phase HPLC Chromatographia,1985,20(5):274-278.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700