用户名: 密码: 验证码:
基于生物样品在线富集技术的临床毛细管电泳方法学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临床生物样品分析是临床药物治疗的重要辅助手段,是化学、生物学与医学的桥梁。临床生物样品分析主要包括代谢组学研究,临床治疗药物监测、药代动力学研究和生化样品分析。常见的生物样品分析方法有色谱法、光谱法、微生物法和免疫法。较其他三种方法,色谱法能够结合光谱法,免疫法和生物法的优势,利用自身的分离效能,能够准确,有效地分离分析临床生物样品。主流的色谱分析法为气相色谱法、高效液相色谱法和毛细管电泳法。
     近几年,毛细管电泳作为一种新型的分离分析技术,较常规色谱有分析速度快、分离效能高,分析成本低,使用分析体系较其他色谱法更接近生物体液环境的优势,而越来越被重视,成为主流的生物样品分析方法。但当使用紫外检测器时,由于毛细管电泳的进样量和检测窗小,灵敏度受到限制。为了解决这个问题,场放大技术在毛细管电泳中起到了至关重要的作用。它主要原理是分析物在两个导电性不同的相界面上电泳速度的不同而形成富集效应,从而实现较高灵敏度的快速分离分析。
     本课题选择盐酸氨溴索、苯磺酸氨氯地平及米氮平为研究对象,是因为它们给药剂量小,半衰期长,血药浓度低,希望通过建立合适的在线场放大毛细管电泳法,实现灵敏、快速、低耗的分离分析,并将其用于测定盐酸氨溴索、苯磺酸氨氯地平对映体及米氮平和米氮平代谢产物在人血浆中的浓度。实验中,研究毛细管区带电泳在进行生物样品分析时分离电压、流动相组成及缓冲液pH值对目标成份分析时间的影响,考察了进样方式、时间和电压、样品溶液中有机试剂的浓度对样品在线场放大技术的作用效果,同时比较了不同环糊精及其浓度对由于场放大作用导致的不对称峰形改善的效果及对手性药物拆分的效果。结果显示,在线场放大技术使得毛细管电泳-紫外检测法的灵敏度显著提高,能够满足生物样品检测的要求,并且缓冲液中添加合适的环糊精可以改善分析物的峰形,同时可以实现手性药物的拆分。将毛细管电泳技术和环糊精辅助的在线场放大技术联用,能有效地缩短了分析时间,提高了检测灵敏度,常规条件下即可实现临床生物样品的快速、灵敏、准确的分析。
     药物代谢动力学是定量描述药物进入体内以后的吸收、分布、代谢、排泄过程,通过测定生物样本中的药物或者代谢产物的浓度,可以更好的阐明药物的药效或者毒性,为新药研究的代谢筛选和临床用药的安全有效提供重要依据。针对人血浆中的盐酸氨溴索,采用毛细管柱(长度31.2cm,内径75μm,有效长度21cm)进行分离分析,运行电压15kV,运行缓冲液为25mM磷酸二氢钠-6.25mM硼砂(10%磷酸调pH3.0)及1mM β-环糊精,电迁移进样7.5kV×15s,柱温25℃,紫外波长为210nm。采用96孔板液液萃取对200μL血浆进行样品前处理后进样分析,氨溴索和内标苯海拉明的保留时间分别为3.6和4.3分钟。与以往方法相比此法能够满足血药浓度测定的灵敏度同时缩短了分析时间,提高了样品分析的速度,测定结果和常规方法相当。
     在很多手性药物中,对映体在生物利用度、对受体、转运体和/或酶的选择性、代谢速率、代谢产物及毒性等方面都有所差异,因此,对手性药物药代动力学的研究是有必要的。氨氯地平消旋体中,左旋和右旋氨氯地平的比例是1:1,但是只有左旋氨氯地平有药理活性。针对人血浆中的氨氯地平手性对映体,采用毛细管柱(长度31.2cm,内径75μm,有效长度21cm)进行分离分析,运行电压15kV,运行缓冲液为25mM磷酸二氢钠-6.25mM硼砂(10%磷酸调pH2.5)及30mg/mL羟丙基-β-环糊精,电迁移进样5kV×10s,柱温25℃,紫外波长为200nm。采用固相萃取对1mL血浆进行样品前处理后进样分析。血浆中氨氯地平手性对映体和内标苯海拉明的保留时间分别为5.7、6.2和6.7分钟。本实验建立了灵敏、快速、耗材少的毛细管电泳-紫外检测法用于测定临床生物样品中手性药物,实验数据与以往的方法无显著差异。
     治疗药物监测是探讨患者体内血药浓度与疗效及毒性之间的关系,从而确定个体的最适治疗剂量及最佳用药方案,提高药物疗效和减少不良反应,其对于实现临床合理、安全用药有重要的意义。尤其在精神病学的临床运用中,对抗精神病药物进行治疗药物监测一直被认为是有重要意义的。左旋和右旋米氮平有不同的药动学及药效学参数,实验针对人血中米氮平及其代谢产物的手性对映体,采用毛细管柱(长度40.2cm,内径75μm,有效长度30cm)进行分离分析,运行电压17kV,运行缓冲液为25mM磷酸二氢钠-6.25mM硼砂(10%磷酸调pH2.5)及6.5mg/mL羧甲基-β-环糊精,电迁移进样7.5kV×10s,柱温25℃,紫外波长为200nm。采用96孔板液液萃取对300μL血浆进行样品前处理后进样分析,分析周期为8.5分钟。与现有的方法相比,该方法在体外能够同时测定米氮平及其三个代谢产物的对映异构体;在体内实验中,能够同时检测人血中米氮平对映体及其主要且具有药理活性的代谢物—N-去甲基-米氮平对映异构体,检测灵敏度能够满足血药浓度检测要求,分析时间较短,并成功的应用到了米氮平手性对映体的治疗药物检测研究中。
Clinical bio-sample analysis including metabolomics, therapeutic drug monitoring(TDM), pharmacokinetics and biochemical sample analysis is an important assistingmeans of clinical drug therapy. The method of bio-sample analysis compriseschromatography, spectroscopy, microbiological assay and immunoassay. Comparing withother three, chromatography combining their advantages is a more effective and accurateanalysis method. Common chromatography for the bio-sample assay is based on gaschromatography (GC), liquid chromatography (LC) or capillary electrophoresis (CE).
     Recently, capillary electrophoresis (CE) has become a very important instrumentaltechnique in pharmaceutical and biological analysis because of its high separationefficiency in a short time and extremely low solvent consumption, while, the relativelypoor concentration sensitivity of CE when using UV detection due to the limited samplevolume and the short optical path length, limits CE application for sensitive detection ofbio-analysis. To solve the problem, field-amplified sample stacking (FASS) is usuallyemployed as a simple and efficient technique in capillary zone electrophoresis. It is basedon a mismatch between the electric conductivity of the sample and that of the runningbuffer. And when compared to injection from a nonstacking sample, conventional FASSprovided a significant sensitivity enhancement.
     In our experiment, ambroxol, amlodipine and mirtazapine were selected as researchsubjects, scince all of them are effective in low dosage with a long half-life, and theirplasma concentration are very low. We try to establish capillary methods combined withon-line sample stacking for determination of ambroxol, amlodipine (enantiomers) andmirtazapine (enantiomers and those of the active metabolites) in human plasma. Theconditions of CE such as separation voltage, concentrations and pH of borate-phosphatebuffer were optimal to get the best running time. In addition, key parameters that affected-4- the stacking efficiency including injection modes, time and voltage, composition ofsample solvent were investigated to achieve higher sensitivity. Furthermore, type andconcentration of cyclodextrin were also studied to improve peak shape, resolution andcolumn efficiency or be employed as chiral selectors.
     Pharmacokinetics is the study of the time course of a drug within the body andincorporates the processes of absorption, distribution, metabolism and excretion. To betterinterpret the effect and toxicity of the drug, an analytical method should be established todetermine the drug and its metabolites quantitatively, which help us to know about theirmechanisms of action and their pharmacokinetic properties during the initial state of drugdevelopment and in clinical therapy. In this paper, a β-cyclodextrin enhancedfield-amplified sample stacking (FASS) and capillary zone electrophoresis (CZE) methodis described for the quantification of ambroxol hydrochloride in human plasma,followingliquid-liquid extraction in the96-well format. The separation was carried out at25℃in a31.2cm×75μm fused-silica capillary with an applied voltage of15kV. The backgroundelectrolyte (BGE) was composed of6.25mM borate-25mM phosphate (pH3.0) and1mMβ-cyclodextrin. The sample was introduced by using electrokinetic (7.5kV×15s) injectionmodes. The detection wavelength was210nm. Under the above conditions the retentiontime of ambroxol hydrochloride and diphenhydramine (IS) was3.5and4.2min,respectively. Compared with those reported methods, the assay was time-saving andsensitive, and no difference was found between results of our method and the others.
     In fact, the enantiomers of a chiral drug may differ significantly in their bioavailability,rate of metabolism, metabolites, excretion, potency and selectivity for receptors,transporters and/or enzymes, and toxicity. As a racemic mixture, racemic amlodipinecontains (R)-and (S)-amlodipine isomers in a1:1ratio, but only (S)-amlodipine as theactive moiety possesses therapeutic activity. Therefore, information about thepharmacokinetic behavior of the amlodipine enantiomers is necessary for understandingrelationships between drug levels and therapeutic response. In this study, a simple,sensitive and low-cost method using capillary electrophoresis coupled withhydroxypropyl-β-cyclodextrin interaction assisted acetonitrile field-amplified samplestacking technique for the quantitative enantioselective determination of trace drug (amlodipine, AML) was established for clinical applications. The separation wasperformed at25℃in a31.2cm×75μm fused-silica capillary with an applied voltage of15kV. The background electrolyte (BGE) was composed of6.25mM borate-25mMphosphate (pH2.5) and3mg/mL hydroxypropyl-β-cyclodextrin. The sample wasintroduced by using electrokinetic (7.5kV×15s) injection modes. The detectionwavelength was200nm. The retention time of amlodipine enantiomers anddiphenhydramine (IS) were5.7,6.2and6.7min, respectively.
     Therapeutic drug monitoring (TDM) plays an important part in the optimal use of aselect few drugs. With the individualisation of drug therapy through measuredconcentrations the aim is to achieve maximum therapeutic response with minimal adverseeffects. And TDM is a constantly expanding practice in psychiatric clinics, mainly forantipsychotic agents. Mirtazapine is a chiral compound, however it is administeredclinically as a racemic mixture of S (+)-and R(-)-enantiomers. The two enantiomersdiffer in both pharmacokinetic and pharmacodynamic parameters. In this study, a simple,sensitive and environment-friendly method using capillary electrophoresis coupled withcarboxymethyl-β-cyclodextrin interaction assisted acetonitrile field-amplified samplestacking technique for the quantitative enantioselective determination of mirtazapine andits active demethylated metabolite in human plasma was established for clinicalapplications. The separation was performed at25℃in a40.2cm×75μm fused-silicacapillary with an applied voltage of17kV. The background electrolyte (BGE) wascomposed of6.25mM borate-25mM phosphate (pH2.5) and6.5mg/mLcarboxymethyl-β-cyclodextrin. The sample was introduced by using electrokinetic(7.5kV×10s) injection modes. The detection wavelength was200nm. The running timewas8.5min.
引文
[1]陈义.毛细管电泳技术及应用.北京:化学工业出版社2000.
    [2] F.E.P. Mikkers, F.M. Everaerts, T.P.E.M. Vetheggen.How to increase precision in capillaryelectrophoresis. J. Chromatogr.,1979(169):1-11.
    [3]沈霞.高效毛细管电泳的临床应用及进展.中华医学检验杂质2004(27):883-885.
    [4] Z.K. Shihabi, Therapeutic drug monitoring by capillary electrophoresis. J. Chromatogr. A,1998(807)27-36
    [5]. Z.K. Shihabi, in J.P. Landers (Ed.), Handbook of Electrophoresis,2nd ed., CRC Press, Boca Raton,FL,1997, pp.457–477.
    [6] C.X. Zhang, Y. Aebi, W. Thormann, Microassay of amiodarone and desethylamiodarone in serumby capillary electrophoresis with head-column field-amplified sample stacking. Clin. Chem.1996(42):1805-1811
    [7] M.A. Friedberg, M. Hinsdale, Z.K. Shihabi, Effect of pH and ions in the sample on stacking incapillary electrophoresis, J. Chromatogr. A1997(781):35-42
    [8] J. Boden, K. B chmann, Investigation of matrix effects in capillary zone electrophoresis, J.Chromatogr. A1996(734):319-330
    [9] P. Gebauer, W. Thormann, P. Bo ek, Sample self-stacking and sample stacking in zoneelectrophoresis with major sample components of like charge: General model and scheme of possiblemodes, Electrophoresis,1995(16):2039-2050
    [10]梁文权主编.生物药剂学与药代动力学.北京:人民卫生出版社,(2003):155.
    [11] D. Levêque, C. Gallion-Renault, H. Monteil, F. Jehl, Capillary electrophoresis forpharmacokinetic studies, J. Chromatogr. B,1997(697)67-75
    [12]A. Zinellu, S. Sotgia, L. Deiana, C. Carru, Reverse injection capillary electrophoresis UV detectionfor serotonin quantification in human whole blood, J. Chromatogr. B,2012(895-896):182-185
    [13] S.C. Lee, C.C. Wang, P.C. Yang, S.M. Wu, Enantioseparation of (±)-threo-methylphenidate inhuman plasma by cyclodextrin-modified sample stacking capillary electrophoresis, J. Chromatogr. A,2012(1232):302-305
    [14] G. Boatto, M.V. Faedda, A. Pau, B. Asproni, S. Menconi, R. Cerri, Determination of amphetaminesin human whole blood by capillary electrophoresis with photodiode array detection, J. Pharm. Biom.Anal.,2002(29)1073-1080
    [15] G.A. Bach, J. Henion, Quantitative capillary electrophoresis–ion-trap mass spectrometrydetermination of methylphenidate in human urine, J. Chromatogr B: Biomed. Appl.,1998(707):275-285
    [16] Y.J. Jong, Y.H. Ho, W.K. Ko, S.M. Wu, On-line stacking and sweeping capillary electrophoresisfor detecting heroin metabolites in human urine, J. Chromatogr. A,2009(1216)7570-7575
    [17] A. Musenga, M. Amore, R. Mandrioli, E. Kenndler, L. Martino, M.A. Raggi, Determination ofduloxetine in human plasma by capillary electrophoresis with laser-induced fluorescence detection, J.Chromatogr. B,2009(877):1126-1132
    [18] Y.L. Chen, Y.J. Jong, S.M. Wu, Capillary electrophoresis combining field-amplified samplestacking and electroosmotic flow suppressant for analysis of sulindac and its two metabolites inplasma, J. Chromatogr. A,2006(1119):176-182
    [19] Q.L. Wang, L.Y. Fan, W. Zhang, C.X. Cao, Sensitive analysis of two barbiturates in human urineby capillary electrophoresis with sample stacking induced by moving reaction boundary, Anal. Chim.Acta,2006(580)200-205
    [20] H.K. Lim, P.T. Linh, C.H. Hong, K.H. Kim, J.S. Kang, Enantioselective determination ofmetoprolol and major metabolites in human urine by capillary electrophoresis, J. Chromatogr. B:Biomed. Appl.,2001(755)259-264
    [21] E. P.C. Lai, S.Y. Feng, Solid phase extraction—Non-aqueous capillary electrophoresis fordetermination of metformin, phenformin and glyburide in human plasma, J. Chromatogr. B,2006(843)94-99
    [22] G. Boatto, M. Nieddu, A. Carta, A. Pau, M. Palomba, B. Asproni, Riccardo Cerri Determination ofamphetamine-derived designer drugs in human urine by SPE extraction and capillary electrophoresiswith mass spectrometry detection, J. Chromatogr. B,2005(814):93-98
    [23] D.A. El-Hady, N.A. El-Maali, Determination of catechin isomers in human plasma subsequent togreen tea ingestion using chiral capillary electrophoresis with a high-sensitivity cell, Talanta,2008(76)138-145
    [24] Z. Huang, A.R. Timerbaev, B.K. Keppler, T. Hirokawa, Determination of cisplatin and itshydrolytic metabolite in human serum by capillary electrophoresis techniques, J. Chromatogr. A,2006(1106):75-79
    [25] H. Lamparczyk, P. Kowalski, D. Rajzer, J. Nowakowska, Determination of piracetam in humanplasma by capillary electrophoresis, Journal of Chromatography B: Biomed. Appl.,1997(692)483-487
    [26] M. Siluveru, J.T. Stewart, Stereoselective determination of R-()-and S-(+)-prilocaine in humanserum by capillary electrophoresis using a derivatized cyclodextrin and ultraviolet detection, J.Chromatogr. B: Biomed. Appl.,1997(693)205-210
    [27] J. Caslavska, W. Thormann, Rapid analysis of furosemide in human urine by capillaryelectrophoresis with laser-induced fluorescence and electrospray ionization-ion trap massspectrometric detection, J. Chromatogr. B2002(770):207-216
    [28] A.B. Wey, J. Caslavska, W. Thormann, Analysis of codeine, dihydrocodeine and their glucuronidesin human urine by electrokinetic capillary immunoassays and capillary electrophoresis–ion trap massspectrometry, J. Chromatogr. A,2000(895):133-146
    [29] K.H. Bannefeld, H. Stass, G. Blaschke, Capillary electrophoresis with laser-induced fluorescencedetection, an adequate alternative to high-performance liquid chromatography, for the determinationof ciprofloxacin and its metabolite desethyleneciprofloxacin in human plasma, J. Chromatogr. B:Biomed. Appl.,1997(692)453-459
    [30] X.P. Yang, H.Y. Yuan, C.L. Wang, X.D. Su, L. Hu, D. Xiao, Determination of penicillamine inpharmaceuticals and human plasma by capillary electrophoresis with in-column fiber opticslight-emitting diode induced fluorescence detection, J. Pharm. Biom. Anal.,2007(45):362-366
    [31] L.Y. Fang, X.B. Yin, X.H. Sun, E. Wang, Determination of disopyramide in human urine bycapillary electrophoresis with electrochemiluminescence detection of tris(2,2’-bipyridyl) ruthenium(II), Anal. Chim. Acta,2005(537)25-30
    [32] S. Sirichai, P. Khanatharana, Rapid analysis of clenbuterol, salbutamol, procaterol, and fenoterol inpharmaceuticals and human urine by capillary electrophoresis, Talanta,2008(76):1194-1198
    [33] H. Hüttemann, G. Blaschke, Achiral and chiral determination of ciprofibrate and its glucuronide inhuman urine by capillary electrophoresis, J. Chromatogr. B: Biomed. Appl.,1999(729):33-41
    [34] J. Rodríguez-Flores, J.J. Berzas Nevado, A.M. Contento Salcedo, M.P. Cabello Díaz, Nonaqueouscapillary electrophoresis method for the analysis of gleevec and its main metabolite in human urine,J. Chromatogr. A,2005(1068):175-182
    [35] H.W. Liao, S.W. Lin, U.I. Wu, C.H. Kuo, Rapid and sensitive determination of posaconazole inpatient plasma by capillary electrophoresis with field-amplied sample stacking, J. Chromatogr. A,2012(1226)48-54
    [36] J. Li, Y.W. Bi, L. Wang, F.L. Sun, Z. Chen, G.L. Xu, G.R. Fan, β-Cyclodextrin enhanced on-lineorganic solvent field-amplified sample stacking in capillary zone electrophoresis for analysis ofambroxol in human plasma, following liquid–liquid extraction in the96-well format, J. Pharm. Biom.Anal.,2012(66):218-224
    [37] Q.J. Wang, F. Ding, H. Li, P.G He, Y.Z. Fang, Determination of daunorubicin in human urine bycapillary zone electrophoresis with amperometric detection, J. Pharm. Biom. Anal.,2003(30):1507-1514
    [38] Q.J Wang, F. Ding, H. Li,P.G. He, Y.Z. Fang, Determination of hydrochlorothiazide and rutin inChinese herb medicines and human urine by capillary zone electrophoresis with amperometricdetection, J. Pharm. Biom. Anal.,2003(30)1507-1514
    [39] K. Ohyama, N. Kishikawa, H. Nakagawa, N. Kuroda, M. Nishikido, M. Teshima, H. To, T.Kitahara, H. Sasaki, Simultaneous determination of mycophenolic acid and its acyl and phenolglucuronide metabolites in human serum by capillary zone electrophoresis, J. Pharm. Biom. Anal.,2008(47)201-206
    [40]赵汉臣主编,使用治疗药物监测手册,北京:人民卫生出版社,2002:1
    [41]李金恒主编,临床治疗药物监测的方法和应用,北京:人民卫生出版社,2003:1
    [42] K.J. Lee, G.S. Heo, N.J. Kim, D.C. Moon, Analysis of antiepileptic drugs in human plasma usingmicellar electrokinetic capillary chromatography, J. Chromatogr. A,1992(608)243-250
    [43] W. Thormann, P. Meier, C. Marcolli, F. Binder, Analysis of barbiturates in human serum and urineby high-performance capillary electrophoresis-micellar electrokinetic capillary chromatography withon-column multi-wavelength detection, J. Chromatogr. A,1991(545)445-460
    [44] Z.K.Shihabi, K.S.Oles, Felbamate measured in serum by two methods: HPLC and capillaryelectrophpresis. Clin. Chem.,1994(40)1904-1908
    [45] Z.K.Shihabi, Serum pentobarbital determination by capillary electrophoresis, J. Liq. Chromatogr.,1993(16)2059-2068
    [46] Z.K. Shihabi, K.S. Oles. Serum lamotrigine analysis by capillary electrophoresis, J. Chromatogr. B1996(683)119–123.
    [47] L.L. Garcia, Z.K. Shihabi, K.S. Oles, Determination of gabapentin in serum by capillaryelectrophoresis, J. Chromatogr. B: Biomed. Appl.1995(669)157-162.
    [48] G. Vargas, J. Havel, E. Hada ová, Direct determination of procainamide and N-acetylprocainamideby capillary zone electrophoresis in pharmaceutical formulations and urine, J. Chromatogr. A,1997(772)271-276
    [49] A. Kunkel, S. Günter, H. W tzig, Quantitation of acetaminophen and salicylic acid in plasma usingcapillary electrophoresis without sample pretreatment improvement of precision, J. Chromatogr. A,1997(768)125-133
    [50] Z.K. Shihabi, M.E. Hinsdale, Analysis of ibuprofen in serum by capillary electrophoresis, J.Chromatogr. B: Biomed. Appl.1996(683)115-118
    [51] M Friedberg, Z.K Shihabi, Ketoprofen analysis in serum by capillary electrophoresis, J.Chromatogr. B: Biomed. Appl.1997(695)193-198
    [52] W. Thormann, A. Minger, S. Molteni, J. Caslavska, P. Gebauer, Determination of substitutedpurines in body fluids by micellar electrokinetic capillary chromatography with direct sampleinjection, J. Chromatogr. A1992(593)275-288.
    [53] Z.K. Shihabi, Sample matrix effects in capillary electrophoresis: II. Acetonitrile deproteinization, J.Chromatogr. A,1993(652)471-475
    [54] Z. Zhao, C.E. Lunte, Determination of caffeine and its metabolites by micellar electrokineticcapillary electrophoresis, J. Chromatogr. B: Biomed. Appl.1997(688)265-274.
    [55] I.M. Johansson, M.B. Gron-Rydberg, B. Schmekel, Determination of theophylline in plasma usingdifferent capillary electrophoretic systems, J. Chromatogr. A1993(652)487-493
    [56] Z.K. Shihabi, M.S. Constantinescu, Iohexol in serum determined by capillary electrophoresis, Clin.Chem.1992(38)2117-2120
    [57] Z.K. Shihabi, M. V. Rocco, M.E. Hinsdale, Analysis of the Contrast Agent Iopamidol in Serum byCapillary Electrophoresis. J. Liq. Chromatogr.1995(18)3825-3831
    [58] L.L. Garcia, Z.K. Shihabi, Suramin determination by direct serum injection, J. Liq. Chromatogr.1993(16)1279-1288
    [59] K. Hettiarachchi, A.P. Cheung, Precision in capillary electrophoresis with respect to quantitativeanalysis of suramin, J. Chromatogr. A1995(717)191-202
    [60] G. Hempel, D. Lehmkuhl, S. Krümpelmann, G. Blaschke, J. Boos, Determination of paclitaxel inbiological fluids by micellar electrokinetic chromatography, J. Chromatogr. A1996(745)173-179
    [61] J.M. Sanders, L.T. Burka, M.D. Shelby, R.R. Newbold, M.L. Determination of tamoxifen andmetabolites in serum by capillary electrophoresis using a nonaqueous buffer system, J. Chromatogr.B: Biomed. Appl.1997(695)181-185
    [62] S. Honda, A. Taga, K. Kakehi, S. Koda, Y. Okamoto, Determination of cefixime and itsmetabolises by high-performance capillary electrophoresis, J. Chromatogr.1992(590)364-368.
    [63] S. Oguri, Y. Miki, Determination of amikacin in human plasma by high-performance capillaryelectrophoresis with fluorescence detection, J. Chromatogr. B: Biomed. Appl.1996(686)205-210
    [64] P.K. Zarzycki, P. Kowalski, J. Nowakowska, H. Lamparczyk, High-performance liquidchromatographic and capillary electrophoretic determination of free nicotinic acid in human plasmaand separation of its metabolites by capillary electrophoresis, J. Chromatogr. A1995(709)203-208
    [65] D.P. Bogan, B. Deasy, R.O.Kennedy, M.R. Smyth, U.Fuhr, Determination of free and total7-hydroxycoumarin in urine and serum by capillary electrophoresis, J. Chromatogr. B: Biomed.Appl.1995(663)371-378
    [66] S. Mayer, M. Schleimer, Quantitative determination of heparinoid mimetics in human and ratplasma by micellar electrokinetic chromatography, J. Chromatogr. A1996(730)297-303
    [67] M. Strausbauch, S. Xu, J. Ferguson, M. Nunez, D. Machacek, G. Lawson, P. Wettstein, J. Landers,Concentration and separation of hypoglycemic drugs using solid-phase extraction-capillaryelectrophoresis, J. Chromatogr. A1995(717)279-291
    [68] A. Schultz, W. Thormann, Rapid Determination of the Antimycotic Drug Flueytosine in HumanSerum by Micellar Electrokinetic Capillary Chromatography with Direct Sample Injection, Ther.Drug Monit.1994(16)483-490
    [69] I.S. Lurie, Micellar electrokinetic capillary chromatography of the enantiomers of amphetamine,methamphetamine and their hydroxyphenethylamine precursors, J. Chromatogr. A1992(605)269-175
    [70] J.R. Mozzeo, E.R. Grover, M.E. Swartz, J.S. Peterson, Novel chiral surfactant for the separation ofenantiomers by micellar electrokinetic capillary chromatography, J. Chromatogr. A1994(680)125-135
    [71] C. Desiderio, S. Finali, A. Kupfer, W. Thormann, Analysis of mephenytoin,4-hydroxymephenytoin and4-hydroxyphenytoin enantiomers in human urine by cyclodextrinmicellar electrokinetic capillary chromatography: Simple determination of a hydroxylationpolymorphism in man, Electrophoresis1994(15)87-93
    [72] M. Heuermann, G. Blaschke, Simultaneous enantioselective determination and quantification ofdimethindene and its metabolite N-demethyl-dimethindene in human urine using cyclodextrins aschiral additives in capillary electrophoresis, J. Pharm. Biomed. Anal.,1994(12)753-760
    [73] E. Francotte, S.Cherkaoul, M. Faupel, You have full text access to this content Separation of theenantiomers of some racemic nonsteroidal aromatase inhibitors and barbiturates by capillaryelectrophoresis, Chirality1993(5)516-526
    [74] Z. Aturki, V. Scotti, G. D’Orazi, A. Rocco, M.A. Raggi, S. Fanali, Enantioselective separation ofthe novel antidepressant mirtazapine and its main metabolites by CEC, Electrophoresis,2007(28)2717-2725
    [75] J.-M. Dethyl, S. DeBroux, M. Lesne, J. Longstreth, P Gilbert, Stereoselective determination ofverapamil and norverapamil by capillary electrophoresis, J. Chromatogr. B1994(654)121-127
    [76] C. Barbas, EdgarP. Moraes, A. Villasenor, Capillary electrophoresis as a metabolomics tool fornon-targeted fingerprinting of biological samples, J. Pharm. Biom. Anal.2011(55)823-831.
    [77] K. Papaspyridonos, I. Garcia-Perez, S. Angulo, P. Domann, H. Vilca-Melendez N. Heaton, G.Murphy, E. Holmes, C. Barbas, C. Legido-Quigley, Fingerprinting of human bile during livertransplantation by capillary electrophoresis, J. Sep. Sci.2008(31)3058-3064
    [78] A. Kinoshita, K. Tsukada, T. Soga, T. Hishiki, Y. Ueno, Y. Nakayama, M. Tomita, M. Suematsu,Roles of hemoglobin allostery in hypoxia-induced metabolic alterations in erythrocytes: simulationand its verification by metabolome analysis, J. Biol.Chem.2007(282)10731-10741
    [79] B. Arvidsson, N. Johannesson, A. Citterio, P. G. Righetti, J. Bergquist, High throughput analysis oftryptophan metabolites in a complex matrix using capillary electrophoresis coupled totime-of-flight masss pectrometry, J. Chromatogr. A2007(1159)154-158
    [80] T. Soga, Y. Kakazu, M. Robert, M. Tomita, T. Nishioka, Qualitative and quantitative analysis ofamino acids by capillary electrophoresis-electrospray ionization-tandem mass spectrometry,Electrophoresis,2004(25)1964-1972
    [81] S. La, J.H. Cho, J.H. Kim, K.R. Kim,Capillary electrophoretic profiling and pattern recognitionanalysis of urinary nucleosides from thyroid cancer patients Anal. Chim. Acta2003(486)171-182
    [82] S. Wittke, D. Fliser, M. Haubitz, S. Bartel, R. Krebs, F. Hausadel, M. Hillmann, I. Golovko, P.Koester, H. Haller, T. Kaiser, H. Mischak, E.M. Weissinger Determination of peptides and proteinsin human urine with capillary electrophoresis-mass spectrometry, a suitable tool for theestablishment of new diagnostic markers, J. Chromatogr. A,2003(1013)173-181
    [83] T. Grune, G.A. Ross, H. Schmidt, W. Siems, D. Perrett, Optimized separation of purine bases andnucleosides in human cord plasma by capillary zone electrophoresis J. Chromatogr. A,1993(636)105-111
    [84] P. Lochman, T. Adam, D. Friedecky, E. Hlídková, Z, kopková, High-throughput capillaryelectrophoretic method for determination of total aminothiols in plasma and urine, Electrophoresis,2003(24)1200-1207
    [85] H. Lin, D.K. Xu, H.Y. Chen, Simultaneous determination of purine bases, ribonucleosides andribonucleotides by capillary electrophoresis-electrochemistry with a copper electrode, J.Chromatogr. A,1997(760)227-233
    [86] J.W. Kim, J.H. Park, J.W. Park, H.J. Doh, G.S. Heo, K.J. Lee, Quantitative analysis of serumproteins separated by capillary electrophoresis. Clin. Chem.1993(39)689-92
    [87]陈燕,黄泽玉,王雅杰,等.全自动多通道毛细管区带电泳法在血清蛋白分析中的临床应用[J].中华检验医学杂志,2006(29):420423
    [88]卢业成,郑师陵,肖艳华,等.全自动多通道毛细管区带电泳技术在血红蛋白分析中的临床应用[J].国际检验医学杂志,2009(30)675-679
    [89] Z.K. Shihabi, Clinical applications of capillary electrophoresis, Ann. Clin. Lab. Sci.1992(22)398-405
    [90] G. Schmitz, U. Borgmann, G. Assmann, Analytical capillary isotachophoresis: a routine techniquefor the analysis of lipoproteins and lipoprotein subfractions in whole serum, J. Chromatogr. A,1985(320)253-262
    [91] J.P. Landers, M.D. Schuchard, M. Subramaniam, T.P. Sismelich, T.C. Spelsberg,High-performance capillary electrophoretic analysis of chloramphenicol acetyl transferase activity,J. Chromatogr. A,1992(603)247-257
    [92] K. Shimura, B.L. Karger, Affinity probe capillary electrophoresis: analysis of recombinant humangrowth hormone with a fluorescent labeled antibody fragment, Anal. Chem.,1994(66)9-15
    [93] D.D. Principe, M.P. Iampieri, D. Germani, A. Menichelli, G. Novelli, B. Dallapiccola, Analysis ofa polymerase chain reaction-amplified product of the DXS164locus in the dystrophin gene:Detection by capillary electrophoresis of restriction fragment length polymorphism, J. Chromatogr.A,1993(638)277-281
    [1] E. Nemcekova, G. Nosalova, Ambroxol and protective reflexes of the respiratory tract, S. Franova,Bratisl. Lek. Listy.1998(99)111-115.
    [2] F. Paganin, O. Bouvet, P. Chanez, D. Fabre, M. Galtier, P. Godard, F. B. Michel, F. Bressolle,Evaluation of the effects of ambroxol on the ofloxacin concentrations in bronchial tissues in COPDpatients with infectious exacerbation, Biopharm. Drug Dispos.1995(16)393-401.
    [3] J. C. Wiemeyer, Influence of ambroxol on the broncopulmonary level of antibiotics,Arzneim-Forsch.1981(31)974-976.
    [4] M. S. Hwang, S. Cho, H. Chung, Y. A. Woo, Nondestructive determination of the ambroxol contentin tablets by Raman spectroscopy, J. Pharm. Biomed. Anal.2005(38)210-215.
    [5] J. Spatola, J. J. Poderoso, J. C. Wiemeyer, M. Fernandez, R. B. Guerreiro, C. Corazza, Influence ofambroxol on lung tissue penetration of amoxicillin, Arzneim-Forsch.1987(37)965-966
    [6] K. A. Shaikh, S. D. Patil, A. B. Devkhile, Development and validation of a reversed-phase HPLCmethod for simultaneous estimation of ambroxol hydrochloride and azithromycin in tablet dosageform, J. Pharm. Biomed. Anal.2008(48)1481-1484.
    [7] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Sensitive method for the determination ofambroxol in body fluids by capillary electrophoresis and fluorescence detection, J. Chromatogr. B.2000(742)205-210.
    [8] M. Nobilis, J. Pastera, D. Svoboda, J. Kvetina, K. Macek, High-performance liquidchromatographic determination of ambroxol in human plasma, J. Chromatogr.1992(581)251-255.
    [9] M. F. J. Flores, V. C. Hoyo, E. Hong, G. Castaneda-Hernandezet, Assay of ambroxol in humanplasma by high-performance liquid chromatography with amperometric detection, J. Chromatogr.1989(490)464-469.
    [10] H. J. Lee, S. K. Joung, Y. G. Kim, et al., Bioequivalence assessment of ambroxol tablet after asingle oral dose administration to healthy male volunteers, Pharmacol. Res.2004(49)93-100.
    [11] W.Q. Hu, Y. Xu, F. Liu, A. X. Liu, Q. X. Guo, Rapid and sensitive liquid chromatographytandem mass spectrometry method for the quantification of ambroxolin human plasma, Biomed.Chromatogr, Biomed. Chromatogr.2008(22)1108-1114.
    [12] F. L. Su, F. Wang, W. Gao, H. D. Li, Determination of ambroxol in human plasma by highperformance liquid chromatography–electrospray ionization mass spectrometry (HPLC–MS/ESI), J.Chromatogr. B.2007(853)364-368.
    [13] A. D. Wen, T. J. Hang, S. N. Chen, Z. R. Wang, L.K. Ding, Y. Tian, M. Zhang, X. X. Xu,Simultaneous determination of amoxicillin and ambroxol in human plasma by LC–MS/MS:Validation and application to pharmacokinetic study, J. Pharm. Biomed. Anal.2008(48)829-834.
    [14] H. Kim, J. Y. Yoo, S. B. Han, H. J. Lee, K. R. Lee, Determination of ambroxol in human plasmausing LC-MS/MS, J. Pharm. Biomed. Anal.2003(32)209-216.
    [15] J. Schmid, Assay of ambroxol in biological fluids by capillary gas-liquid chromatography, J.Chromatogr.1987(414)65-75.
    [16]L. Colombo, F. Marcucci, G. M. Marini, P. Pierfederici, E. Mussini, Determination of ambroxol inbiological material by gas chromatography with electron-capture detection, J. Chromatogr.1990(530)141-147.
    [17] C. E. Uboh, J. A. Rudy, L. R. Soma, M. Fennell, L. May, R. Sams, F.A. Railing, J. Shellenberger,M. Kahler, Characterization of bromhexine and ambroxol in equine urine: Effect of furosemide onidentification and confirmationJ, J. Pharm. Biomed. Anal.1991(9)33-39.
    [18] T. Perez-Ruiz, C. Martinez-Lozano, A. Sanz, E. Bravo, Determination of bromhexine andambroxol in pharmaceutical dosage forms, urine and blood serum, J. Chromatogr, J. Chromatogr. B.1997(692)199-205.
    [19] Guidance for industry, bioanalytical method validation, US Department of Health and HumanServices, Food and Drug Adiministration, Center for Drug Evaluation and Research (CDER),Center for Veternary Medicine (CVM), May2001, available athttp://www.fda.gov/cder/guidance/4252fnl.htm.
    [20] S. Jacob, Preparation and evaluation of microencapsulated fast melt tablets of ambroxolhydrochloride, India Journal of Pharmaceutical Sciences.2009(71)276-284.
    [21] Z. Krivacsy, A. Gelencser, J. Hlavay, G. Kiss, Z. Sarvari, Electrokinetic injection in capillaryelectrophoresis and its application to the analysis of inorganic compounds, J. Chromatogr. A.1999(834)21-44.
    [22] C. C. Chen, S.M. Wu, Y. H. Huang, W. K. Ko, H. S. Kou, H. L. Wu, On-line field-amplifiedsample stacking in capillary electrophoresis for analysis of amitriptyline and its metabolitenortriptyline in plasma, Analytica Chimica Acta.2004(517)103-110.
    [23] M. C. Breadmore, Electrophoresis. Recent advances in enhancing the sensitivity of electrophoresisand electrochromatography in capillaries and microchips,2007(28)254-281.
    [24] Z. K. Shihabi, Organic solvent high-field amplified stacking for basic compounds in capillaryelectrophoresis, J. Chromatogr. A.2005(1066)205-210.
    [25] S. Razee, A. Tamura, Improvement in the determination of food additive dyestuffs by capillaryelectrophoresis using β-cyclodextrin, T. Masujima, J. Chromatogr.A.1995(715)179-188.
    [1]邹巧根,冯振斌,张尊建,手性药物代谢动力学的立体选择性,海峡药学,2011(23)16-19
    [2]房晶,范国荣,李霁,李优,贺建昌,徐贵丽,李发美,苯磺酸左旋氨氯地平血药浓度的LC-MS/MS法测定及其人体内手性转化可能性考察,第二军医大学学报,2012(33)763-769
    [3] A.Zarghi, S.M. Foroutan, A. Shafaati, A. Khoddam, Validated HPLC method for determination ofamlodipine in human plasma and its application to pharmacokinetic studies, Il Farmaco2005(60)789-792.
    [4] S. Tatar, S. Atmaca, Determination of amlodipine in human plasma by high-performance liquidchromatography with fluorescence detection, J. Chromatogr., B2001(758)305-310.
    [5] G. Bahrami, Sh. Mirzaeei, Simple and rapid HPLC method for determination of amlodipine inhuman serum with fluorescence detection and its use in pharmacokinetic studies, J. Pharm. Biomed.Anal.,2004(36)163-168.
    [6] J.Y. Park, K.A. Kim, G. S. Lee, P.W. Park, S.L. Kim, Y.S. Lee, Y.W. Lee, E.K. Shin, Randomized,open-label, two-period crossover comparison of the pharmacokinetic and pharmacodynamicproperties of two amlodipine formulations in healthy adult male Korean subjects, Clin. Ther.,2004(26)715-723.
    [7] A.K. Sarkar, D. Ghosh, A. Das, P.S. Selvan, K.V. Gowda, U. Mandal, A. Bose, S. Agarwal, U.Bhaumik, T.K. Pal, Simultaneous determination of metoprolol succinate and amlodipine besylate inhuman plasma by liquid chromatography-tandem mass spectrometry method and its application inbioequivalence study, J. Chromatogr. B,2008(873)77-85.
    [8] Y.Y. Ma, F. Qin, X.H. Sun, X.M. Lu, F.M. Li, Determination and pharmacokinetic study ofamlodipine in human plasma by ultra performance liquid chromatography-electrospray ionizationmass spectrometry, J. Pharm. Biomed. Anal.,2007(43)1540-1545.
    [9] Q. Yu, Z.Y. Hu, F.Y. Zhu, J.H. Zhu, L.L. Wan, Y. Li, C. Guo, HPLC–MS–MS for the SimultaneousDetermination of Atorvastatin and Amlodipine in Plasma of Hypertensive Patients,Chromatographia2011(73)257-262.
    [10] P. Massaroti, L.A.B. Moraes, M.A.M. Marchioretto, N.M. Cassiano, G. Bernasconi, S.A. Calafatti,F.A.P. Barros, E.C. Meurer, J. Pedrazzoli, Development and validation of a selective and robustLC-MS/MS method for quantifying amlodipine in human plasma, Anal. Bioanal. Chem.2005(382)1049-1054.
    [11] J.Y. Park, K.A. Kim, G.S. Lee, P.W. Park, O.J. Lee, J.H. Ryu, G.H. Lee, M.C. Ha, J.S. Kim, S.W.Kang, K.R. Lee, Pharmacokinetic and pharmacodynamic characteristics of a new S-amlodipineformulation in healthy Korean male subjects: a randomized, open-label, two-period, comparative,crossover study, Clin. Ther.2006(28)1837-1847.
    [12] H.C. Chang, J.Y. Li, J. Li, X.D. Guan, F.L. Sun, Z.Z. Qian, K.S. Bi, G.R. Fan, Simultaneousdetermination of amlodipine and bisoprolol in rat plasma by a liquid chromatography/tandem massspectrometry method and its application in pharmacokinetic study, J. Pharm. Biomed. Anal.2012(71)104-110.
    [13] J.Z. Shentu, L.Z. Fu, H.L. Zhou, X.J. Hu, J. Liu, J.C. Chen, G.L. Wu, Determination of amlodipinein human plasma using automated online solid-phase extraction HPLC-tandem mass spectrometry:application to a bioequivalence study of Chinese volunteers, J. Pharm. Biomed. Anal.2012(70)614-618.
    [14] B. Streel, C. Lainé, C. Zimmer, R. Sibenaler, A. Ceccato, Enantiomeric determination ofamlodipine in human plasma by liquid chromatography coupled to tandem mass spectrometry, J.Biochem. Biophys. Methods.2002(54)357-368
    [15] F. Scharpf, K.D. Riedel, H. Laufen, M. Leitold, J. Chromatogr. B1994(655)225-233.
    [16] S.C. Monkman, J.S. Ellis, S. Cholerton, J.M. Thomason, R.A. Seymour, J.R. Idle, Automated gaschromatographic assay for amlodipine in plasma and gingival crevicular fluid, J. Chromatogr. B1996(678)360-364.
    [17] P. Miku, K. Maráková, J. Marák, I. Nemec, I. Valá ková, E. Havránek, Direct quantitativedetermination of amlodipine enantiomers in urine samples for pharmacokinetic study using on-linecoupled isotachophoresis-capillary zone electrophoresis separation method with diode arraydetection, J. Chromatogr. B2008(875)266-272.
    [18] R. Wang, Z.P. Jia, J.J. Fan, L.R. Chen, H. Xie, J. Ma, X. Ge, Q. Zhang, Y. Ao, J. Wang,Chromatographia2007(65)575-579.
    [19] Guidance for industry, bioanalytical method validation, US Department of Health and HumanServices, Food and Drug Adiministration, Center for Drug Evaluation and Research (CDER),Center for Veternary Medicine (CVM), May2001, available athttp://www.fda.gov/cder/guidance/4252fnl.htm.
    [20] B. Suchanova, R. Kostiainen, R.A. Ketola, Characterization of the in vitro metabolic profile ofamlodipine in rat using liquid chromatography-mass spectrometry, Eur. J. Pharm. Sci.,2008(33)91-99
    [21] J.E. Phillips, M.R. Preston, Inhibition of oxidized LDL aggregation with the calcium channelblocker amlodipine: role of electrostatic interactions, Atherosclerosis2003(168)239-244.
    [22] M.C. Breadmore, Recent advances in enhancing the sensitivity of electrophoresis andelectrochromatography in capillaries and microchips, Electrophoresis2007(28)254-281.
    [1]李金恒主编,临床治疗药物监测的方法和应用,北京:人民卫生出版社,2003:1
    [2]方世平,扬宝玉,抗抑郁症新药米氮平的药理与临床,中国新药杂志1999(8)165-167
    [3]孙振晓,于相芬,孙波,米氮平的临床应用及其不良反应,精神医学杂志,2012(25)310-313
    [4]汪卫华,王焕林,新型抗抑郁药米氮平临床疗效评价,国外医学精神病学分册,2002(29)25-28
    [5] F,J, de Santana, P,S, Bonato, Enantioselective analysis of mirtazapine and its two major metabolitesin human plasma by liquid chromatography-mass spectrometry after three-phase liquid-phasemicroextraction, Anal Chim Acta2008(606)80-91
    [6] R. Mandrioli, V. Pucci, C. Sabbioni, C. Bartoletti, S. Fanali, M.A. Raggi, Enantioselectivedetermination of the novel antidepressant mirtazapine and its active demethylated metabolite inhuman plasma by means of capillary electrophoresis, J. Chromatogr. A2004(1051)253-260
    [7] C. Pistos, M. Koutsopoulou, I. Panderi, Avalidated liquid chromatographic tandem massspectrometric method for the determination of mirtazapine and demethylmirtazapine in humanplasma: application to a pharmacokinetic study, Anal. Chim. Acta2004(514)15-26
    [8] S.R. Kuchekar, M.L. Kundlik, B.H. Zaware, Rapid quantication of mirtazapine anddesmethylmirtazapine in human plasma by LC-ESI-MS/MS: Application to a bioequivalence study,Journal of Saudi Chemical Society2011(15)145-153
    [9] F.J.M. deSantana, V.A.P. Jabor, E.J. Cesarino, V.L. Lanchote, P.S. Bonato, Enantioselective analysisof mirtazapine, demethylmirtazapine and8-hydroxymirtazapine in human urine after solid-phasemicroextraction, J. Sep. Sci.2010(33)268-276
    [10] F.A. Maris, E. Dingler, S. Niehues, High-performance liquid chromatographic assay withfluorescence detection for the routine monitoring of the antidepressant mirtazapine and its dimethylmetabolite in human plasma, J. Chromatogr. B1999(721)309-316
    [11] R. Mandrioli, L. Mercolini, N. Ghedini, C. Bartoletti, S. Fanali, M.A. Raggi, Determination of theantidepressant mirtazapine and its two main metabolites in human plasma by liquidchromatography with fluorescence detection, Anal. Chim. Acta2006(556)281-288
    [12] R. M. Youssef, Determination of mirtazapine in spiked human plasma and tablets by frstderivative spectrofuorimetric method, Journal of Saudi Chemical Society,2010(18)45-49
    [13] P.E. Morgan, J. Tapper, E.P. Spencer, Measurement of total mirtazapine and normirtazapine inplasma/serum by liquid chromatography with fluorescence detection. J. Chromatogr. B2003(798)211-215
    [14] R. Nageswara Rao, K. Nagesh Kumar, S. Ramakrishna, Enantiomeric separation of mirtazapineand its metabolite in rat plasma by reverse polar ionic liquid chromatography using fluorescenceand polarimetric detectors connected in series, J. Chromatogr. B2011(879)1911-1916
    [15] S. Dodd, G.D. Burrows, T.R. Norman, Chiral determination of mirtazapine in human blood plasmaby high-performance liquid chromatography, J. Chromatogr. B2000(748)439-443
    [16] F.J.M. de Santana, A.R.M. de Oliveira, P.S. Bonato, Chiral liquid chromatographic determinationof mirtazapine in human plasma using two-phase liquid-phase microextraction for samplepreparation, Anal. Chim. Acta2005(549)96-103
    [17] Z.D. Zhai, Y.P. Shi, T. Wang, Development and validation of HPLC methods for enantioseparationof mirtazapine enantiomers at analytical and semipreparative scale using polysaccharide chiralstationary phases, Anal. Chim. Acta2005(550)123-129
    [18] F.J.M. de Santana, E.J Cesarino, P.S. Bonato, New method for the chiral evaluation of mirtazapinein human plasma by liquid chromatography, J. Chromatogr. B2004(809)351-356
    [19] T. Romiguieres, F. Pehourcq, M. Matoga, B. Begaud, C. Jarry, D etermination of mirtazapine andits dimethyl metabolite in plasma by high-performance liquid chromatography with ultravioletdetection Application to management of acute intoxication, J. Chromatogr. B2002(775)163-168
    [20] P. Ptá ek, J. Klíma, J. Macek, D etermination of mirtazapine in human plasma by liquidchromatography, J. Chromatogr. B2003(794)323-328
    [21] M.-R. Rouini, H. Lavasani, B. Sheikholeslami, A. Bakhtiarian, M. Sgorbini, V. Nikoui, M. Giorgi,Pharmacokinetics of Mirtazapine and Its Main Metabolites after Single Oral Administration inFasting/Fed Horses, Journal of Equine Veterinary Science20121-5
    [21] M. Giorgi, H. Yun, Pharmacokinetics of mirtazapine and its main metabolites in Beagledogs: Apilot study, The Veterinary Journal2012(192)239-241
    [22] F.J.M. de Santana, V.L. Lanchote, P.S. Bonato, Capillary electrophoretic chiral determination ofmirtazapine and its main metabolites in human urine after enzymatic hydrolysis, Electrophoresis2008(29)3924-3932

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700