用户名: 密码: 验证码:
鳕鱼免疫活性肽的可控制备及其免疫活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
免疫活性肽是一类具有增强机体免疫力、增强巨噬细胞吞噬功能、提高机体抵御外界病原体感染能力等免疫功能的肽,具有分子量小、稳定性强,且免疫原性弱、生物活性高等诸多优点。目前酶法制备生物活性肽主要集中在活性优化和动力学模拟上,并不能保证酶解按预期进行。而鳕鱼免疫活性肽的可控制备及免疫活性研究,是通过采用生物技术、生物传感器、数学模型、人工神经网络等实现了免疫活性肽的准确预测、动态监测、可控制备,并且利用树脂吸附技术等对免疫活性肽精制,为免疫活性肽的工业化生产提供理论依据和技术支持。同时本文还对制备的鳕鱼免疫肽的体内免疫活性机理作了初步探讨。
     本论文形成了以下研究成果:
     1、本文以鳕鱼加工下脚料鳕鱼排为原料作为研究对象,首先研究了其基本组成。鳕鱼排中蛋白质含量较高(18.4%),以碱溶性蛋白(35.49%)和基质蛋白(30.49%)为主,有重要利用价值。鳕鱼排蛋白中以高含量的甘氨酸(26.51%)和谷氨酸(12.57%)为主,其次为丙氨酸、谷氨酰胺、丝氨酸、亮氨酸和赖氨酸。为了充分利用鳕鱼蛋白,对鳕鱼排进行了软化高压预处理研究,条件最终设定为120℃处理30min。
     2、水解度值、分子量分布、多肽含量均是反映酶解产物特征的重要因素,但在线监测困难。鳕鱼蛋白酶解产物游离氨基酸含量呈现规律性变化,可作为监测水解反应的响应因子,并且生物传感器测定响应因子速度快、准确度高、稳定性好。其中对谷氨酸和赖氨酸测定的相对误差分别为1.5%和1.0%,变异系数分别为3.85%和3.03%,标准偏差分别为0.78和0.60。多酶切位点下,游离谷氨酸和赖氨酸都呈规律性变化,与水解度正相关,可作为酶解产物的响应因子,同时在一定水解度范围内,游离谷氨酸和赖氨酸浓度与水解度均呈现较好的线性关系。利用游离谷氨酸和赖氨酸浓度作为响应因子监测多种商品酶的水解程度是可行的。
     3、鳕鱼排的胰酶水解产物(PFH)可以显著促进脾细胞增殖、T细胞增殖、巨噬细胞吞噬(p<0.05)。分子量和水解度是影响脾细胞增殖活性的重要因素。在水解度15-18%时,PFH的脾细胞增殖活性最高。采用响应面方法确定了鳕鱼免疫肽制备参数:蛋白浓度25g/L、pH值8.0、温度(50±1)℃、时间290 min和加酶量24 U/mg,验证实验的平均DH为16.87%,脾淋巴细胞平均增殖率为28.45%,与理论值相符。PFH在220nm和280nm处有较大吸收峰,氨基酸组成以脯氨酸(15.69%)含量最高。PFH在广泛的pH范围具有较好的溶解性,在温度20-60℃范围PFH具有较低的粘度; pH对PFH的起泡性、乳化性影响较大。PFH在胃蛋白酶、胰蛋白酶和复合酶条件下会发生部分降解,但主要多肽成分的变化很小。
     4、在严格控制水解条件下,动力学模型在一定范围内可以很好的预测反应的进行。鳕鱼蛋白的胰酶水解的动力学模型为:R= (0.1693 E0– 0.2816 S0) exp│-0.357 * DH│,DH= 2.801 ln│1 + (0.06044 E0/S0– 0.1005)t│,胰蛋白酶的失活动力学常数为0.0512 min-1。鳕鱼免疫肽恒定条件时的预测模型:DH= 2.801 ln [1+ 1.35006t],可以通过预测曲线,获得免疫肽的制备时间。这对鳕鱼免疫活性肽制备有十分重要的意义。验证试验表明,当条件恒定时,实现了鳕鱼免疫肽制备的预测性,且模型理论值与实际值相符。但是当条件改变时,如搅拌速率的变化、温度的波动,显著的影响了最终反应产物,模型理论值与实际值不符。
     5、利用生物传感器,实现了恒定条件和动态条件下鳕鱼免疫制备的监控。恒定条件下,水解度在11-18%时,与游离赖氨酸、谷氨酸呈现很好的线性关系,方程式分别为:DH = 0.2225[Glu] - 5.3097,DH = 0.0126[Lys] - 1.2275。当初始酶浓度或初始底物浓度改变时,谷氨酸、赖氨酸的响应浓度与水解度数学关系不明确,呈现无规律的曲线关系。尽管不能用统一的数学模型确定动态变化的水解反应,但是其反应临界值符合很好的的线性关系,可以用以下公式来表示:[Glu] = 0.8186 [S0] + 0.0346 [E0] + 0.4506,[Lys] = 0.7430 [S0] + 0.1370 [E0] + 5.2931。
     6、本文利用人工神经网络(BP-ANNs)和生物传感器,建立了三个可在动态变化条件下实现在线监测的网络模型分别为:GLU-BP-ANNs的动态监控模型,LYS-BP-ANNs的动态监控模型,GLU-LYS- BP- ANNs的动态监控模型。三个模型的样本值与拟合值进行比较分析可知,R2值分别为0.9967、0.9964、0.9967,拟合误差范围分别为0-4.14%、0-4.56%、0-4.71%,拟合平均相对误差值分别为1.06%、0.94%、0.99%。利用模型进行五次独立的验证实验,理论值与实验值相符合,试验的相对误差范围分别为0.23%-2.81%,0.26%-1.91%和0.30%-2.35%。三个模型在一定程度上实现了仿真监控,均可以用来监测水解反应的进程。三个网络监控模型的共性参数如下:隐含层为1层,输入层与隐层之间使用logsig传递函数,隐层与输出层之间使用线性purelin函数,网络训练函数采用trainlm,适应性学习函数采用learngdm。GLU-BP-ANNs模型确定的其他参数如下:输入层节点分别为初始酶浓度E0、初始底物浓度S0、游离谷氨酸浓度[Glu];输出层节点为DH;隐层节点数为10。LYS-BP-ANNs模型确定的其他参数如下:输入层节点分别为初始酶浓度E0、初始底物浓度S0、终产物的赖氨酸浓度[Lys];输出层节点为DH;隐层节点数为11。GLU-LYS-BP-ANNs模型确定的其他参数如下:输入层节点分别为初始酶浓度E0、初始底物浓度S0、终产物的[Lys]和[Glu];输出层节点为DH;隐层节点数为8。
     7、利用Sephadex G-25凝胶柱层析、阳离子色谱、反相高效液相色谱对鳕鱼免疫肽混合成分反复纯化,获得了三个免疫活性肽,并利用反相高效液相色谱C18分析柱纯度鉴定,得到单一对称的单峰。利用Nano-ESI-Ms/Ms分别对三个活性肽进行结构表征。免疫肽Y3的分子量为583.9922Da,为五肽,肽序列为Asn– Gly– Met– Thr– Tyr,在20μg/mL时的脾细胞平均增殖率分别为35.92%。免疫肽H2的分子量为470.1422Da,其肽序列为Asn– Gly– Leu– Ala– Pro,为五肽,在浓度20μg/mL时,脾淋巴细胞增殖率平均值为32.96%。免疫活性肽S4的分子量为305.1622Da,为二肽,其序列为Trp– Thr,在浓度20μg/mL时,脾淋巴细胞增殖率平均值为31.35%。
     8、本文进一步研究了PFH对正常小鼠、免疫低下小鼠的免疫机理。PFH能显著提高正常小鼠的淋巴细胞转化活性(p<0.05)、迟发型变态反应(p<0.05)和单核巨噬细胞的吞噬能力(p<0.05),而对免疫器官指数和血清溶血素的影响较小(p>0.05)。对于免疫功能低下小鼠,PFH能显著提高小鼠的免疫器官指数(P<0.05);显著促进小鼠的迟发型变态反应(p<0.05),提高小鼠脾淋巴细胞的增殖能力(P<0.05),提高小鼠的细胞免疫功能;提高血清溶血素含量(P<0.05),促进小鼠的体液免疫功能;显著促进小鼠的碳廓清能力(P<0.01)和腹腔巨噬细胞对鸡红细胞的吞噬率和吞噬指数(P<0.05, P<0.01),促进小鼠的非特异性免疫功能。
     9、在免疫肽的精制中,DA201-C树脂对PFH的吸附能力最强,静态吸附最佳条件为:温度25℃,pH 4.0,多肽浓度10 mg/mL,树脂质量与多肽体积比(g/mL) 2:1,吸附时间3 h,吸附率可达84.7%。乙醇浓度为50%(?)时,静态解析率最高为82.7%。动态吸附与解析得到的脱盐多肽,脱盐率为98.1%,多肽回收率为90.3%。脾细胞增殖实验表明DA201-C树脂脱盐后的多肽仍具有促进脾细胞增殖活性。
Immunomodulating peptide can enhance the immunity of organism, the phagocytose ability of macrophages, and ability of anti-infection, which exhibited the many advantages such as the low molecular mass, good stability, weak immunogenicity, high biological activity and so on. Recently the study of bioactive peptides mainly focused on the optimization of bioactivities and kinetic model, while neither of them could confirm that the hydrolysis reaction was conducted as expected. In order to achieve the accurate prediction, dynamic monitoring and controlled hydrolysis during the preparation process of immunomodulating peptide, biotechnology, biosensors, mathematical model, and artificial neural network were used in the study. The bioactive peptides were refined by the resin. It could provide a theoretical basis and technological support for industrialization of immunomodulating peptide. In addition, the immune mechanism of bioactive peptides was also studied.
     The research results of this study were as follows:
     1、The Alaska Pollock frame (APF) was used as research materials and the main compositions were determined. The crude protein level of APF was high, with the content of 18.4%, which mainly consisted of alkali-soluble protein (35.49%) and stromatin (30.49%). It exhibited the high level of Gly (26.51%) and Glu (12.57%), followed by Ala, Asp, Ser, Leu and Lys. In order to make full use of APF, high- pressure cooking was set at 120℃for 30 min
     2、Degree of hydrolysis values, molecular weight distribution, and peptide levels were the important factors that reflected the characteristics of the hydrolysates, but it was difficult to monitor them online. Free amino acid levels of APF hydrolysates showed regular changes and can be used as response factor for indicating DH. They can be detected by biosensor, monitor the hydrolysis reaction. The advantage of the biosensor response factor is fast, high accuracy, good stability. To the measurements of glutamic acid and lysine, the relative error were 1.5% and 1.0%, coefficient of variation were 3.85% and 3.03%, the standard deviation are 0.78 and 0.60, respectively. Although seven enzymes were used for hydrolysis, free glutamic acid and lysine were changed regularly, and positively related to degree of hydrolysis, which can be used as hydrolysates response factor, while within a certain degree of hydrolysis, free glutamate and lysine acid concentration and the degree of hydrolysis showed a good linear relationship. It’s feasible to using the concentration of free glutamic acid and lysine as the response factors to monitor the degree of hydrolysis.
     3、It was confirmed that APF trypsin hydrolysates could enhance spleen lymphocyte proliferation, T lymphocyte proliferation, and phagocytic activity of macrophages (p<0.05) significantly. The molecular mass and degree of hydrolysis (DH) were important factors effecting on spleen lymphocyte proliferation. The highest proliferation ratio was reached in the range of 15-18%. APF was hydrolyzed by trypsin treatments to obtain immune activity polypeptides. The optimum parameters of hydrolysis were obtained by response surface methodology (RSM) as follows: fish protein concentration of 25g/L, pH 8.0, 50.0℃, time 290min, and [E]/[S] 24 U/mg, respectively. The average DH of five verification tests was 16.87% and the average spleen lymphocyte proliferation was 28.45%, which was in agreement with theoretical value. The immune activity peptide (PFH) was characterized in this study. It exhibited a maximum absorbance at 220 nm and 280nm and was rich in PRO levels (15.69%). PFH showed good solubility over a wide pH range and low viscosity in the range of 20-60℃; It showed significantly effect of pH on foaming properties and emulsifying characteristics. Although PFH had a little change which was treated by pepsin, trysin, and complex enzymes, the main composition was very similar to that of PFH before treatment.
     4、The kinetic model can reflect the hydrolysis process when the hydrolysis condition was constant. The kinetic model of APF and parameter of controlled- enzymatic hydrolysis were obtained by mathematic deduction and experimental analysis. The kinetic formulas were as follows: R= (0.1693 E0– 0.2816 S0) exp│-0.357 * DH│, DH= 2.801 ln│1 + (0.06044 E0/S0– 0.1005)t│, deactivation rate constant Kd was 0.0512 min-1. The kinetic model of PFH was as follows: DH= 2.801 ln [1+ 1.35006t].The preparation time of PFH can be obtained by its kinetic model, so it was very important for its preparation. The verification tests showed that the kinetic model could predict the hydrolysis process of PFH under constant condition. However, the hydrolysis conditions such as changes of stirring rate and temperature, were varied, and had significantly effect on final hydrolysates. Therefore, it was necessary to monitor the hydrolysis process online for the maximum immune activity peptide content in finally hydrolysates.
     5、The biosensor was used in the study for monitoring preparation of the immunodulating peptide of Alaska pollock frame under the constant and dynamic condition. It exhibited the good linear relations between degree of hydrolysis and free lysine and free glutamic acid when DH was in the range of 11-18% under constant condition. The formulas were as follows: DH = 0.2225[Glu] - 5.3097,DH = 0.0126 [Lys] - 1.2275. The mathematical relationship between concentrations of glutamic acid and lysine and DH was not ambiguity and it showed the ruleless curve relation when the initial enzyme concentration and initial substrate concentration were varied. Although they could not depict the relationship using the uniform mathematical model, the critical value of the hydrolysis reaction exhibited the good linear relationship and the formulas were as follows: [Glu] = 0.8186 [S0] + 0.0346 [E0] + 0.4506,[Lys] = 0.7430 [S0] + 0.1370 [E0] + 5.2931.
     6、The three network models were established for monitoring preparation of immune activity peptide under the dynamic condition including GLU-BP-ANNs LYS-BP-ANNs and GLU-LYS- BP- ANNs. They were based on BP-ANNs and biosensor. The response factors were included free Glu、Lys、Glu-Lys and so on. Comparative analysis of sample value and simulation value showed that R2 values were 0.9967、0.9964 and 0.9967,simulation error ranges were 0-4.14%、0-4.56% and 0-4.71%,simulation average error values were1.06%、0.94% and 0.99%。The verification tests of the three network models (five times for each) showed that they had a good reliability, and the theoretical value was in agreement with experimental value. The relative error ranges were 0.23%-2.81%,0.26%-1.91% and 0.30%-2.35%, respectively. Therefore the three network model can monitor the hydrolysis of Alaska Pollock frame under the dynamic conditions. The common parameters of the three models were as follows: one hidden layer, transfer function logsig in layer one, transfer function purelin in layer two, training function trainlm, adaptation learning function learngdm. The other parameters of GLU-BP-ANNs were as follows: input layer nodes were initial enzyme concentration E0, initial substrate concentration S0, and free glutamic acid concentration [Glu]; the number of output layer nodes was 10. The other parameters of LYS-BP-ANNs were as follows: input layer nodes were initial enzyme concentration E0, initial substrate concentration S0, and free lysine concentration [LYS]; the number of output layer nodes was 11. The other parameters of GLU-LYS-BP-ANNs were as follows: input layer nodes were E0, S0, [LYS] and [Glu]; the number of output layer nodes was 8.
     7、Three immune activity peptides were isolated from the Alaska pollock frame trypsin hydrolysates, using the chromatographic methods including Sephadex G-25 gel filtration chromatography, SP Sephadex C-25 ion-exchange chromatography and reversed phase high-performance liquid chromatography. The purity of immunomodulating peptide was measured using RP-HPLC equipped the Zorbax SB C18 analysis column. The sequences of peptide were identified by Nano-ESI-Ms/Ms as follows. The sequence of Immunomodulating peptide Y3 was Asn– Gly– Met– Thr– Tyr with molecular mass of 583.9922Da, and the spleen lymphocyte proliferation ratio treated by Y3 was 35.92%. The sequence of Immunomodulating peptide H2 was Asn– Gly– Leu– Ala– Pro with molecular mass of 470.1422Da, and the spleen lymphocyte proliferation ratio treated by H2 was 32.96%. The sequences of peptide were identified by Nano-ESI-Ms/Ms as follows. The peptide molecular mass and sequence of S4 was Trp-Thr and 305.1622Da, with the spleen lymphocyte proliferation ratio was 31.35%.
     8、The effects of PFH on immunomodulatory activities in normal and immunodepression mice were investigated by oral administration. PFH enhanced spleen lymphocyte transformation(P<0.05)、the delayed-type hypersensitivity (p<0.05) and the phagocytic index and rate of macrophages(P<0.05) significantly in normal mice (P<0.05), however, PFH showed the limited effects on the immune organ index and the hemolysin content (p>0.05). In hypoimmune mice, PFH increased the immune organ index (p<0.05). PFH could heighten the delayed-type hypersensitivity level (p<0.05)and spleen lymphocyte transformation (P<0.05), and it was indicated that PFH enhanced the function of cellular immunity in hypoimmune mice.In addition, PFH could increase the hemolysin content (P< 0.05) and promote the humoral immunity of hypoimmune mice. PFH also could enhance the ability of macrophages for carbon particle clearance (P< 0.01)and the phagocytic index and rate (P< 0.05, P< 0.01) significantly, and it was indicated that PFH could non-specific immunity in immunodepression mice.
     9、The adsorbing capacity of DA201-C resins was best. The highest adsorbing rate was 84.7% under 25℃, pH 4.0, the solution 10 mg/mL, and the ratio of resin mass to the volume of peptide 2:1 (g/mL). The highest rate of desorption (82.7%) was reached at the ethanol concentration of 50%. In dynamic adsorption and desorption, the results showed that the desalting and recovery rates of peptides were 98.1% and 90.3%, respectively. The sample desalted by DA201-C resin could enhance the splenocyte proliferation in a dose-dependent manner.
引文
Aoki S., Cao L., Matsui K., Rachmat R., Akiyama S., & Kobayashi M. Kendarimide A, a novel peptide reversing P-glycoprotein-mediated multidrug resistance in tumor cells, from a marine sponge of Haliclona sp.. Tetrahedron, 2004, 60: 7053-7059.
    Barros R.M., & Malcata F.X. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem. 2004, 88: 351-359.
    Basheer I.A., & Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43: 3-31.
    Basu A.K., Chattopadhyay P., Roychudhuri U., & Chakraborty R. A biosensor based on co-immobilized L-glutamate oxidase and L-glutamate dehydrogenase. Biosens. Bioelectron. 2006,21: 1968-1972.
    Berthou J., Migliore-Samour D., Lifchitz A., DelettréJ., Flo?h F., & Jollès P. Immunostimulating properties and three-dimensional structure of two tripeptides from human and cow caseins. FEBS Let. 1987, 218: 55-58.
    Bhaskar N., & Mahendrakar N.S. Protein hydrolysate from visceral waste proteins of Catla (Catla catla): Optimization of hydrolysis conditions for a commercial neutral protease. Bioresour. Technol. 2008, 99: 4105-4111.
    Bouhallab S., Molle D., & Leonil J. Tryptic hydrolysis of casenomaeropeptide in a membrane reactor: preparation of bioactive peptides. Biotech. Lett. l992, 14: 805-810.
    Byun H., & Kim S. Purification and characterization of angiotensin I converting enzyme (ACE) inhibitory peptides from Alaska pollack (Theragra chalcogramma) skin. Process Biochem. 2001, 36: 1155-1162.
    Chabanon G., Chevalot I., Framboisier X., Chenu S., & Marc I. Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem. 2007, 42: 1419-1428.
    Chen J., Suetsuna K., & Yamauchi F. Isolation and characterization of immunostimulative peptides from soybean. J Nutr. Biochem. 1995, 6: 310-313.
    Clark L.C., & Lyons C. Electrode system for continuous monitoring in cardiovascular surgery. Ann. NY Acad. Sci. 1962, 102: 29-45.
    Constant S.L., & Bottomly K. Induction of Th1 and Th2 CD4+ T cell responses: The alternative approaches. Annu. Rev. Immunol. 1997, 15: 297-322.
    Destoumieux D., Munoz M., Cosseau C., Rodriguez J., Bulet P., Comps M., & Penaeidins B.E. Antimicrobial peptides with chitin-bingding activity, are produced and stored in shrimp granulocytes and released after microbial challenge. J. Cell Sci. 2000, 113: 461-469.
    Dimcheva N., Horozova E., & Jordanova Z. A glucose oxidase inmobilized electrode based on modified graphite. Z Naturforsch C. 2002, 57: 705-711.
    Dremel B.A.A., Schmid R.D., & Wolfbeis O.S. Comparison of two fibre-optic L-glutamate biosensor based on the detection of oxygen or carbon dioxide, and their application in combination with flow injection analysis to the determination of glutamate. Anal. Chim. Acta 1991, 248: 351-359.
    Duarte J., Vinderola G., Ritz B., Perdigon G., & Matar C. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology 2006, 211: 341-350.
    Fu H., Jin W., Xiao H., Huang H., & Zou H. Peptides separation in hydrophilic interaction capillary electrochromatography. Electrophoresis 2003, 24: 2084-2091.
    Fusetani N., Nakao Y., & Mazumamide A. Athrombin-inhibitory terapevtide from a marine sponge, Theonellasp. 1991, 32: 7073-7074.
    Gauthier S.F., Pouliot Y., & Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16: 1315-1323.
    Gibbs B.F., Alexandre Z., Robert M., & Catherine M. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food Res. Int. 2004, 37: 123-133.
    Gill H.S., Doull F., Rutherfurd K.J., & Cross M.L. Immunoregulatory peptides in bovine milk. Br. J. Nutr. 2000, 84: S111-S117.
    Hadden J.W. Aspects of the immunopharmacology of thymosinα1. Clin. Appl. Immunol. Rev. 2001, 1: 187-191.
    Hoie L.H., Guldstrand M., Sjoholm A., Graubaum H.J., Gruenwald J., Zunft H.J., & Lueder W. Cholesterol-lowering effects of a new isolated soy protein with high levels of nondenaturated protein in hypereholesterolemic patients. Adv. Ther. 2007, 24: 439-447.
    Hou H., Li B., Zhao X., Zhang Z., & Li P. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT - Food Sci. Technol. 2011, 44: 421-428.
    Jamdar S.N., Rajalakshmi V., Pednekar M.D., Juan F., Yardi V., & Sharma A.. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chem. 2010, 121: 178-184.
    Je J.Y., Kim S.Y., & Kim S.K. Preparation and antioxidative activity of hoki frame protein hydrolysate using ultrafiltration membranes. Eur. Food Res. Technol. 2005a, 221:157-162
    Je J., Park P., & Kim S. Antioxidant activity of a peptide isolated from Alaska pollack (Theragra chalcogramma) frame protein hydrolysate. Food Res. Int. 2005b, 38: 45-50.
    Jung W., Karawita R., Heo S., Lee B., Kim S., & Jeon Y. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. ProcessBiochem. 2006, 41: 2097-2100.
    Khanmohammadi M., Garmarudi A.B., Ghasemi K., Garrigues S., & de la Guardia M. Artificial neural network for quantitative determination of total protein in yogurt by infrared spectrometry. Microchem. J. 2009, 91: 47-52.
    Kitts D.D., & Weiler K. Bioactive proteins and peptides from food sources. Applications of bioprocesses used in isolation and recovery. Curr. Pharm. Des. 2003, 9: 1309-1323.
    Knutsen A.P., Freeman J.J., Mueller K.R., Roodman S.T., & Bouhasin J.D. Thymosin-α1 stimulates maturation of CD34+ stem cells into CD3+4+ cells in an in vitro thymic epithelia organ coculture model. Int. J. Immunopharmacol. 1999, 21: 15-26.
    Lauth X., Shike H., Burns J.C., Westerman M., Ostland V.E., Carlberg J.M., VanOlst J.C., Nizet V., Taylor S.W., Shimizu C., & Bulet P. Discovery and characterization of two isoforms of moronecidin, a novel antimicrobial peptide from hybrid striped bass. J. Biol. Chem. 2002, 277: 5030-5039.
    Li G., Le G., Shi Y., & Shrestha S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 2004, 24: 469-486.
    Marquez M.C., & Vazquez M.A. Modeling of enzymatic protein hydrolysis. Process Biochem. 1999, 35: 111-117.
    Meara G.M.O., & Munro P.A. Effects of reaction variables on the hydrolysis of lean beaf tissue by alcalase. Meat Sci. 1984, 11: 227-238.
    Mendis E., Rajapakse N., & Kim S.K. Antioxidant properties of a radicals scavenging peptide purified from enzymatically prepared fish skin gelatin hydrolysate. J. Agric. Food Chem. 2005, 53: 581-587.
    Miyoshi S., Kaneko T., Ishikawa H., Tanaka H., & Maruyama S. Production of bioactive peptides from corn endosperm proteins by some proteases. Ann. N.Y. Acad. Sci. 1995, 750: 429-431.
    Morris H.J., Carrillo O., Almarales A., Bermúdez R.C., Lebeque Y., Fontaine R., LlauradóG., & Beltrán Y. Immunostimulant activity of an enzymatic protein hydrolysate from green microalga Chlorella vulgaris on undernourished mice. Enzyme Microb. Technol. 2007, 40: 456-460.
    Mortensen J., Legin A.V., Ipatov A., Rudnitskaya A., Vlasov Y., & Hjuler K. A flow injection system based on chalcogenide glass sensors for the determination of heavy metals. Anal. Chim.Acta 2000, 403: 273-277.
    Moure A., Domínguez H., & Paraj? J.C. Antioxidant properties of ultrafiltration recovered soy protein fractions from industrial effluents and their hydrolysates. Process Biochem. 2006, 41: 447-456
    Nagaoka S., Futamura Y., Miwa K., Awano T., Yamauchi K., Kanamaru Y., Tadashi K., & Kuwata T. Identification of novel hypodnolesterolemic peptides derived from bovine milkβ-lactoglobulin. Biochem. Biophy. Res. Commun. 2001, 281:11-17
    Nagaoka S., Kanamaru Y, Kuzuya Y. Effects of whey protein and casein on the plasma and liver lipids in rats. Agric. Boil. Chem. 1991, 55: 813-818.
    Nedjar-Arroume N., Dubois-Delval V., Miloudi K., Daoud R., Krier F., Kouach M., Briand G., & Guillochon D. Isolation and characterization of four antibacterial peptides from bovine hemoglobin. Peptides.2006, 27: 2082-2089.
    Nikolelis D.P. Kinetic-potentiometric determination of monodium glutamate in soups and soup bases and of glutamate dehydrogenase. Analyst 1987, 112: 763-765.
    Oshina G., Shinabukuro H., & Nagasawa K. Peptide inhibitors of angiotensin converting enzyme in digests of gelation by bacterial collagenase. Biochim. Biophys. Acta 1979, 566: 128-137.
    Parker F., Migliore-Samour D., Floch F., Zerial A., Werner G. H., Jollès J., Casaretto M., Zahn H., & Jollès P. Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 1984, 145: 677-682.
    Panagou E.Z., & Kodogiannis V.S. Application of neural networks as a non-linear modelling technique in food mycology. Expert Syst. Appl. 2009, 36: 121-131.
    Patel A., O'hara M., Callaway J.E., Greene D., Martin J., & Nishikawa A.H. Affinity purification of tissue plasminogen activator using transition-state analogues. Chromatogr. 1990, 510: 83-93.
    Pihlanto-Lepp?l? A. Bioactive peptides derived from bovine whey proteins: Opioid and ace-inhibitory. Trends Food Sci. Tech. 2000, 11: 347-356.
    Poga?nik L., & Franko M. Detection of organophosphate and carbonate pesticides in vegetable samples by a photothermalbiosensor. Biosens. Bioelectron. 2003, 18: 1-9.
    Prevolnik M., ?andek-Potokar M., Novi? M., & ?korjanc D. An attempt to predict pork drip loss from pH and colour measurements or near infrared spectra using artificial neural networks. Meat Sci. 2009, 83: 405-411.Razmi-Rad E., Ghanbarzadeh B., Mousavi S.M., Emam-Djomeh Z., & Khazaei J. Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. J. Food Eng. 2007, 81: 728-734.
    Ren J., Zhao M., Shi J., Wang J., Jiang Y., Cui C., Kakuda Y., & Xue S.J. Optimization of antioxidant peptide production from grass carp sarcoplasmic protein using response surface methodology. LWT-Food Sci. Technol. 2008a, 26: 1-9.
    Ren N, Cao G, Wang A, Zhu Y, & Liu B. Hydrogen production from hemicellulose hydrolysates by Thermoanaerobacterium thermosaccharolyticum W16. J. Biotechnol. 2008b, 136: S422- S423.
    Riedel K., Renneberg R., Wollenberger U., Kaiser G., & Scheller F.W. Microbial sensors: fundamentals and application for process control. J. Chem. Tech. Biotechnol. 1989, 44: 85-106.
    Rizzello CG, Losito I, GobbettiM, et al. Antibacterial activity of peptides from the water-soluble extracts of Italian cheese varieties. J. Dairy Sci. 2005, 88: 2348-2360.
    Saint-Sauveur D., Gauthier S.F., Boutin Y., & Montoni A. Immunomodulating properties of a whey protein isolate, its enzymatic digest and peptide fractions. Int. Dairy J. 2008, 18: 260-270.
    Salampessy J., Phillips M., Seneweera S., & Kailasapathy K. Release of antimicrobial peptides through bromelain hydrolysis of leatherjacket (Meuchenia sp.) insoluble proteins. Food Chem. 2010, 120: 556-560.
    Sanz N.V., Benavente F., Toro I., & Barbosa J. Optimization of HPLC conditions for the separation of complex crude mixtures produced in the synthesis of therapeutic peptide hormones. Chromatographia. 2001, 53: 167-173.
    Sen S., Gülce A., & Gülce H. Polyvinylferrocenium modified Pt electrode for the design of amperometric choline and acetylcholine enzyme electrodes. Biosens. Bioelectron. 2004, 19: 1261-1268.
    Sheu F., Chien P.J., Chien A.L., Chen Y.F., & Chin K.L. Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s Ear mushroom Auricularia polytricha. Food Chem. 2004, 87: 593-600.
    Shike H., Lauth X., Westerman M.E., Ostland V.E., Carlberg J.M., Van Olst J.C., Shimizu C., Bulet P., & Burns J.C. Bass hepcidin is a novel antimicrobial peptide induced by bacterial Challenge. Eur. J. Biochem. 2002, 269: 2232-2237.
    Statake T., Katsumi M., & Nakamura N. Neural network approach for minimizing the makespanof the general job-shop. Int. J. Prod. Econ. 1994, 33: 67-74.
    Sternberg R., Bindra D.S., Wilson G.S., & Thevenot D.R. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Anal. Chem. 1988, 60: 2781-2786.
    Suetsunna K., Maekawa K., & Chen J.R. Antihypertensive effects of undaria pinnatifida (wakame) peptide on blood pressure in spontaneously hypertensive rats. J Nutr. Biochem. 2004, 15: 267-272.
    Suprun E., Evtugyn G., Budnikov H., Ricci F., Moscone D., & Palleschi G. Acetylcholinesterase sensor based on screen-printed carbon electrode modified with Prussian blue. Anal. Bioanal. Chem. 2005, 10: 303-305.
    Syrijala H., Sureel H.M., & Lone J. Low CD4 /CD8 lymphocyte ratio in acute myocardial infection. Clin. Exp. Immunol. 1991, 83: 326-328.
    Tamaki M., Kokuno M., Sasaki I., Iwama M., Saegusa K., Kikuchi Y., Shindo M., Kimura M., & Uchida Y. Syntheses of low-hemolytic antimicrobial gratisin peptides. Bioorg. Med. Chem. Lett. 2009, 19: 2856-2859.
    Tamaru S., Kurayama T., Sakono M., Fukuda N., Nakamori T., Furuta H., Tanaka K., & Sugano M. Effects of dietary soybean peptides on hepatic production of ketone bodier and secretion of triglyceride by perfused rat liver. Biosci. Biotechnol. Biochem. 2007, 71: 2451-2457.
    Tang C.H., Wang X.S., & Yang X.Q. Enzymatic hydrolysis of hemp (Cannabis sativa L.) protein isolate by various proteases and antioxidant properties of the resulting hydrolysates. Food Chem. 2009, 114: 1484-1490.
    Tong S.L., & Rechnitz G.A. Enzymatic L-Arginine and L-Lysine Determination Using a Carbonate Ion Selective Membrane Electrode. Anal. Lett. 1976, 9: 1-11.
    Tran N.D., Romette J.L., & Thoma D. An enzyme electrode for specific determination of L-lysine: A real-time control sensor. Biotechnol. Bioeng. 1983, 25: 329-340.
    Tsuruki T., Kishi K., Takahashi M., Tanaka M., Matsukawa T., & Yoshikawa M. Soymetide, an immunostimulating peptide derived from soybeanβ-conglycinin, is an fMLP agonist. FEBS Lett. 2003, 540: 206-210.
    Updike S.J., & Hikes G.P. The enzyme electrode. Nat. 1967, 214: 986-988.
    Vanee K., & Ofoli R.Y. Starch hydrolysis kinetics of Bacillus licheniformisα-amylase. J. Chem.Tech.Biotech. 1991, 51: 209.
    Wang J., Zhao M., Zhao Q., & Jiang Y. Antioxidant properties of papain hydrolysates of wheatgluten in different oxidation systems. Food Chem. 2007, 101: 1658-1663.
    Wahlstr?m K., & Undén A. A new protecting group for tryptophan in solid-phase peptide synthesis which protects against acid-catalyzed side reactions and facilitates putification by HPLC. Tetrahedron Lett. 2009. 50: 2976-2978.
    Wollenberger U., Scheller F.W., B?hmer A., Passarge M., & Mülle H. A specific enzyme electrode for L-glutamate-development and application. Biosensors 1989, 4: 381-391.
    Wu J., & Ding X. Characterization of inhibition and stability of soy-protein-derived antiotensin I-converting enzyme inhibitory peptides. Food Res. Int. 2002a, 35: 367-375.
    Wu Z., Wang B., Dong S., & Wang E. Amperometric glucose biosensor based on lipid film. Biosens. Bioelectron. 2000b, 15: 143-147.
    Yamauchi F., & Suetsuna K. Immunological effects of dietary peptide derived from soybean protein. J. Nutr. Biochem. 1993, 4: 450-457.
    Yang J.I., Liang W.S., Chow C.J., & Siebert K.J. Process for the production of tilapia retorted skin gelatin hydrolysates with optimized antioxidative properties. Process Biochem. 2009a, 44: 1152-1157.
    Yang R., Zhang Z., Pei X., Han X., Wang J., Wang L., Long Z., Shen X., & Li Y. Immunomodulatory effects of marine oligopeptide preparation from Chum Salmon (Oncorhynchus keta) in mice. Food Chem. 2009b, 113: 464-470.
    Ye M., Zou H., Liu Z., & Ni J. Separation of peptides by strong cation exchange capillary electrochromatography. J Chromatogr. A. 2000, 869: 385-394.
    Zhu Q.M. A back propagation algorithm to estimate the parameters of non-linear dynamic rational models. Appl. Math. Model. 2003, 27: 169-187.
    曹明耀,刘延菊.几种免疫活性肽的研究进展.中国基层医药,2004,11(2):238-239.
    陈安宇,刑克礼,史学涛.医用传感器.北京:科学出版社,2008.
    崔凤霞.海参胶原蛋白生化性质及胶原肽活性研究:[博士学位论文].青岛:中国海洋大学,2007.
    代卉,乐国伟,孙进,韩芳,施用晖.小麦肽对受环磷酰胺免疫抑制小鼠的免疫调节及抗氧化功能.生物工程学报,2009,25:549-553.
    杜林,李亚娜.生物活性肽的功能与制备研究进展.中国食物与营养,2005,08:18.
    房新平.牛胎盘免疫活性肽提取与酶法制备研究:[博士学位论文].无锡:江南大学,2007.
    冯东,刘仲汇,李大海,卢连华,刑金川,田长清,王炳莲,孟庆军.生物传感器法测定玉米中赖氨酸的研究.食品与发酵工业,2008,34:153-155.
    洪旭光.皱纹盘鲍和栉孔扇贝抗菌肽的研究:[博士学位论文].青岛:中国海洋大学,2008.
    华欲飞.膜分离方法制备免疫活性大豆肽的研究:[硕士学位论文].无锡:江南大学,2007.
    黄贤武,郑筱霞.传感器原理与应用.北京:高等教育出版社;成都:电子科技大学出版社,2004.
    李八方,徐杰,赵雪.海洋生物活性物质.青岛:中国海洋大学出版社,2007,64-65.
    李明,宋俊梅.大豆多肽分离提纯方法研究进展.粮食加工, 2010,35(4):69-71.
    李天平,徐珽,吴逢波,唐尧.多肽类物质分离纯化与鉴定方法的研究进展.中国药房,2009,20:1750-1752.
    王伟.人工神经网络原理—入门与应用.北京:北京航空航天大学出版社,1995,6-8.
    薛向阳,孔繁东,祖国仁,季瑛,张颖利,王英.食品抗高血压肽的研究进展和前景分析.食品研究与开发,2004,25(6):28-30.
    姚守拙.化学与生物传感器.北京:化学工业出版社,2006.
    袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999.
    张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998.
    Dong S., Zeng M., Wang D., Liu Z., Zhao Y., & Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008, 107: 1485-1493.
    Dubois M., Gilles K.A., Hamilton J.K., Rebers P., & Smith F. Colorimetric method for determination of sugers and related substances. Anal. Chem. 1956, 28: 350-356.
    Folch J., Lees M., & Sloane-Stanley G.H. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 1957, 226: 497-509.
    Gildberg A., Arnesen J.A., & Carleh?g M. Utilisation of cod backbone by biochemicalfractionation. Process Biochem. 2002, 38: 475-480.
    Haard N.F. Composition and nutritive value of fish proteins and other nitrogen compounds. In: A. Ruiter, Editor, Fish and fishery products: Composition, nutritive properties and stability. CAB International, London, 1995: 77-116.
    Hashimoto K., Watabe S., Kono M., & Shiron K. Muscle protein composition of sardine and mackerel. Bulletin of the Japanese Society of Scientific Fisheries, 1979, 45: 1435-1441
    Hou H., Li B., & Zhao X. Enzymatic hydrolysis of defatted mackerel protein with low bitter taste. J. Ocean Univ. China, 2011, 10: 85-92.
    Hou H., Li B., Zhao X., Zhang Z., & Li P. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT - Food Sci.Technol. 2011, 44: 421-428.
    Hou H., Zhao X., Li B., Shao X., Liu Z., Yan Y., Wang Z., Tao Y., & Yang X. Proteins characteristics and lipid profiles of silver sillago (Sillago sihama). The 2011 International Conference on Bioengineering, Chemistry and Environment Science, 2011b, Nanjing.
    Hou H., Li B., Zhao X., Zhuang Y., Ren G., Yan M., Cai Y., Zhang X., & Chen L. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chem. 2009, 115: 945-950.
    Jabeen F., & Chaudhry A.S. Chemical compositions and fatty acid profiles of three freshwater fish species. Food Chem. 2011, 125: 991-996.
    Je J.Y., Qian Z.J., Byun H.G., & Kim S.K. Purification and characterization of an antioxidant peptide obtained from tuna backbone protein by enzymatic hydrolysis. Process Biochem. 2007, 42: 840-846.
    Jung W.K., Karawita R., Heo S.J., Lee B.J., Kim S.K., & Jeon Y.J. Recovery of a novel Ca-binding peptide from Alaska Pollack (Theragra chalcogramma) backbone by pepsinolytic hydrolysis. Process Biochem. 2006, 41: 2097-2100.
    ?zogul Y., ?zogul F., & Alagoz S. Fatty acid profiles and fat contents of commercially important seawater and freshwater fish species of Turkey: A comparative study. Food Chem. 2007, 103: 217-223.
    Skipnes D., Plancken I.V., Loey A.V., & Hendrickx M. Kinetics of heat denaturation of proteins from farmed Atlantic cod (Gadus morhua). J. Food Eng. 2008, 85: 51-58.
    Toppe J., Albrektsen S., Hope B., & Aksnes A. Chemical composition, mineral content and amino acid and lipid profiles in bones from various fish species. Comp. Biochem. Physiol. 2007, 146: 395-401.
    Wang Q., Xue C., Li Z., & Xu J. Analysis of DHA-rich phospholipids from egg of squid Sthenoteuthis oualaniensis. J. Food Compos. Anal. 2008, 21: 356-359.
    Wu H., Chen H., & Shiau C. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36: 949-957.
    Yan M., Li B., Zhao X., Ren G., Zhuang Y., Hou H., Zhang X., Chen L., & Fan Y. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chem. 2008, 107: 1581-1586.
    王琦.海产动物来源n-3PUFA磷脂的提取及生物活性研究:[博士学位论文].青岛:中国海洋大学,2008.
    Barros R.M., & Malcata F.X. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem. 2004, 88: 351-359.
    Basu A.K., Chattopadhyay P., Roychudhuri U., & Chakraborty R. A biosensor based on co-immobilized L-glutamate oxidase and L-glutamate dehydrogenase. Biosens. Bioelectron. 2006, 21: 1968-1972.
    Chabanon G., Chevalot I., Framboisier X., Chenu S., & Marc I. Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem. 2007, 42: 1419-1428.
    Hou H., Li B., Zhao X., Zhuang Y., Ren G., Yan M., Cai Y., Zhang X., & Chen L. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chem. 2009, 115: 945-950.
    Kong X., Guo M., Hua Y., Cao D., & Zhang C. Enzymatic preparation of immunomodulatinghydrolysates from soy proteins. Bioresour. Technol. 2008, 99: 8873-8879.
    Lin L., Li B. Radical scavenging properties of protein hydrolysates from Jumbo flying squid (Dosidicus eschrichitii Steenstrup) skin gelatin. J. Sci. Food Agric. 2006, 86: 2290-2295.
    Gauthier S.F., Pouliot Y., & Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16: 1315-1323.
    Guerrieri A., Cataldi T.R.I., & Ciriello R. The kinetic and analytical behaviours of an l-lysine amperometric biosensor based on lysine oxidase immobilised onto a platinum electrode by co-crosslinking. Sensors Actuat. B-Chem. 2007, 126: 424-430.
    Márquez M.C., & Vázquez M.A. Modeling of enzymatic protein hydrolysis. Process Biochem. 1999, 35: 111-117.
    Meara G.M.O., & Munro P.A. Effects of reaction variables on the hydrolysis of lean beef tissue by alcalase. Meat Sci. 1984, 11: 227-238.
    Moreno M.C.M., & Cuadrado V.F. Enzymic hydrolysis of Vegetable proteins: mechanism and kinetics. Proc Biochem. 1993, 28: 481-490.
    Thiansilakul Y., Benjakul S., & Shahidi F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi). Food Chem. 2007, 103: 1385-1394.
    Tong S.L., & Rechnitz G.A. Enzymatic L-Arginine and L-Lysine Determination Using a Carbonate Ion Selective Membrane Electrode. Anal. Lett. 1976, 9: 1-11.
    Wollenberger U., Scheller F.W., B?hmer A., Passarge M., & Mülle H.G. A specific enzyme electrode for L-glutamate-development and application. Biosensors 1989, 4: 381-391.
    Wu H., Chen H., & Shiau C. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food Res. Int. 2003, 36: 949-957.
    黄贤武,郑筱霞.传感器原理与应用(第二版).北京:高等教育出版社;成都:电子科技大学出版社,2004,306-307.
    赵新淮,冯志彪.蛋白水解物水解度的测定.食品科学,1994,11:65-67.
    Bruins M.J., Soeters P.B., & Deutz N.E. Endotoxemia affects organ protein metabolism differently during prolonged feeding in pigs. J Nutr. 2000, 130: 3003-3013.
    Chalamaiah M., Rao G.N., Rao D.G., & Jyothirmayi T. Protein hydrolysates from meriga (Cirrhinus mrigala) egg and evaluation of their functional properties。Food Chem. 2010, 120: 652-657.
    Cuaron J.A., Chapple R.P., & Easter R.A. Effect of Lysine and Threonine Supplementation of Sorghum Gestation Diets on Nitrogen Balance and Plasma Constituents in First-Litter Gilts,J. Anim. Sci. 1984. 58: 631-637.
    Dong S., Zeng M., Wang D., Liu Z., Zhao H., & Yang H. Antioxidant and biochemical properties of protein hydrolysates prepared from Silver carp (Hypophthalmichthys molitrix). Food Chem. 2008, 107: 1485-1493.
    Gauthier S.F., Pouliot Y., & Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16: 1315-1323.
    Gbogouri G.A., Linder M., Fanni J., & Parmentier M. Influence of hydrolysis degree on the functional properties of salmon byproducts hydrolysates. J. Food Sci. 2004, 69: 615–619.
    Gill H.S., Doull F., Rutherfurd K.J., & Cross M.L. Immunoregulatory peptides in bovine milk. Brit.J. Nutr. 2000, 84: S111-S117.
    Hou H., Li B., Zhao X., Zhang Z., & Li P. Optimization of enzymatic hydrolysis of Alaska pollockframe for preparing protein hydrolysates with low-bitterness. LWT-Food Sci. Technol. 2011, 44: 421-428.
    Hou H., Li B., Zhao X., Zhuang Y., Ren G., Yan M., Cai Y., Zhang X., & Chen L. The effect of pacific cod (Gadus macrocephalus) skin gelatin polypeptides on UV radiation-induced skin photoaging in ICR mice. Food Chem. 2009, 115: 945-950.
    Kong XZ, Guo MM, Hua YF, Cao D, & Zhang CM. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol. 2008, 99: 8873–8879.
    Liu Z., Su Y., Zeng M. Amino acid composition and functional properties of giant red sea cucumber (parastichopus californicus) collagen hydrolysates. J. Ocean Univ. China 2011, 10: 80-84.
    Mahmoud H.I. Enzymatic hydrolysis of casein: Effect of degree of hydrolysis on antigenicity and Physical properties. J. Food Sci. 1992, 57(5): 1223-1229
    Malmezat T., BreuilléD., Capitan P., Mirand, P.P., & Obled C. Glutathione turnover is increased during the acute phase of sepsis in rats. J Nutr. 2000, 130: 1239-1246.
    Miyoshi S., Kaneko T., Ishikawa H., Tanaka H., & Maruyama S. Production of bioactive peptides from corn endosperm proteins by some proteases. Ann. NY Acad. Sci. 1995, 750: 429-431.
    Nilsang S., Lertsiri S., Suphantharika M., & Assavanig A. Optimization of enzymatic hydrolysis of fish soluble concentrate by commercial proteases. J. Food Eng. 2005, 70: 571-578.
    Ogunwolu S.O., Henshaw F.O., Mock H., Santros A., & Awonorin S.O. Functional properties of protein concentrates and isolates produced from cashew (Anacardium occidentale L.) nut. J. Food Eng. 2008, 88: 94-103.
    Patel M.T., & Kilara A. Studies on whey protein concentrates. 2. Foaming and emulsifying properties and their relationships with physicochemical properties. J. Dairy Sci. 1990, 73: 2731-2740.
    Pearce K.N., & Kinsella J.E. Emulsifying properties of proteins: evaluation of a turbidimetric technique. J. Agri. Food Chem. 1978, 26: 716-723
    Razmi-Rad E., Ghanbarzadeh B., Mousavi S.M., Emam-Djomeh Z., & Khazaei J. Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. J. Food Eng. 2007, 81: 728-734.
    Sanchez-Vioque R., Bagger C.L.; Rabiller C., & Gueguen J. Foaming properties of acylatedrapeseed (Brassica napus L.) hydrolysates. J. Colloid Interface Sci. 2001, 244: 386-393.
    Sathe S.K., & Salunkhe D.K. Functional properties of the Great Northern Bean (Phaseolus vulgaris L.) proteins: emulsion, foaming, viscosity and gelation properties. J. Food Sci. 1981, 46: 71-74.
    Sathivel S., Bechtel P.J., Babbitt J., Smiley S., Crapro C., Reppond K., & Prinyawiwatkul W. Biochemical and functional properties of herring (Clupea harengus) byproduct hydrolysates. J. Food Sci. 2003, 68: 2196–2200.
    Sheu F., Chien P.J., Chien A.L., Chen Y.F., & Chin K.L. Isolation and characterization of an immunomodulatory protein (APP) from the Jew’s Ear mushroom Auricularia polytricha. Food Chem. 2004, 87: 593-600.
    Suchner U., Heyland D.K., & Peter K. Immune-modulatory actions of arginine in the criticallyill. Br. J Nutr. 2002, 87: 121-132.
    Yamauchi F., & Suetsuna K. Immunological effects of dietary peptide derived from soybean protein. J. Nutr. Biochem. 1993, 4: 450-457.
    Yuan X., Gu X., & Tang J. Optimization of the production of Momordica charantia L. Var. abbreviate Ser. protein hydrolysates with hypoglycemic effect using Alcalase. Food Chem. 2008, 111: 340-344.
    崔竹梅,王金梅,郝小燕,张巨松,麻浩.鹰嘴豆肽、大豆肽功能性质的研究.中国油脂,2007,32,27-31.
    井明艳,刘波静,孙建义,赵树盛.氨基酸代谢与免疫反应.中国畜牧杂志,2007,43,37-39.
    李八方,等.功能食品与保健食品.青岛:青岛海洋大学出版社,1997:224.
    刘建文,殷明,季光,刘成海.药理实验方法学―新技术与新方法.北京:化学工业出版社,2008,128-131.
    汤国营,戴军,蔡木易,易维学,谷瑞增.大豆低聚肽分子质量分布的测定及体外消化实验. 食品与发酵工业,2006,32:131-133.
    夏文水,吴焱.甲壳低聚糖功能性质.无锡轻工大学学报,1996,15(4):297-302.
    徐叔云,卞如濂,陈修.药理实验方法学.北京:人民卫生出版社,2001,1420-1421.
    Barros R.M., & Malcata F.X. A kinetic model for hydrolysis of whey proteins by cardosin A extracted from Cynara cardunculus. Food Chem. 2004, 88: 351-359.
    Basheer I.A., & Hajmeer M. Artificial neural networks: fundamentals, computing, design, and application. J. Microbiol. Methods 2000, 43: 3-31.
    Chabanon G., Chevalot I., Framboisier X., Chenu S., & Marc I. Hydrolysis of rapeseed protein isolates: Kinetics, characterization and functional properties of hydrolysates. Process Biochem. 2007, 42: 1419-1428.
    Gauthier S.F., Pouliot Y., & Saint-Sauveur D. Immunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16: 1315-1323.
    Govindaraju K., & Srinivas H. Controlled enzymatic hydrolysis of glycinin: Susceptibility of acidic and basic subunits to proteolytic enzymes. LWT-Food Sci. Technol. 2007, 40: 1056-1065.
    Hou H., Li B., Zhao X., Zhang Z., & Li P. Optimization of enzymatic hydrolysis of Alaska pollock frame for preparing protein hydrolysates with low-bitterness. LWT - Food Sci. Technol. 2011, 44: 421-428.
    Mario M. Some problems of sequential turbocharging of diesel engines for racing boats. SAE Paper, 2000, 01: 0528.
    Marquez M.C., & Vazquez M.A. Modeling of enzymatic protein hydrolysis. Process Biochem. 1999: 35, 111-117.
    Meara G.M.O., & Munro P.A. Effects of reaction variables on the hydrolysis of lean beef tissue by alcalase. Meat Sci. 1984, 11: 227-238.
    Panagou E.Z., & Kodogiannis V.S. Application of neural networks as a non-linear modelling technique in food mycology. Expert Syst. Appl. 2009, 36: 121-131.
    Khanmohammadi M., Garmarudi A.B., Ghasemi K., Garrigues S., & de la Guardia, M. Artificial neural network for quantitative determination of total protein in yogurt by infrared spectrometry. Microchem. J. 2009, 91: 47-52.
    Razmi-Rad E., Ghanbarzadeh B., Mousavi S.M., Emam-Djomeh Z., & Khazaei J. Prediction of rheological properties of Iranian bread dough from chemical composition of wheat flour by using artificial neural networks. J. Food Eng. 2007, 81: 728-734.
    Ren Z., Campbell T., & Yang J. Investigation on a computer - controlled sequential turbocharging system for medium- speed diesel engines. SAE, Paper 981480, 1998.
    Statake T., Katsumi M., & Nakamura N. Neural network approach for minimizing the makespan of the general job-shop. Int. J. Prod. Econ. 1994, 33: 67-74.
    Zhu QM. A back propagation algorithm to estimate the parameters of non-linear dynamic rational models. Appl. Math. Model. 2003, 27: 169-187.
    丛爽.面向MATLAB工具箱的神经网络理论与应用.合肥:中国科学技术大学出版社,2003.
    林伟锋.可控酶解从海洋鱼蛋白中制备生物活性肽的研究.广州:华南理工大学,2003.
    罗晓曙.人工神经网络理论·模型·算法与应用.桂林:广西师范大学出版社,2005.
    袁曾任.人工神经元网络及其应用.北京:清华大学出版社,1999.
    张乃尧,阎平凡.神经网络与模糊控制.北京:清华大学出版社,1998.
    朱大奇,史慧.人工神经网络原理及应用.北京:科学出版社,2006.
    Iemura Y., Yamada T., Takahashi T., Furukawa K., & Hara S. Properties of the peptides liberated from rice protein in sokujo-moto. J. biosci. Bioeng. 1999, 88: 276-280.
    Jollès P., Parker F., Floc'h F., Migliore D., Alliel P., Zerial A., & Werner G.H. Immunostimulating substances from human casein. J. immunopharmacol. 1981-1982, 3: 363-369.
    Mercier A., Gauthier S.F., & Fliss I. Immunomodulating effects of whey proteins and their enzymatic digests. Int. Dairy J. 2004, 14: 175–183.
    Parker F., Migliore-Samour D., Floch F., Zerial A., Werner G. H., Jollès J., Casaretto M., Zahn H., & Jollès P. Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 1984, 145: 677-682.
    Yoshikawa F.M., & Takahashi L. Immunomodulating peptide derived from soybean protein. Annals of the new york academy of sciences, 1993, 685: 375–376.
    赵元晖.海地瓜蛋白水解物中ACE抑制肽的分离纯化及合成:[博士学位论文].青岛:中国海洋大学,2009.
    Duarte J., Vinderola G., Ritz B., Perdigon G., & Matar C. Immunomodulating capacity of commercial fish protein hydrolysate for diet supplementation. Immunobiology 2006, 211: 341-350.
    Durrieu C., Degraeve P., Chappaz S., & Martial-Gros A. Immunomodulating effects of water-soluble extracts of traditional French Alps cheeses on a human T-lymphocyte cell line. Int. Dairy J. 2006, 16: 1505-1514.
    Gauthier S.F., & Pouliot Y. Functional and biological properties of peptides obtained by enzymatic hydrolysis of whey proteins. J. Dairy Sci. 2003, 86: E78-E87.
    Gauthier S.F., Pouliot Y., & Saint-Sauveur D. Imunomodulatory peptides obtained by the enzymatic hydrolysis of whey proteins. Int. Dairy J. 2006, 16: 1315-1323.
    Parker F., Migliore-Samour D., Floch F., Zerial A., Werner G.H., Jolles J., Casaretto M., Zahn H., & Jolles P. Immunostimulating hexapeptide from human casein: amino acid sequence, synthesis and biological properties. Eur. J. Biochem. 1984, 17: 677-682.
    代卉,乐国伟,孙进,韩芳,施用晖.小麦肽对受环磷酰胺免疫抑制小鼠的免疫调节及抗氧化功能.生物工程学报,2009,25(4):549-553.
    代永刚,杨贞耐,王海岩,薛培宇,南喜平.乳蛋白源免疫活性肽研究进展.食品研究与开发,2009,30:152-155.
    方俊.猪血多肽的制备及其生物活性研究:[博士学位论文].长沙:湖南农业大学,2006.
    房新平.牛胎盘免疫活性肽提取与酶法制备研究:[博士学位论文].无锡:江南大学,2007.
    雷敏.鱿鱼墨黑色素及黑色素铁生物活性的研究:[博士学位论文].青岛:中国海洋大学,2008,39-40.
    傅颖,梅松,王茵.新生牛肝活性肽对小鼠的免疫增强作用.中国生物制品学杂志,2008,21(1): 47-50.
    李八方,等.功能食品与保健食品.青岛:青岛海洋大学出版社,1997:224.
    李八方,徐杰,赵雪.海洋生物活性物质.青岛:中国海洋大学出版社.
    李洁,王晓杰,邹素兰.胸腺肽的临床应用与研究进展.中国药房,2008,19( 14):1108-1109.
    李荣.蚯蚓活性肽对小鼠免疫机能的影响:[博士学位论文].湖南农业大学,2008:29-30.
    李素萍,秦宜德,董琼珠,方敏,张伟,刘慧.饲喂乳源免疫调节肽对大鼠生长和免疫的影响.安徽医科大学学报,2005,40(6):499-501.
    李应全,刘玉娥,徐文贞,陈运久.免疫药理学.北京:中国三峡出版社,2002:40.
    卢中华,江益民,崔保安,吕宝珊,王淑芳.微生物学及免疫学基础.中国科学技术出版社,1991:107-108.
    吕正兵,李谦,陈向东,刘昂,张玉彬,吴梧桐.鲨肝活性肽对小鼠血清溶血素的生成和血清IL-2含量的影响.药物生物技术,2003,10(3):149-151.
    马俪珍,甄润英,张建荣,石慧.具免疫活性的鲶鱼胶原多肽酶解工艺研究.食品工业科技,2009,29:152-155.
    潘家华,楼皖玲,陈兰举,丁周志,李华民.胸腺肽调整氢化可的松对免疫功能的副作用.蚌埠医学院学报,1999,24:3-4.
    庞广昌,王秋韫,陈庆森.生物活性肽的研究进展理论基础与展望.食品科学,2001,22(2):80-84.
    苏兰利,王艳玲,杨国宇,王居强,张书杰.牛初乳低相对分子质量提取物对小鼠免疫功能的影响.河南工业大学学报(自然科学版),2007,28.
    王连芬,庞广昌,米小媛.螺旋藻蛋白水解物对小鼠血清中细胞因子的影响.海洋科学,2008,32:51-55.
    卫生部卫生法制与监督司.保健食品检测与评价技术规范(2003年版).北京:人民卫生出版社,2003:22-34.
    杨小军,左伟勇,陈伟华,邹思湘.面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响.南京农业大学学报,2004,27 (4):69-72.
    张彩梅,张红梅,于业军,刘晓萍.扇贝多肽对小鼠免疫功能调节的研究.中国海洋药物杂志,2005,24:18-21.
    张鸣镝,管骁,姚惠源.玉米胚芽蛋白酶解物对小鼠免疫功能的影响.食品科学,2007,28: 302-305.
    赵芹,王静凤,薛勇,王奕,高森,雷敏,薛长湖. 3种海参的主要活性成分和免疫调节作用的比较研究.中国水产科学,2008,15:154-159.
    程新梅.大孔吸附树脂分离技术在中药制药工业中的应用.中国药房,2008,19(18): 1431-1433.
    刘大川,周俊梅.富硒菜籽蛋白肽的精制研究.食品科学,2008,29(1):129-133.
    夏树华,王璋,许时婴.采用大孔吸附树脂提纯螺蜘腹足肌酶解产物的研究.食品与发酵工业,2006,32(2): 116?120.
    萧能,余瑞元,袁明秀,等.生物化学实验原理和方法.北京:北京大学出版社,2008,72-73.
    徐叔云,卞如濂,陈修.药理实验方法学.北京:人民卫生出版社,2001,1420-1421.
    张虹,柳正泉.大孔吸附树脂在药学领域的应用.中国医药工业杂志,2001,32(1): 41-44.
    赵利,王璋,许时婴.大孔吸附树脂对酪蛋白非磷肽的脱盐和色谱分离.无锡轻工大学学报, 2003,22(4):69-71.
    周存山,马海乐,余筱洁,何荣海.麦胚蛋白降压肽的大孔树脂脱盐研究.食品科学,2006, 27(3):142-146.
    周凤娟,许时婴,杨瑞金,王璋.纳滤技术在丝素活性肽生产中的应用.膜科学与技术, 2008, 28(3):83-86.
    Kong X.Z., Guo M.M., Hua Y.F., Cao D., & Zhang C.M. Enzymatic preparation of immunomodulating hydrolysates from soy proteins. Bioresour. Technol. 2008, 99: 8873-8879.
    Luo J., Ding L., Chen X., & Wan Y. Desalination of soy sauce by nanofiltration. Sep. Purif. Technol. 2009, 66: 429-437.
    Ma C.Y., Tao G.J., Tang J., Lou Z., Wang H., Gu X., Hu L., & Yin M. Preparative separation and purification of rosavin in rhodiola rosea by macroporous adsorption resins. Sep. Purif. Technol. 2009, 69: 22-28.
    ?li?yt? R., Mozuraityt? R., Martínez-alvarez O., Falch E., Fouchereau-Peron M., & Rustad T. Functional, bioactive and antioxidative properties of hydrolysates obtained from cod (Gadusmorhua) backbones. Process Biochem. 2009, 44: 668-677.
    Suarez E., Lobo A., & Alvarez S. Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale. Desalination 2006, 198: 274-281.
    Tang Z., Zhou R., & Duan Z. Adsorption and desorption behaviour of taurine on macroporous adsorption resins. J. Chem. Technol. Biot. 2001, 76: 752-756.
    Vandanjon L., Johannsson R., Derouiniot M., Bourseau P., & Jaouen P. Concentration and purification of blue whiting Peptide hydrolysates by membrane processes. J. Food Eng.2007, 83: 581-589.
    Yan M., Li B., Zhao X., Ren G., Zhuang Y., Hou H., Zhang X., Chen L., & Fan Y. Characterization of acid-soluble collagen from the skin of walleye pollock (Theragra chalcogramma). Food Chem. 2008, 107: 1581-1586.
    Zhang F., Wang Z., & Xu S. Macroporous resin purification of grass carp fish (Ctenopharyngodon idella) scale peptides with in vitro angiotensin-I. converting enzyme (ACE) inhibitory ability. Food Chem. 2009, 117: 387-392.
    Zhou J.C., Feng D.W., & Zheng G.S. Extraction of sesamin from sesame oil using macroporous resin. J. Food Eng. 2010, 100: 289-293.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700