用户名: 密码: 验证码:
基于膜分离与光声光谱的绝缘油中溶解气体在线分析技术
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油中溶解气体在线分析技术(On-line Dissolved Gas Analysis)是对变压器等充油电力设备运行状态进行在线监测的重要手段,也是实现变压器等电力设备状态检修的必然要求。通过对变压器绝缘油中溶解的故障气体(CH_4,C_2H_2,C_2H_4,C_2H_6,CO,CO_2,H_2)进行油气分离和定量分析,可以得到其运行状态进而对其进行故障诊断。油气分离膜可以实现对故障气体的连续在线分离,光声光谱(Photoacoustic Spectroscopy)气体定量分析方法可以实现对故障气体组分高灵敏度的定量分析。本文结合变压器在线监测与状态检修的要求,对基于油气分离膜和非共振光声光谱的变压器绝缘油中溶解气体在线分析技术中存在的一些问题进行了研究。
     通过分析膜对故障气体的油气分离过程,对影响油气分离过程及结果的因素进行研究。针对原有油中溶解气体体积分数计算方法的缺陷,提出了一种计算油中溶解气体体积分数的新算法——动态算法。该算法利用等时间间隔点上气室中气体体积分数,在油气分离过程未达到平衡时,计算绝缘油中溶解气体体积分数;同时在该算法中引入了温度修正系数,理论上消除了温度变化对动态算法计算油中溶解气体体积分数结果的影响。
     在实验室进行油气分离膜性能的比较实验后,建立了油气分离膜作为脱气单元的油中溶解H_2及CO气体在线分析系统。以实验室离线气相色谱的测量结果为基准值,采用动态算法并进行温度修正后得到绝缘油中溶解H_2与CO气体体积分数,与未采用动态算法相比气体体积分数结果的准确性和实时性得到提高,验证了基于膜分离的动态算法和温度修正系数的有效性。结合IEC与CIGRE的调查结果,对油中溶解气体在线分析结果提出了准确性、重复性及再现性的要求。给出油中溶解气体在线分析结果的典型值、注意值与预警值的设定方法后,基于绝缘油中溶解气体体积分数与变压器发生故障概率的关系,提出了一种根据油中溶解气体体积分数在线分析结果计算下一次采样时间间隔的方法,并给出了计算实例。
     在研究气体分子振转能级及跃迁条件的基础上,对故障特征气体中CO、CO_2、CH_4、C_2H_2、C_2H_4及C_2H_6气体分子的吸收谱线的特点进行分析。分析了光声光谱气体定量分析理论及光声信号的激发过程,深入研究了非共振与共振光声信号的差异,分析光声池壁对光声信号的反射与透射,推导传声器输出与光声池中声压的对应关系,为非共振光声池的设计提供了理论基础。建立故障气体非共振光声光谱定量分析系统的模型,推导吸收谱线存在交叉干扰的情况下,光声信号幅值与故障气体中各组分体积分数之间的对应关系,为非共振光声光谱法应用于变压器绝缘油中溶解气体在线分析提供理论基础。
     建立基于非共振光声光谱理论的绝缘油中溶解气体定量分析实验系统。通过分析光源调制频率对光声信号的影响,提出将光源调制频率降至次声频段的方法,提高了光声信号输出的幅值。分析实验系统的噪声来源,设计了高信噪比的非共振式光声池。采用建立的非共振次声光声光谱实验系统对CO、CO_2、C_2H_2、C_2H_4、C_2H_6及CH_4气体进行了定量分析,计算得到系统对于单一气体测量的极限灵敏度,同时对测量结果的准确性与精度进行了评估,并与气相色谱得到的结果进行对比,结果表明该实验系统能有效地用于变压器绝缘油中溶解气体在线定量分析。
On-line DGA (dissolved gas analysis) is an important means by which not only the running condition of oil-filled electrical equipment, such as transformers, can be monitored promptly, but also the state maintenance of the electrical quipment can be achieved. The condition and fault of transformers are diagnosed by the separation and quantification of fault gases(CH_4,C_2H_2,C_2H_4,C_2H_6,CO,CO_2,H_2) dissolved in insulation oil of transformers. The fault gases can be separated from insulation oil by membrane continuously and quantifid by PA (photoacoustic spectroscopy) with high resolution. Combining the requirement of on-line condition monitoring and state maintenance, this dissertation studied the issues existed in the on-line dissolved gas analysis systems which adopt membrane extraction technology and PA gas quantification technology.
     Through the analysis of the extraction process of gases dissolved in insulation oil through membranes; the factors that influence the gas-in-oil extraction processes and results are also studied. Aiming at the defection of original calculation method, a new algorithm - dynamic algorithm is proposed based on those analyses. The algorithm utilizes the concentrations of gases in the gas separation cell at the same time interval to calculate the concentrations of gases dissolved in insulation oil, when the equilibrium state of the extraction process is not reached; also the algorithm consists of a temperature modified coefficient, which can remove the temperature affection of gas concentrations calculation theoretically.
     After the expetiment for comparision of extraction abilities of membranes in the laboratory is done, an on-line dissolved gas analysis system which amounts membrane as gas extractor is constructed, detecting the concentrations of H_2 and CO in the insulation oil. The off-line GC results are set as reference values, and the dynamic algorithm has been used to calculate the concentration of H_2 and CO dissolved in transformer insulation oil. Compared with the original calculation metrod, the accuracy and the immediacy of the calculation of concentrations of H_2 and CO are both improved. The validity of the dynamic aolgorithm with modified temperature coefficient for on-line DGA has been approved. Based on the research report and survey results of IEC and CIGRE, accuracy, repeatability and reproducibility are set as the quality indicator of on-line DGA results. Typical value, caution value and pre-failure value and the approaches to the setting of those values are proposed to evaluate the on-line DGA resuls. Base on the relationship between the concentrations of gases dissolved in oil and the probability of failure-related events in service, a sampling interval calculation method utilizing the on-line DGA results for calculating the next on-line DGA sampling interval is proposed.
     Based on the study of the model of molecule’s structure and the molecule’s vibration and rotational spectrum, the charaticristic of CH4, C_2H_2, C_2H4, C_2H_6, CO and CO2 structure and spectrum are analyzed. The photoacoustic spectroscopy theory for gas quantification and the inspiration process of PA signal is analyzed. The difference between resonant PA signal and non-resonant PA signal is studied particularly. The reflection of the sound pressure and the transmission of the sound pressure are both studied. The releationship between photoacoustic signal and the output singal of microphone is deduced. Those researches can provide the theoretical foundation for the design of the non-resonant PA cell. A non-resonant PA gas analysis model is constructed, the influence of the crossover interference is investigated, and the crossover of spectrum of fault gases is disquisitived. The dependence of photoacoustic signal on the concentration of each kind of gas in a mixture is deduced, which can provide the foundation for the application of non-resonat PA in the transformer insulation oil on-line DGA.
     A non-resonant photoacoustic spectroscopy experimental system applied for on-line analysis of gases dissolved in insulation oil was established. The dependence of photoacoustic signal on the modulation frequency is analysied, and an infrasonic photoacoustic way, which is decreasing the modulation frenquency of light to produce a higher amplitude photoacoustic signal, is proposed. Then the noises in the system have been researched, and high SNR gas cell is designed and constructed. The measurements of the concentrations of the CO, CO_2, CH_4, C_2H_2, C_2H_4, and C_2H_6 in the fault gases are carried out, and the limited sensitivity of each kind of gas is calculated. The accuracy, repeatability and reproducibility of the detection results are evaluated. Comepared with the GC results, the experiment results demonstrate that the probability of the non-resonant photoacoustic spectroscopy experiment system and the experiment system’s feasibility of application in field test of the analysis of gases dissolved in transformer oil is approved.
引文
[1] Verma P. Review of Modern Diagnostics Techniques for Assessing Insulation Condition in Aged Transformers[J]. Elect. Rev., 2005, 12(11):26-29.
    [2] Choi Y S, Kyung S. Practical Implications of Multi-agent Transformer Condition Monitoring[C]. Proceedings of 2008 International Conference on Condition Monitoring and Diagnosis, CMD 2008:945-948.
    [3] Ariastina W G. Condition Monitoring of Power Transformer: A field Experience[C]. Proceedings of the IEEE International Conference on Properties and Applications of Dielectric Materials, 2009:1051-1054.
    [4]李华,严璋.油浸电力变压器的状态检测和状态维修[J].电力设备. 2003,4(5):35-39.
    [5]杨莉,尚勇,严璋.电力变压器状态检测的国内外动态[J].变压器. 2002,39(S1):58-60.
    [6]罗治强,董昱,胡超凡. 2008年国家高电网安全运行情况分析[J].中国电力. 2009,42(5):8-12.
    [7]欧小冬,王艳萍.变压器绝缘在线监测系统的应用[J].变压器. 2008,45(1):66-61.
    [8]邹建明.在线监测技术在电网中的应用[J].高电压技术. 2007,33(8):203-206.
    [9]成永红,陈玉,孟永鹏.变电站电力设备绝缘综合在线监测系统的开发[J].高电压技术. 2007,33(8):61-65.
    [10]操敦奎,许维宗等编著.变压器运行维护与故障分析处理[M].北京:中国电力出版社,2008:2-7.
    [11]董明,李元,周建国.输变电设备状态检修系统的开发与应用[J].华东电力,2009,37(7):1070-1074.
    [12] Francis F. Remarkable benefit realization by application of strategic management in power transformer condition monitoring and diagnostic systems[C]. Proceedings of 2008 International Conference on Condition Monitoring and Diagnosis, CMD 2008:533-538.
    [13]马杰.开展设备状态检修确保电网安全运行[J].安徽电力,2009, 19(1):215-216.
    [14]杨启平,薛五德.电力变压器的状态维修与在线监测[J].上海电力学院学报,2008,24(3):254-258.
    [15]李虎,邹建明.在线监测技术在电网中的应用[J].华中电力. 2007,20(6):57-59.
    [16]王昌长,李福棋等编著.电力设备的在线监测与故障诊断[M].北京:清华大学出版社,2006:4-5.
    [17]张斌,倪益民,马晓军.变电站综合智能组件探讨[J].电力系统自动化,2010,34(21):91-94.
    [18]余贻鑫,栾文鹏.智能电网评述[J].中国电机工程学报,2009,29(34):1-8.
    [19]唐攀龙,周羽生,马士英.超高压变压器局放在线监测与诊断研究[J].变压器,2009,46(9):24-26.
    [20]李晓兰,黄海,陈祥献.基于振动的电力变压器在线状态检测系统设计[J].变压器,2008,45(12):60-63.
    [21]徐志,杨永明,李罗.变压器绕组状态的振动在线监测[J].传感器与微系统,2010,29(12):128-130.
    [22]李小军,金正洪,师旭.变压器类设备油气分析、故障诊断技术发展与应用实例[J].变压器,2011,48(2):59-63.
    [23] Inoue Y, Suganuma K, Masaru K, et al. Development of Oil Dissolved Hydrogen Gas Detector for Diagnosis of Transfomer[J]. IEEE Trans. on Power Delivery, 1985(1):226-232.
    [24] M. Duval. Dissolved Gas Analysis: It Can Save Your Transformer[J]. IEEE Electrical Insulation Magazine, 1989, 5(6):22-27.
    [25]赵笑笑,云玉新,王新宽.变压器油中溶解气体的在线监测技术[J].变压器,2010,47(2):64-68.
    [26]金祖龙.变压器色谱在线监测系统及其关键技术[J].变压器,2009,46(6):57-62.
    [27]汪倩,张莉琳,宋蓓华.变压器油色谱在线监测在状态检修中的应用[J].华东电力,2009,37(7):1195-1197.
    [28] Rusov V, Zhivodernikov S. Transformer condition monitoring[C]. Proceedings of 2008 International Conference on Condition Monitoring and Diagnosis, CMD 2008:1012-1014.
    [29] Biswendu C, Debangshu D, Sivaji C. Implementation Of An Integrated, Portable Transformer Condition Monitoring Instrument in The Classroom and On-Site[J]. IEEE Transactions on Education, 2010, 53(3):484-489.
    [30] Jouni P. Studies to Utilize Loading Guides and Ann for Oil-Immersed Distribution Transformer Condition Monitoring[J]. IEEE Transactions on Power Delivery, 2007, 22(1):201-207.
    [31]中华人民共和国国家标准. GB7252-2001.变压器油中溶解气体分析和判断导则.北京:中国标准出版社,2002:1-20.
    [32] Halstead W D. A Thermodynamic Assessment of the formation of gaseous Hydrocarbons in Faulty Transformers [J]. Inst. Petroleum. 1973; 59(9): 239-241.
    [33] Rogers R R. IEEE and IEC Codes to Interpret Incipient Faults in Transformers Using Gas in Oil Analysis [J]. IEEE Trans. Elect. Insul, 1978, 13(5):349-354.
    [34] Duval M. Dissolved gas analysis: it can save your transformer [J]. IEEE Electr. Insul. Mag., 1989, 5(6):22-27.
    [35] Duval M, Langdeau F. A review of faults detectable by gas-in-oil analysis in transformers [J]. IEEE Electr. Insul. Mag., 2002, 18(3):8-17.
    [36]张俊彩,钱旭,周玉.可拓神经网络在变压器故障诊断中的应用[J].计算机工程与应用,2011,47(7):8-11.
    [37]赵文清.基于选择性贝叶斯分类器的变压器故障诊断[J].电力自动化设备,2011,32(2):44-47.
    [38]李林,万志聪.基于模糊三比值的电力变压器绝缘故障诊断研究[J].浙江电力,2011(2):12-14.
    [39]田冰冰,刘念,刘琨.基于改进蚁群算法的变压器故障诊断数据的约简[J].电力系统保护与控制,2011,39(1):96-99.
    [40]李霜,王朗珠,张为.基于DGA的改进BP神经网络的变压器故障诊断方法[J].变压器,2010,47(12):61-65.
    [41]程鹏,佟来生,吴宁.大型变压器油中溶解气体在线监测技术进展[J].电力自动化设备,2004,24(11):90-93.
    [42] Tanaka Y, Kamba K, Linume T, et al. Development of Diagnositic Instrument by Acetylene and Hydrogen Gas Detectroe for Oil-filled Equipment[R]. Research Report, Nissin Electric Co.,Ltd. Japan, 1993:2-8.
    [43]董宝骅.变压器油中溶解气体分析法应用中存在的问题及产气识别[J].电力设备,2008,9(1):60-64.
    [44]梁颖.浅析变压器油溶解气体在线监测系统[J].广东电力,2007,20(7):47-50.
    [45]阎春雨.采用油中溶解气体分析法判断变压器故障应注意的事项[J].变压器,2006,43(9):38-41.
    [46]马少华,刘作利,蔡志远.油浸式变压器在线监测与保护装置[J].沈阳工业大学学报,2006,28(4):426-429.
    [47]刘先勇.用傅立叶红外构造变压器油中溶解气体在线监测仪[D].北京:北京理工大学,2002:12-15.
    [48] Duval M. New Techniques for Dissolved Gas-in-Oil Analysis[J]. IEEE Electrical Insulation Magazine, 2003, 19(2):6-15.
    [49]孙才新,陈伟根,李俭.电气设备油中气体在线监测与故障诊断技术[M].北京:科学出版社,2003.
    [50] Fernio, S J. A Comparative Study Of Dissolved Gas Analysis Techniques: the Vacuum Extraction Method Versus the Direct Injection Method[J]. IEEE Trans. Power Deliver, 1990, 5(1):220-225.
    [51]张周胜,肖登明.油中溶解气体色谱分析中小型真空在线脱气技术[J].电力系统自动化,2007,31(11):92-96.
    [52]贾瑞君.高分子薄膜在变压器油中溶解气体在线监测中的应用[J].变压器,2001,38(10):37-40.
    [53]刘先勇,钟秋海,周方洁.从变压器油中分离故障特征气体的研究[J].电力系统自动化,2005,29(2):56-60.
    [54]杨荆林,肖登明,徐欣.变压器在线监测中油气分离高分子膜的研究[J].高电压技术,2003,29(6):38-40.
    [55] Gilbert R, Nguyen H P, Jalbert J, et al. Transport Properties of a Mixture of Permanent Gases and Light Hydrocarbons through the Polytetrafluoroethylene Capillary Tubes of a GP-100 Gas Extractor[J]. Journal of Membrane Science, 2004(236):153-161.
    [56]李红雷,张光福,刘先勇.变压器在线监测用新型油气分离膜[J].清华大学学报(自然科学版),2005,45(10):1301-1304.
    [57]刘栋梁,王新彦.浅议变压器油中溶解气体在线监测系统的脱气技术[J].江苏电机工程,2009,28(3):72-73.
    [58]贾瑞君.关于变压器油中溶解气体在线监测的综述[J].变压器,2001,38(10):37-40.
    [59]高莉,韩毓旺.陶瓷-Teflon AF2400复合油气分离膜组件[J].膜科学与技术,2009,29(5):83-87.
    [60]尚丽平,曹铁泽,刘先勇.变压器油中溶解气体在线色谱监测综述[J].变压器,2004,41(8):36-39.
    [61]赵宇彤,杨清华.变压器油中溶解气体在线监测系统的应用[J].电力电气,2005,24(1):35-37.
    [62]梁文焰,黄蔚.主变压器油色谱在线监测技术应用研究[J].广西电力,2010,33(1):9-13.
    [63]丁家峰,罗安,曹建.一种新型变压器油中溶解气体在线监测仪的研究[J].仪器仪表学报,2009,30(7):1524-1529.
    [64]刘先勇,周方洁.用傅里叶红外变换实现变压器在线溶解气体分析的研究[J].变压器,2002,39(6):29-32.
    [65] Kunal K D, Rostovtsev Y V, Lehmann K. Thermodynamic and Noise Considerations for the Detection of Microscopic Particles in Gas By Photoacoustic Raman Spectroscopy[J]. Optics Communications, 2005(246):551-559.
    [66] Ueberfeld J, Zbinden H, Gisin N. Determination of Henry’s Constant Using a Photoacoustic Sensor[J]. J. Chem. Thermodynamics. 2001(33)755-764.
    [67]于清旭,李少成.微机控制的高灵敏度光声光谱仪研究[J].中国激光. 2001,(5):451-454.
    [68] Szakáll M, Varga A, Pogány A, et al. Novel Resonance Profiling and Tracking Method for Photoacoustic Measurements[J]. Applied Physics B, 2009(94):691-698.
    [69] Cristescu S M, Persijn S T, Hekkert S T. Laser-based Systems for Trace Gas Detection in Life Sciences[J]. Applied Physics B, 2008(92):343-349.
    [70] Fried A, Diskin G, Weibring P, et al. Tunable Infrared Laser Instruments for Airborne Atmospheric Studies[J]. Appl. Phys. B, 2008(92):409–417.
    [71] Lee C M, Bychkov K V, Kapitanov V A, et al. High-sensitivity Laser Photoacoustic Leak Detector[J]. Optical Engineering. 2007, 46(6):064302-1.
    [72] Borowski T. A New Approach to Photoacoustic Measurements: Photonics Applications in Astronomy[C]. Communications, Industry, and High-Energy Physics Experiments 2006. Proc. of SPIE Vol6347-63471F.
    [73] Tyndall J. Action of an Intermittent Beam of Radiant Heat upon Gaseous Matter[J]. Proc. Royal Soc,1881,(31):307-317.
    [74] Roentgen W C, Tone U, Welche Durch Intermittierende Bestrahlung Eines Gases Entstehen[J]. Ann. der Phyus. Und Chem,1881,(1):155-159.
    [75] Viengerov M L. Eine methode der gasanalyse, Beruhen auf der optisch-Akustischen Tyndall-Rontgenerscheinung[J]. Dokl.Akad.Nauk. SSSR. 1938,(19):687-688.
    [76] Luft K F. Uber eine neue methode der Registrierenden Gasanalyse mit Hilfe de Absorption Ultraroter Strahlen ohne Spectrale Zerlegung[J]. Z. Tech.Phys. 1943,(5):97-104.
    [77] Kerr E L, Atwood J G. The Laser Illuminated Absorptive Spectrophone: a Method for Measurement of Weak Absorptive in Gases at Laser Wavelengths[J].Appl. Opt. 1968,(7):915-921.
    [78] Kreuzer L B. Ultra-low Gas Concentration Infrared Absorption Spectroscopy[J]. J. Appl. Phys. 1971,(42):2934-2943.
    [79] Zhsrov V P, Letokhov V S. Laser Optoacustic Spectroscopy Springer Series in Optical Sciences[J]. Appl. Phys. B. 1986,(5):37-39.
    [80] Rooth R A, Verhage A J L, Wouters L W. Photoacoustic Measurement of Ammonia in the Atmosphere. Influence of Water Vapor and Carbon Dioxide[J]. Appl. Opt, 1990,(29):3643-3653.
    [81] Harren F J M, Bijnen F G C. Sensitive Intracavity Photoacoustic Measurements with a CO2 Waveguide Laser[J]. Appl. Phys. B. 1990, (50):137-144.
    [82] Harren F J M, Reuss J, Woltering L J. Photoacoustic Measurements of Agriculturally Interesting Gases and Detection of C2H4 below the PPB Level[J]. Applied Spectroscopy, 1990, 44(8):1360-1368.
    [83] Wysocki G, Lewicki R, Curl R F, et al. Widely Tunable Mode-hop Free External Cavity Quantum Cascade Lasers for High Resolution Pectroscopy and Chemical Sensing[J]. Applied Physics B, 2008(92):305–311.
    [84] Zeninari V, Parvitte B, Courtois D, et al. Methane Detection on the Sub-ppm Level with a Near-infrared Diode Laser Photoacoustic Sensor[J]. Infrared Physics & Technology, 2003(44):253-261.
    [85] Berkelmans H W A, B. Moeskops W M, Bominaar J, et al. Pharmacokinetics of Ethyleve in Man by On-line Laser Photoacoustic Detection[J]. Toxicology and Applied Pharmacology, 2003(190):206-213.
    [86] Fried A, Diskin G, Weibring P, et al. Tunable infrared laser instruments for airborne atmospheric studies[J]. Appl. Phys. B, 2008(92):409–417.
    [87] Lay-Ekuakille A G, Trotta A. LED-based Sensing System for Biomedical Gas Monitoring:Design and Experimentation of a Photoacoustic Chamber[J]. Sensors and Actuators B, 2009(135):411–419.
    [88] Lewicki R, Wysocki G, Kosterev A, et al. Carbon Dioxide And Ammonia Detection Using 2μm Diode Laser Based Quartz-Enhanced Photoacoustic Spectroscopy[J]. Applied Physics B, 2007(87):157–162.
    [89] Li J, Gao X, Li F, et al. Resonant Photoacoustic Detection of Trace Gas with DFB Diode Laser[J]. Optics & Laser Technology, 2007(39):1144-1149.
    [90] Fischer C, Yu Q, Seiter M, et al. Photoacoustic Monitoring of Trace Gases using a Diode-Based Difference Frequency Laser Source[J]. Optical Letters. 2001,(26):1609-1611.
    [91] Schilt S, Thevenaz L, Nikles M, et al. Ammonia Monitoring at Trace Level Using Photoacoustic Spectroscopy in Industrial and EnvironmentalApplications[J]. Spectrochimica Acta Part A, 2004(60):3259-3268.
    [92] Lewicki R, Wysocki G, Kosterev A, et al.Carbon dioxide and ammonia detection using 2μm diode laser based quartz-enhanced photoacoustic spectroscopy[J]. Applied Physics B, 2007(87):157–162.
    [93] Uotila J. Comparison of Infrared Sources for a Differential Photoacoustic Gas Detection System[J]. Infrared Physics &Technology, 2007(51):122-130.
    [94] Koskinen V, Fonsen J, Kauppinen J, et al. Extremely Sensitive Trace Gas Analysis with Modern Photoacoustic Spectroscopy[J]. Vibrational Spectroscopy, 2006(42):239-242.
    [95] Kosterev A, Bakhirkin Y, Tittel F, et al. QEPAS Methane Sensor Performance for Humidified Gases[J]. Applied Physics B, 2008(92):103–109.
    [96] Lancaster D G, Weidner R, Richter D, et al. Compact CH4 sensor based on difference frequency mixing of diode lasers in quasi-phasematched LiNbO3[J]. Optics Communications, 2000, 175(4-6):461-468.
    [97]于清旭,李少成.微机控制的高灵敏度光声光谱仪研究[J].中国激光,2007,(5):451-454.
    [98] Belforte G, Eula G, Raparelli T, et al. Comparison of Light Absorption Bodies in a Photothermic Cell[J]. Mechatronics, 2009(19):428-433.
    [99] Harren F J M. Multi-Component Trace Gas Analysis with a CO Laser Based Photoacoustic Detector[C]. SPIE VoL. 2002(3405):556-558.
    [100] Schilt S, Thevenaz L. Ethylene Spectroscopy using a Quasi.Room-temperature Quantum Cascade Laser[J]. Spectrochimica Acta Part A. 2002, (58):2533-2539.
    [101] Laurila T, Cattaneo H, Koskinen V, et al. Diode Laser-Based Photoacoustic Spectroscopy with Interferometrically-Enhanced Cantilever Detection[J]. Optics Express, 2007, 13(7):2453-2458.
    [102] Julien M, Sigrist W. Simultaneous Dual-Frequency Excitation of A Resonant Photoacoustic Cell[J]. Infrared Phys. Techn, 2008(51):516-519.
    [103] Nikolic J D, Rabasovic M D, Mrkushev DD, et al. Buffer-gas Inluence on Multiphoton Absorption and Dissociation in Different Gas Mixtures[J]. Ptical Materials, 2008,(30):1193-1196.
    [104] Besson J P, Schilt S, Thévenaz L. Multi-Gas Sensing Based on Photoacoustic Spectroscopy Using Tunable Laser Diodes[J]. Spectrochimica Acta Part A, 2004(60):3449–3456.
    [105] Besson J P, Schilt S, Thévenaz L. Sub-ppm Multi-Gas Photoacoustic Sensor[J]. Spectrochimica Acta Part A, 2006(63):899-904.
    [106] Ngwabie N M, Jeppsson K H, Nimmermark S, et al. Multi-LocationMeasurements of Greenhouse Gases and Emission Rates of Methane And Ammonia From A Naturally-Ventilated Barn for Dairy Cows[J]. Bio-systems engineering, 2009(103):68-77.
    [107] Tavakoli M, Tavakoli A, Taheri M, et al. Design, Simulation and Structural Optimization of a Longitudinal Acoustic Resonator for Trace Gas Detection using Photoacoustic Specroscopy. Optics & Laser Technology, 2010, 42(5):828-838.
    [108] Sanginario A, Grinde C, Ohlckers P. Characterization of Two Novel Low Frequency Microphones for Photoacoustic Gas Sesors. Procedia Chemistry, 2009, 1(1):863-866.
    [109] Ando M. Recent Advances in Optochemical Sensors for the Detection of H2, CO, CO2, and H2O in Air[J]. Trands in Analytical Chemistry, 2006, 25(10):937-948.
    [110] Kuusela T, Peura J, Matveev B A. Photoacoustic Gas Detection Using a Cantilever microphone and III-V mid-IR LEDS. Vibrational Spectroscopy, 2009, 51(2): 289-293.
    [111] Firebaugh S L, Jensen K F, Schmidt M A. Miniaturization and Integration of Photoacoustic Detection[J]. Journal of Applied Physics, 2002, 92(3):1555-1563.
    [112]王建业,纪新明,吴飞蝶.光声光谱法探测微量气体[J].传感技术学报,2006,19(4):1206-1209.
    [113] Besson J P, Schilt S, Thevenaz L. Sub-ppm Multi-gas Photoacoustic Sensor[J]. Spectrochimica Acta Part A, 2006(63):899-904.
    [114]陈伟根,周恒逸,黄会贤.基于半导体激光器的乙炔气体光声光谱检测及定量分析[J].仪器仪表学报,2010,31(3):665-670.
    [115]刘先勇,周方洁,胡锦松.光声光谱在油中气体分析的应用前景[J].变压器,2004,41(7):30-33.
    [116]张川,王辅.光声光谱技术在变压器油气分析中的应用[J].高电压技术,2005,31(2):84-86.
    [117]刘成刚,许维宗.绝缘油溶解气体及微水分析中的便携式光声光谱仪[J].华中电力,2005,18(6):49-51.
    [118] Yun Y, Chen W, Wang Y, et al. Photoacoustic detection of dissolved gases in transformer oil[C]. Euro. Tran. Electr. Power, 2008(18):562-576.
    [119]李宪栋,肖明,刘定友.光声光谱变压器油中溶解气体在线监测系统在小浪底水电厂的应用[J].变压器,2008,45(3):45-48.
    [120]曾海.采用光声光谱技术与气相色谱技术进行变压器油中溶解气体检测的分析比较[J].技术改进与创新. 2005,(6):21-23.
    [121]陈伟根,云玉新,潘翀.光声光谱技术应用于变压器油中溶解气体分析[J].电力系统自动化,2007,31(15):94-98.
    [122]谢玲,程明霄,谢奇峰.变压器油中溶解气体在线监测系统设计[J].仪表技术与传感器,2009,6:41-43.
    [123]李邦云,涂彦明.电力变压器状态评估[J].四川电力技术,2006,29(3):53-55.
    [124]何宏群.油中溶解气体分析的两个误差来源及处理[J].变压器,2007,44(5):58-60.
    [125]赵家礼,张庆达.变压器故障诊断及修理[M].机械工业出版社,1998:3-21.
    [126]刘国庆.色谱在线检测装置使用情况分析[J].湖南电力.2000,20(1):51-53.
    [127] Arakelian V G. The Long Way to the Automatic Chromatographic Analysis of Gases Dissolved in Transfomer Oil. IEEE Electrical Insulation Magazine, 2004, 20(6):8-25.
    [128]赵景红,王海龙,杨鹏.变压器油中溶解气体奥斯特瓦尔德系数德测定方法[J].分析化学研究报告,2005,33(4):471-474.
    [129] Jalbert J, Gilbert R, Tétreault P, et al. Matrix Effects Affecting the Indirect Calibration of the Static Headspace-Gas chromatographic Method Used for Dissolved Gas Analysis in Dielectric Liquids[J]. Anal. Chemistry, 2003(75):5230-5239.
    [130] Marcel Mulder(荷兰),李琳译.膜技术基本原理[M].北京:清华大学出版社,1999:23-26.
    [131] Tsukioka H, Sugawara K. New Apparatus for Detecting Transformers Faults[J]. IEEE Trans. on EI, 1986, 21(2):221-229.
    [132]任建新编著.膜分离技术及其应用[M].北京:化学工业出版社,2003:72-75.
    [133]王湛编著.膜分离技术基础[M].北京:化学工业出版社,2000:52-54.
    [134] Costello M, Koros W J. Temperature Dependence of Gas Sorption and Transport Properties in Polymers:Measurement and Applications[J]. Ind. Eng. Chem. Res, 1992(31):2708-2714.
    [135] Li X G, Kresse I, Xu Z K, et al. Effect of Temperature and Pressure on Gas Transport in Ethyl Cellulose Membrane[J]. Polymer, 2001(42):6801-6810.
    [136]曹坚,钱苏翔,杨世锡.变压器油中溶解气体无线数据采集终端的研制[J].高电压技术,2007,33(11):213-217.
    [137]田源.变压器远程在线监测与诊断系统及其应用[J].华中电力,2008,22(6):64-65.
    [138] Duval M, Dukarm J. Improving the Reliability of Transformer Gas-in-Oil Diagnosis[J]. IEEE Electrical Insulation Magazine, 2005, 21(4):21-27.
    [139] Ernest O D(美国).王伯雄等译.测量系统应用与设计[M].北京:电子工业出版社,2007:52-58.
    [140] Duval M. Calculation of DGA Limit Values and Sampling Intervals in Transformers in Service[J]. IEEE Electrical Insulation Magazine, 2008, 24(5):7-13.
    [141]刘景生编著.红外物理[M].北京:兵器工业出版社,1992:147-150.
    [142]王宗民,何欣翔,孙殿卿编著.实用红外光谱学[M].北京:石油工业出版社,1990:407-409.
    [143]陆明刚,吕小虎编著.分子光谱分析法新法引论[M].合肥:中国科学技术大学出版社,1993:19-22.
    [144]陈扬骎,杨晓华编著.激光光谱测量技术[M].上海:华东师范大学出版社,2006:8-11.
    [145]张望.光声光谱气体检测技术研究与应用[D].大连:大连理工大学,2010:55-57.
    [146]《光谱学与光谱分析》编委会.光谱学与光谱分析[M].北京:北京大学出版社,1998:56-58.
    [147]殷庆瑞,王通,钱梦路编著.光声光热技术及其应用[M].北京:科学出版社,1999:46-49.
    [148]徐光泽编著.电声原理与技术[M].北京:电子工业出版社,2007:18-27.
    [149]盛美萍,王敏庆等编著.噪声与振动控制技术基础[M].北京:科学出版社,2007:27-29.
    [150]李太宝编著.计算声学[M].北京:科学出版社,2006:7-9.
    [151]曾庆勇编著.微弱信号检测[M].杭州:浙江大学出版社,2004:13-17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700