用户名: 密码: 验证码:
三种预处理技术对超滤膜污染的影响及其机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超滤膜在水处理中的应用价值得到了广泛认可。而超滤膜在净水过程中,自身会不可避免地受到污染。如何在保证水质的前提下降低膜污染,是膜技术领域研究的重点和难点。预处理技术具有降低膜污染的潜能,本研究中选取了具有较强实用性、可操作性和成本优势的三种预处理技术——混凝预处理、吸附预处理和氧化预处理,选择常用试剂为代表,研究了采用不同预处理技术及不同运行方式时,浸没式超滤膜的运行效能,重点考察了三种预处理技术对膜污染的影响及其机理。
     采用硫酸铝为混凝剂,在中性pH值条件下,研究发现预混凝-超滤系统在常规最佳混凝剂投量下对水中UV_(254)和溶解性有机碳(DOC)的去除率分别达到82%和67%。混凝预处理还能够有效降低膜污染,在恒定膜通量10 L/(m~2h)条件下,系统运行至280小时后,无混凝预处理的超滤系统跨膜压差比有混凝预处理的超滤系统高出13.5kPa。原水中含有少量颗粒物(浊度8~10NTU)并不会影响有机物的去除效果和膜污染程度,混凝剂的投量由有机物的浓度决定。
     尽管省略絮凝过程的微絮凝-超滤系统缩短了工艺流程,不影响膜的出水水质,但在10L/(m~2h)的膜通量下运行250小时后,微絮凝-超滤系统的跨膜压差比常规混凝-超滤系统高出11kPa。原因是微絮凝过程产生了体积百分比约占50%的尺寸在20μm以下的微絮体,这部分絮体更容易造成膜污染。尽管减量投药可减少药剂的投加和絮体污泥的生成,对UV_(254)的去除率仅降低了8%,但对DOC的去除率降低了20%。当运行300小时后,减量投药混凝-超滤系统的跨膜压差比常规最优投量混凝-超滤系统高出10kPa。原因是此时絮凝速率降低,絮凝阶段末期絮体的平均尺寸降低了约25%,絮体分形维数从常规最优投量下的2.69增加到2.79,均对降低膜污染不利。将混凝剂在混合和絮凝阶段二次投加的新型投药方式明显降低了膜污染,当运行330小时后,二次投药混凝-超滤系统的跨膜压差比常规单次投药混凝-超滤系统低了16kPa。原因是二次投药下平衡时絮体平均尺寸提高了近25%,分形维数从单次投药的2.68降低至2.51,同时膜的内部污染程度明显减轻。这可能由于新生成的混凝剂水解产物具有不同的表面特性,使最终形成的絮体过滤性能得到改善。
     研究发现粉末活性炭预吸附对提高超滤系统去除有机污染物的效能作用显著,去除率随着粉末活性炭投量的增加而显著提高,尤其对于超滤膜几乎无法截留的中小分子有机物去除能力很强,50mg/L粉末活性炭的投量对乙草胺和异丙甲草胺两种目标污染物的去除率分别达到了85%和90%左右。
     粉末活性炭在低投量下对膜污染的影响不明显,而在高投量下会加剧膜污染,10 L/(m~2h)的膜通量下,运行200小时后,系统跨膜压差比低投量时提高了约10kPa。水中腐殖酸会将炭颗粒粘结在膜表面,并进入膜表面沉积的活性炭层孔隙中将其堵塞,二者的协同作用导致了复合膜污染。在膜池前的混合池中投加粉末活性炭与直接投加到膜池中的膜污染速率无明显差别。运行约300小时后,在膜池中连续投加比间歇投加跨膜压差低了7kPa,这是由于间歇投加造成粉末活性炭分布不均匀和膜表面更严重的炭颗粒沉积。超滤膜表面预涂粉末活性炭层后对膜污染速率的影响并不显著,说明了预涂层技术是否能够降低膜污染与膜材料的性质有关。
     臭氧预氧化不仅能够提高超滤系统对有机污染物的去除能力,还可以有效降低膜污染。浸没式超滤膜持续运行一段时间后,膜反应器内还存在微生物的降解作用。研究发现臭氧预氧化使整个系统对COD_(Mn)、DOC和UV_(254)的去除率分别提高了17%、13%和30%左右。运行55天后,在10 L/(m~2h)的膜通量下,无臭氧预氧化-超滤系统的跨膜压差比有臭氧预氧化-超滤系统高出12.5 kPa。
     三维荧光光谱技术的研究结果显示,臭氧预氧化使进水中类腐殖酸物质含量降低了30~40%,使类蛋白质物质含量降低了60~70%,对应出水中两类物质也有相应含量的减少。臭氧预氧化显著降低了混合液胞外聚合物中类蛋白质物质的含量,此类物质与膜表面滤饼层阻力密切相关。臭氧预氧化能够使外部膜污染物中类蛋白质物质的含量明显降低,以及类腐殖酸物质的结构发生变化;同时,臭氧预氧化造成了内部膜污染物中类蛋白质与类腐殖酸物质的含量均大幅度降低,但结构变化很小。在此基础上,采用松花江水为原水,进一步证明了臭氧预氧化技术对提高超滤系统运行效能的积极作用。
The significance of ultrafiltration (UF) technology applied in water treatment has been gradually recognized in recent years. However, when UF membrane is employed in the water purification process, it will be inevitably fouled. On the premise of water quality ensurance, how to mitigate the membrane fouling effectively is a technical difficulty in membrane technologies. Pretreatment methods are considered to be effective ways to reduce membrane fouling. In this study, three feasible, practical and inexpensive pretreatment methods were selected: coagulation pretreatment, adsorption pretreatment and oxidation pretreatment. In addition, commonly used reagents were selected as representatives. The process performance of a submerged polyvinyl chloride ultrafiltration membrane was investigated at different pretreatment strategies and different operating conditions, with focus on membrane fouling degree.
     Using aluminum sulfate as coagulant at neutral pH, the removal efficiencies in terms of UV absorbance at 254 nm (UV_(254)) and dissolved organic carbon (DOC) were achieved 82% and 67% respectively by coagulation-UF system at optimal coagulant dosage. Moreover, coagulation pretreatment could alleviate membrane fouling effectively. In the same constant flow of 10 L/(m~2h), trans-membrane pressure (TMP) of UF system without pre-coagulation was 13.5 kPa more than that of UF system with pre-coagulation after 280 h operation period. It was found that a certain amount of particulate matter (turbidity of 8~10NTU) had little influence on organic matter removal and TMP increase rate of UF system, and coagulant dosage was determined by the concentration of organic matter.
     Although a shorter treatment duration and similar permeate quality can be achieved by a micro-flocculation with UF system, it caused a TMP gap of 11 kPa, that is more serious membrane fouling, after 250 h operation period in the constant same flow of 10 L/(m~2h) compared to a conventional coagulation process with flocculation. It was mainly because that micro-flocs (smaller than 20μm) took approximately 50% volume percent, which resulted in a denser foulant layer and more severe fouling. Although under-dosing coagulation saved coagulant and produced less floc sludge, 8% and 20% lower removal efficiencies of UV_(254) and DOC were achieved compared with the case of optimal dosage of conventional coagulation. After 300 h operation period, TMP of under-dosing system was 10 kPa higher than that of optimal dosage system. This was mainly due to a decreased flocculation rate resulted from insufficient coagulant dosage. The average size of flocs decreased about 25% and fractal dimension of flocs increased from 2.69 to 2.79 at the end of flocculation stage, which was unfavourable for membrane fouling control. This study found that two-stage coagulant addition exhibited obvious advantages to mitigate membrane fouling. The TMP of two-stage coagulant addition system was 16 kPa higher than that of conventional one-stage addition system after 330 h operation period. It was found that the average size of flocs was increased nearly 25% and fractal dimension of flocs decreased from 2.68 to 2.51. Internal fouling in membrane pores was also reduced by two-stage addition strategy. This was attributed to freshly formed precipitates in the second coagulant dosage which could improve the floc properties to produce preferable flocs for filtration performance.
     Powdered activated carbon (PAC) was used as adsorbent to study the adsorption pretreatment on ultrafiltration performance. It was found that pre-adsorption of PAC could significantly reduce concentration of organic matter in permeate. Removal effeciency increased with the increasing of PAC dosage, especially for the target micro-pollutants with small molecule which could be hardly removed by UF membrane. The removal efficiencies of two target pollutants, i.e. acetochlor and metolachlor, were achieved 85% and 90% at PAC dosage of 50 mg/L.
     However, at a low dosage, TMP increase rate seemed to have little change compared to that without PAC addition. While at a high dosage, membrane fouling could be actually aggravated. At higher PAC dosages, humic acid may help to connect carbon particulates to the membrane surface, and carbon layer which deposited on the membrane surface could be also filled with humic acid. The joint effect of humic acid and powdered carbon together could form a denser foulant layer which was adverse to fouling control. The results of addition mode indicated that there was no significant difference in TMP increase rate between adding into mixing tank and directly into membrane reactor. It was showed that TMP of continuous dosing system was 7 kPa lower than that of intermittent dosing after 300 h operation period, which may be due to uneven distribution of PAC in membrane reactor and more PAC deposition on membrane surface in the intermittent dosing mode. The PVC membrane after PAC pre-coating was investigated. The results exhibited that the effect of pre-coated carbon was not significant, which indicated that the effect of pre-coating was related with the property of membrane material.
     Oxidation process may be beneficial to both organic matter removal and membrane fouling reduction. There was accumulation of microorganism in a submerged UF membrane system as the filtration process continued. It was found that removal efficiencies of UF system in terms of COD_(Mn), DOC and UV_(254) were increased 17%, 13% and 30% respectively by pre-ozonation. After 55 d operation period, TMP of UF system without pre-ozonation was 12.5 kPa higher than that of UF system with pre-ozonation.
     Three-dimensional fluorescence spectroscopy was utilized to analyze the mechanism of membrane fouling control by pre-ozonation. The results showed that about 30~40% of humic-like substances and 60~70% of protein-like substances could be decreased by pre-ozonation. Pre-ozonation induced a significant reduction of protein-like substances in extracellular polymeric substance, which closely related with membrane fouling. Both external and internal fouling could be effectively mitigated by the pre-ozonation. The content decrease of protein-like substances and structural changes of humic-like substances were observed in external foulants from EEM fluorescence spectra due to pre-ozonation. At the same time, ozonation pretreatment resulted in remarkable reduction of both protein- and humic-like substances in internal foulants but relatively little structural changes. On the basis of above, the effectiveness of ozone pre-oxidation technology to improve UF performance was further confirmed with Songhua River as feed water.
引文
[1] Shannon M A, Bohn P W, Elimelech M, et al. Science and technology for water purification in the coming decades [J]. Nature, 2008, 452: 301-310.
    [2] Huang H O, Schwab K, Jacangelo J G. Pretreatment for low pressure membranes in water treatment: A review [J]. Environmental Science and Technology, 2009, 43(9): 3011-3019.
    [3]王琳,王宝贞.城市饮用水膜处理技术[J].膜科学与技术,2001,21(3):53-56.
    [4]张玲玲,顾平.微滤和超滤膜技术处理微污染水源水的研究进展[J].膜科学与技术,2008,28(5):103-109.
    [5]田家宇.浸没式膜生物反应器组合工艺净化受污染水源水的研究[D].哈尔滨:哈尔滨工业大学,2009:14-15.
    [6]韩宏大,吕晓龙,陈杰.超滤膜技术在水厂中的应用[J].供水技术,2007,1(5):14-17.
    [7] Hagen K. Removal of particles, bacteria and parasites with ultrafiltration for drinking water treatment[J]. Desalination, 1998, 119: 85-91.
    [8] Jacangelo J G, Adham S S, Laine J M. Mechanism of Cryptosporidium, Giardia and MS2 Virus Removal by MF and UF[J]. Journal of AWWA, 1995, 88(9): 117-121.
    [9] Adham S S. Jacangelo J G, Laine J M. Characteristics and Costs of MF and UF Plants[J]. Journal of AWWA, 1996, 88(5): 22-31.
    [10] Nakatsuka S, Nakate I, Miyano T. Drinking water treatment by using ultrafiltration hollow fiber membranes[J]. Desalination, 1996, 106: 55-61.
    [11] Delgrange-Vincent N, Cabassud C, Cabassud M, et al. Neural networks for long term prediction of fouling and backwash efficiency in ultrafiltration for drinking water production[J]. Desalination, 2000, 131(1-3): 353-362.
    [12] Kryvoruchko A P, Yurlova L Y, Atamanenko I D, et al. Ultrafiltration removal of U(VI) from contaminated water[J]. Desalination, 2004, 162: 229-236.
    [13] Rojas J C, Moreno B, Garralon G, et al. Potabilization of low NOM reservoir water by ultraflltration spiral wound membranes[J]. Journal of Hazardous Materials, 2008, 158: 593-598.
    [14] Arnal J M, Garcia-Fayos B, Verdu G, et al. Ultrafiltration as an alternative membrane technology to obtain safe drinking water from surface water: 10years of experience on the scope of the AQUAPOT project[J]. Desalination, 2009, 248: 34-41.
    [15] Zhang M M, Li C, Benjamin M M, et al. Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment[J]. Environmental Science and Technology, 2003, 37(8): 1663-1669.
    [16] Lee N H, Amy G, CrouéJ P, et al. Morphological analyses of natural organic matter (NOM) fouling of low-pressure membranes (MF/UF)[J]. Journal of Membrane Science, 2005, 261(1-2): 7-16.
    [17] Karnik B S, Davies S H, Baumann M J, et al. The Effects of combined ozonation and filtration on Disinfection By-Product Formation[J]. Water Research, 2005, 39(13): 2839-2850.
    [18] Matsui Y, Hasegawa H, Ohno K, et al. Effects of super-powdered activated carbon pretreatment on coagulation and trans-membrane pressure buildup during microfiltration[J]. Water Research, 2009, 43(20): 5160-5170.
    [19]杨琦,黄霞,尚海涛,等.分置式膜-生物反应器凝胶层膜污染模型研究[J].环境科学,2006, 27(11):2344-2349.
    [20]马琳,秦国彤.膜污染的机理和数学模型研究进展[J].水处理技术,2007, 33(6):1-4.
    [21]吴春金,李磊,焦真,等.耐污染超滤膜的研究进展及其在环境工程中的应用展望[J].水处理技术,2007,33(7):1-5.
    [22]孙文鹏,李星,杨艳玲,等.膜污染程度的评价指标--膜孔堵塞率[J].膜科学与技术,2009,29(5):62-65.
    [23] Huang H, Spinette R, O’Melia C R. Direct-flow microfiltration of aquasols: I. Impacts of particle stabilities and size[J]. Journal of Membrane Science, 2008, 314 (1-2): 90-100.
    [24] Huang H, O’Melia C R. Direct-flow microfiltration of aquasols II. On the role of colloidal natural organic matter[J]. Journal of Membrane Science, 2008, 325 (2): 903-914.
    [25] Farahbakhsh K, Smith D W. Removal of coliphages in secondary effluent by microflltration-mechanisms of removal and impact of operating parameters[J]. Water Research, 2004, 38: 585-592.
    [26] Israelachvili J. Intermolecular & Surface Forces[M]. San Diego: Academic Press Inc, 1992: 450.
    [27] Li S, Heijman S G J, Verberk J Q J C, et al. Impact of backwash water composition on ultrafiltration fouling control[J]. Journal of Membrane Science, 2009, 344(1-2): 17-25.
    [28] Jermann D, Pronk W, Meylan S, et al. Interplay of different NOM fouling mechanisms during ultrafiltration for drinking water production[J]. Water Research, 2007, 41: 1713-1722.
    [29] Peter-Varbanets M, Hammes F, Vital M, et al. Stabilization of flux during dead-end ultra-low pressure ultrafiltration[J]. Water Research, 2010, 44(12): 3607-3616.
    [30]张耀宗,王启山,丁莎莎,等.超滤膜处理地表水过程中膜污染的研究进展[J].水处理技术,2009,35(11),12-16.
    [31] Gao W, Liang H, Ma J, et al. Membrane fouling control in ultrafiltration technology for drinking water production: A review[J]. Desalination, 2011, 272: 1-8.
    [32] Lee E K, Chen V, Fane A G. Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes[J]. Desalination, 2008, 218, 257-270.
    [33] Zularisam A W, Ismail A F, Salim M R, et al. The effects of natural organic matter (NOM) fractions on fouling characteristics and flux recovery of ultrafiltration membranes[J]. Desalination, 2007, 212, 191-208.
    [34] Guo X Y, Zhang Z J, Fang L, et al. Study on ultrafiltration for surface water by a polyvinylchloride hollow fiber membrane[J]. Desalination, 2009, 238, 183-191.
    [35]李甜,董秉直,刘铮.藻类有机物的特性以及对超滤膜的污染[J].环境科学,2010,31(2):318-323.
    [36] Babel S, Takizawa S, Ozaki H. Factors affecting seasonal variation of membrane filtration resistance caused by Chlorella algae[J]. Water Research, 2002, 36 (5), 1193-1202.
    [37] Xu W D, Chellam S. Initial stages of bacterial fouling during dead-end microflltration[J]. Environmental Science and Technology, 2005, 39(17): 6470-6476.
    [38]董秉直,曹达文,陈艳.饮用水膜深度处理技术[M].化学工业出版社,2006.
    [39]侯娟,邵嘉慧,何义亮.荷电超滤膜对天然有机物去除及膜污染行为的影响[J].环境科学,2010,31(6),1525-1531.
    [40]金鹏康,张志刚,王继斌,等.超滤膜污染的光学在线监测和阻力分布研究[J].环境科学与技术,2010,33(10):97-100.
    [41] Costa A, De Pinho N, Elimelech M. Mechanisms of colloidal natural organic matter fouling in ultrafiltration[J]. Journal of Membrane Science, 2006, 281:716-725.
    [42] Yuan W, Zydney A. Humic acid fouling during ultrafiltration[J]. Environmental Science and Technology, 2000, 34: 5043-5050.
    [43] Lin C F, Huang Y, Hao O J. Ultrafiltration processes for removing humic substances effect of molecular weight fractions and PAC treatment[J]. Water Research, 1999, 33(5): 1252-1264.
    [44]李永红,张伟,张晓健,等.超滤膜的污染控制研究进展[J].中国给水排水,2009,25(2):1-4.
    [45] Hu X, Bekassy-Molnar E,Vatai G. Analysis and characterization of membrane fouling of ultrafiltrati on separati on for oil-in-water emulsion[J]. Chemical Papers-Chemicke Zvesti, 2003, 57 (1): 16-20.
    [46] Kabsch-Korbutowicz M, Majewska-Nowak K, Winnicki T. Analysis of membrane fouling in the treatment of water solutions containing humic acids and mineral salts[J]. Desalination, 1999, 126( 1-3), 179-185.
    [47]何攀,何凤华,王海燕,等.操作条件对浸没式超滤膜污染影响的中试研究[J].给水排水,2010,36(3):12-17.
    [48]佘乾洪,迟莉娜,周伟丽,等.操作压力和溶液组成对蛋白质在超滤过程中的膜污染的影响[J].膜科学与技术,2010 ,30(1):39-43.
    [49]何文杰,高国伟,霍明昕,等.外压浸入式超滤膜反洗方式研究[J].中国给水排水,2010,26(21):84-87.
    [50]李亚,吕效平,韩萍芳,等.超声联合反冲在线控制PVDF中空纤维超滤膜的污染[J].膜科学与技术,2010,30(3),93-97.
    [51]刘百仓,吕田天,马军,等.强化混凝/超滤组合工艺膜清洗技术的研究[J].中国给水排水,2010,26(21):8-12.
    [52] Tian J Y, Chen Z L, Yang Y L, et al. Consecutive chemical cleaning of fouled PVC membrane using NaOH and ethanol during ultrafiltration of river water[J]. Water Research, 2010, 44(1): 59-68.
    [53] Pavlova S. Study on the cleaning of new ultrafiltration spiral-woundmodules to prevent membrane fouling (including biological fouling)[J]. Desalination, 2005, 172(3): 267-270.
    [54]齐鲁,程荣,王洪臣,等.浸没式超滤膜净化松花江水的集成工艺[J].沈阳建筑大学学报(自然科学版),2011,27(1):119-124.
    [55]陆俊宇,李伟英,赵勇,等.不同预处理工艺对超滤膜运行影响的中试试验研究[J].水处理技术,2010,36(6):119-122.
    [56]曾有文,王启山,赵宁,等.膜的预处理及污染防治技术研究进展[J].水处理技术,2010,36(5):1-4.
    [57]谢水波,姜应和.水质工程学[M].北京:机械工业出版社,2010:82-84.
    [58]陈艳,伏小勇,于晓华,等.混凝防止膜污染的研究[J].给水排水,2010,36(1):113-116.
    [59] O’Melia C R. Coagulation and sedimentation in lakes, reservoirs and water treatment plants[J].Water Science and Technology, 1998, 37 (2): 129-135.
    [60] Yan M, Wang D, Ni J, et al. Mechanism of natural organic matter removal by polyalumi-num chloride: Effect of coagulant particle size and hydrolysis kinetics[J]. Water Research, 2008, 42 (3): 3361-3370.
    [61] Carroll T, King S, Gray S R, et al. The fouling of microfiltration membranes by NOM after coagulation treatment[J]. Water Research, 2000, 34 (11): 2861-2868.
    [62] Choi Y H, Kim H S, Kweon J H. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes[J]. Separation and Purification Technology, 2008, 62 (3): 529-534.
    [63] Bergamasco R, Konradt-Moraes L C, Vieira M F, et al. Performance of a coagulation–ultrafiltration hybrid process for water supply treatment[J]. Chemical Engineering Journal, 2011, 166 (2): 483-489.
    [64] Guigui C, Rouch J C, Durand-Bourlier L, et al. Impact of coagulation conditions on the in-line coagulation/UF process for drinking water production[J]. Desalination, 2002, 147 (1-3): 95-100.
    [65] Barbot E, Moustier S, Bottero J Y, et al. Coagulation and ultrafiltration: Understanding of the key parameters of the hybrid process[J]. Journal of Membrane Science, 2008, 325 (2): 520-527.
    [66] Fiksdal L, Leiknes T O. The effect of coagulation with MF/UF membrane filtration for the removal of virus in drinking water[J]. Journal of Membrane Science, 2006, 279 (1-2): 364-371.
    [67] Shirasaki N, Matsushita T, Matsui Y, et al. Comparison of removal performance of two surrogates for pathogenic waterborne viruses, bacteriophage Qβand MS2, in a coagulation-ceramic microfiltration system[J]. Journal of Membrane Science, 2009, 326 (2): 564-571.
    [68]马敬环,李娟,项军,等.混凝超滤工艺处理天津渤海湾海水[J].膜科学与技术,2010,30(5):71-76.
    [69]管运涛,曹鹏飞,张锡辉.净化南方水库源水的混凝-超滤组合工艺[J].清华大学学报(自然科学版),2010,50(9),1416-1420.
    [70] Dong B Z, Chen Y, Gao N Y, et al. Effect of coagulation pretreatment on thefouling of ultrafiltration membrane[J]. Desalination, 2007, 19: 278-283.
    [71] Howe K J, Clark M M. Effect of coagulation pretreatment on membrane filtration performance[J]. Journal of American Water Works Association, 2006, 98 (4): 133-146.
    [72] Tran T, Gray S, Naughton R, et al. Polysilicato-iron for improved NOM removal and membrane performance[J]. Journal of Membrane Science, 2006, 280 (1-2): 560-571.
    [73] Judd, S J, Hillis P. Optimization of combined coagulation and microfiltration for water treatment[J]. Water Research, 2001, 35 (12): 2895-2904.
    [74] Kimura K, Maeda T, Yamamura H, et al. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water[J]. Journal of Membrane Science, 2008, 320 (1-2): 356-362.
    [75]乔铁军,张锡辉,张金松,等.活性炭-超滤组合工艺处理南方微污染原水的研究[J].给水排水,2011,37(4),15-18.
    [76] Mozia S, Tomaszewska M. Treatment of surface water using hybrid processes-adsorption on PAC and ultrafiltration[J]. Desalination, 2004, 162: 23-31.
    [77] Campinas M, Rosa M J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems[J]. Water Research, 2010, 44: 1636-1644.
    [78]董秉直,曹达文,范瑾初. PAC-超滤膜处理黄浦江原水的研究[J].上海环境科学,2003,22( 11) :731-733.
    [79] Lee S J, Choo K H, Lee C H. Conjunctive use of ultrafiltration with powdered activated carbon adsorption for removal of synthetic and natural organic matter[J]. Journal of Industrial and Engineering Chemistry, 2000, 6: 357-364.
    [80]于海琴,杨成永,张惠.粉末活性炭导入超滤系统去除水中天然有机物的性能研究[J].膜科学与技术,2009,29(6),85-89.
    [81] Zhang M M, Li C, Benjamin M M, et al. Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment[J]. Environmental Science and Technology, 2003, 37: 1663-1669.
    [82] Tien V N, Chaudhary D S, Ngo H H, et al. Arsenic in water: Concerns and treatment technologies[J]. Journal of Industrial and Engineering Chemistry, 2004, 10 (3): 337-348.
    [83] Lin C F, Huang Y J, Hao I J. Ultrafiltration processes for removing humic substances: Effect of molecular weight fractions and PAC treatment[J]. Water Research, 1999, 33 (5): 1252-1264.
    [84] Mozia S, Tomaszewska M, Morawski A W. Application of an ozonation-adsorption-ultrafiltration system for surface water treatment[J].Desalination, 2006, 190 (1-3): 308-314.
    [85] Zhao P, Takizawa S, Katayama H, et al. Factors causing PAC cake fouling in PAC-MF (powdered activated carbon-microfiltration) water treatment systems[J]. Water Science Technology, 2005, 51: 231-240.
    [86] Matsui Y, Murase R, Sanogawa T, et al. Rapid adsorption pretreatment with sub-micrometre powdered activated carbon particles before microfiltration[J]. Water Science Technology, 2005, 51: 249-256.
    [87] Kim J, Cai Z, Benjamin M M. Effects of adsorbents on membrane fouling by natural organic matter[J]. Journal of Membrane Science, 2008, 310 (1-2): 356-364.
    [88] Cai Z, Kim J, Benjamin M M. NOM removal by adsorption and membrane filtration using heated aluminum oxide particles[J]. Environmental Science and Technology, 2008, 42 (2): 619-623.
    [89]杨娟,杨宏伟,何崇,等.吸附-超滤工艺用于饮用水除氟的试验研究[J].环境科学研究,2009,22(11):1346-1351.
    [90] Farahbakhsh K, Svrcek C, Guest R K, et al. A review of the impact of chemical pretreatment on low-pressure water treatment membranes[J]. Journal of Environmental Engineering Science, 2004, 3 (4): 237-253.
    [91] Kim J, Davies S H R, Baumann M J, et al. Effect of ozone dosage and hydrodynamic conditions on the permeate flux in a hybrid ozonation–ceramic ultraflltration system treating natural waters[J]. Journal of Membrane Science, 2008, 311(1-2): 165-172.
    [92] Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and microflltration/ultrafiltration for drinking water production from surface water[J]. Desalination, 2004, 168: 307-317.
    [93] Wang X, Wang L, Liu Y, et al. Ozonation pretreatment for ultrafiltration of the secondary effluent[J]. Journal of Membrane Science, 2007, 287 (2): 187-191.
    [94] Wilczak A, Howe E W, Aieta E M, et al. How preoxidation affects particle removal during clarification and filtration[J]. Journal of American Water Works Association, 1992, 84 (12): 85-94.
    [95] Plummer J D, Edzwald J K. Effects of chlorine and ozone on algal cell properties and removal of algae by coagulation[J]. Journal of Water Supply Research Technology Aqua, 2002, 51 (6): 307-318.
    [96] Karnik B S, Davies S H, Baumann M J, et al. Fabrication of catalytic membranes for the treatment of drinking water using combined ozonation and ultrafiltration[J]. Environmental Science and Technology, 2005, 39 (19):7656-7661.
    [97] Treguer R, Tatin R, Couvert A, et al. Ozonation effect on natural organic matter adsorption and biodegradation-application to a membrane bioreactor containing activated carbon for drinking water production[J]. Water Research, 2010, 44: 781-788.
    [98] Williams M D, Pirbazari M. Membrane bioreactor process for removing biodegradable organic matter from water[J]. Water Research, 2007, 41: 3880-3893.
    [99]桂学明,李伟英,赵勇,等.氧化预处理延缓超滤膜污染试验研究[J].水处理技术,2011,37(2):102-105.
    [100]丁莎莎,陈德强,王启山,等.预氯化/超滤技术处理滦河水的中试研究[J].中国给水排水,2010,26(13),98-105.
    [101] Liang H, Gong W J, Chen J, et al. Cleaning of fouled ultrafiltration (UF) membrane by algae during reservoir water treatment[J]. Desalination, 2008, 220: 267-272.
    [102]叶挺进,梁恒;曹国栋,等.二氧化氯和超滤组合处理微污染水[J].给水排水,2010,36(8):20-24.
    [103]顾军.砂滤预处理与超滤膜组合工艺处理太湖原水的研究[J].污染防治技术,2010,23(4):13-16.
    [104] Huang H, Lee N, Young T A, et al. Natural organic matter fouling of low pressure, hollow fiber membranes: Effects of NOM source and hydrodynamic conditions. Water Research, 2007, 41 (17), 3823-3832.
    [105]许航,陈卫,袁哲,等. MIEX树脂预处理改善超滤膜过滤性能的试验研究[J].中国矿业大学学报,2010,39(6):924-928.
    [106] Halle C, Huck P M, Peldszus S, et al. Assessing the performance of biological filtration as pretreatment to low pressure membranes for drinking water[J]. Environmental Science and Technology, 2009, 43 (10): 3878-3884.
    [107]辛凯,马永恒,董秉直.不同有机物组分对膜污染影响的中试研究[J].给水排水,2011,37(1):123-130.
    [108] American Water Works Association American Public Health Association, Water Pollution Control Federation. Standard methods for the examination of water and wastewater, 20th edn. American Public Health Association, 1998.
    [109]俞文正.混凝絮体破碎再絮凝机理研究及对超滤膜污染的影响[D].哈尔滨:哈尔滨工业大学,2010:19-20.
    [110] Jarvis P, Jefferson B, Parsons S A. Breakage, re-growth, and fractal nature ofnatural organic matter flocs. Environmental Science Technology, 2005, 39: 2307-2312.
    [111]王占生,刘文君.微污染水源饮用水处理[M ].北京:中国建筑工业出版社, 1999.
    [112] Yuan W, Zydney A L. Humic acid fouling during ultrafiltration. Environmental Science and Technology, 2000, 34 (23), 5043-5050.
    [113] Costa A R, Pinho M N. Effect of membrane pore size and solution chemistry on the ultrafiltration of humic substances solutions. Journal of Membrane Science, 2005, 255 (1-2), 49-56.
    [114] Duan J M, Gregory J. Coagulation by hydrolysing metal salts. Advances in Colloid and Interface Science, 2003, 100-102, 475-502.
    [115] Kim H C, Hong J H, Lee S. Fouling of microfiltration membranes by natural organic matter after coagulation treatment: A comparison of different initial mixing conditions. Journal of Membrane Science, 2006, 283 (1-2): 266-272.
    [116] Barbot E, Moustier S, Bottero J Y, et al. Coagulation and ultrafiltration: Understanding of the key parameters of the hybrid process[J]. Journal of Membrane Science, 2008, 325 (2): 520-527.
    [117] Konieczny K, Sakol D, Plonka J, et al. Coagulation ultrafiltration system for river water treatment[J]. Desalination, 2009, 240(1-3): 151-159.
    [118] Choi K Y, Dempsey B A. In-line coagulation with low-pressure membrane filtration[J]. Water Research, 2004, 38(19): 4271-4281.
    [119] Cho M H, Lee C H, Lee S. Effect of flocculation conditions on membrane permeability in coagulation-microfiltration. Desalination, 2006, 191 (1-3), 386-396.
    [120] Wang J, Guan J, Santiwong S R, et al. Characterization of floc, size and structure under different monomer and polymer coagulants on microfiltration membrane fouling[J]. Journal of Membrane Science, 2008, 321: 132-138.
    [121] Zhao B Q, Wang D S, Li T, et al. Influence of floc structure on coagulation–microfiltration performance: Effect of Al speciation characteristics of PACls[J]. Separation and Purification Technology, 2010, 72 (1): 22-27.
    [122] O'Melia C R, Becker W C, Au K K. Removal of humic substances by coagulation[J]. Water Science and Technology, 1999, 40(9): 47-54.
    [123] Park P K, Lee C H, Lee S H. Determination of cake porosity using image analysis in a coagulation-microfiltration system. Journal of Membrane Science, 2007, 293: 66-72.
    [124] Kimura K, Maeda T, Yamamura H, et al. Irreversible membrane fouling in microfiltration membranes filtering coagulated surface water. Journal of Membrane Science, 2008, 320 (1-2): 356-362.
    [125] Howe K J, Marwah A, Chiu K P, et al. Effect of coagulation on the size of MF and UF membrane foulants[J]. Environmental Science and Technology, 2006, 40 (24): 7908-7913.
    [126] Judd S J, Hillis P. Optimization of combined coagulation and microfiltration for water treatment[J]. Water Research, 2001, 35 (12): 2895-2904.
    [127] Leiknes T, Odegaard H, Myklebust H. Removal of natural organic matter (NOM) in drinking water treatment by coagulation-microfiltration using metal membranes[J]. Journal of Membrane Science, 2004, 242 (1-2): 47-55.
    [128] Yu W Z, Gregory J, Campos L. The effect of additional coagulant on the re-growth of alum-kaolin flocs[J]. Separation and Purification Technology, 2010, 74(3): 305-309.
    [129] Yu W Z, Gregory J, Campos L. Breakage and regrowth of Al-humic flocs- effect of additional coagulant dosage[J]. Environmental Science and Technology, 2010, 44(16): 6371-6376.
    [130] Cho M H, Lee C H, Lee S. Effect of flocculation conditions on membrane permeability in coagulation-microfiltration. Desalination, 2006, 191(1-3): 386-396.
    [131] Meng F G, Liao B Q, Liang S, et al. Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs) [J]. Journal of Membrane Science, 2010, 361 (1-2): 1-14.
    [132] Choi Y H, Kim H S, Kweon J H. Role of hydrophobic natural organic matter flocs on the fouling in coagulation-membrane processes. Separation and Purification Technology, 2008, 62 (3), 529-534.
    [133] Park P K, Lee C H, Lee S H. Permeability of collapsed cakes formed by deposition of fractal aggregates upon membrane filtration. Environmental Science and Technology, 2006, 40, 2699-2705.
    [134] Yukselen M A, Gregory J. Breakage and reformation of alum flocs[J]. Environmental Engineering Science, 2002, 19 (4): 229-236.
    [135] Zhao H, Liu H J, Qu J H. Effect of pH on the aluminum salts hydrolysis during coagulation process: Formation and decomposition of polymeric aluminum species[J]. Journal of Colloid and Interface Science, 2009, 330 (1): 105-112.
    [136] Gregory J. The role of floc density in solid-liquid separation[J]. Filtrationand Separation, 1998, 35 (1): 571-575.
    [137] Gregory J, Chung H J. Continuous monitoring of floc properties in stirred suspensions[J]. Journal of Water Supply: Research Technology, AQUA, 1995, 44 (3): 125-131.
    [138] Ivan?ev-Tumbas I, Hobby R, Küchle B, et al. p-Nitrophenol removal by combination of powdered activated carbon adsorption and ultrafiltration-comparison of different operational modes[J]. Water Research, 2008, 42(15): 4117-4124.
    [139] Lee S, Lee J W, Kim S. et al. Removal of 17β-estradiol by powdered activated carbon-microflltraion hybrid process: The effect of PAC deposition on membrane surface[J]. Journal of Membrane Science, 2009, 326(1): 84-91.
    [140] Saravia F, Frimmel F H. Role of NOM in the performance of adsorption-membrane hybrid systems applied for the removal of pharmaceuticals[J]. Desalination, 2008, 224(1-3): 168-171.
    [141]谢良杰,李伟英,陈杰,等.粉末活性炭-超滤膜联用工艺去除水体藻毒素的特性研究[J].水处理技术,2010,36(7):92-99.
    [142] Lee J J, Walker H W. Effect of process variables and natural organic matter on removal of microcystin-LR by PAC-UF[J]. Environmental Science and Technology, 2006, 40: 7336-7342.
    [143] Campinas M, Rosa M J. Assessing PAC contribution to the NOM fouling control in PAC/UF systems[J]. Water Research, 2010, 44: 1636-1644.
    [144] Khan M M T, Takizawa S, Lewandowski Z. Membrane fouling due to dynamic particle size changes in the aerated hybrid PAC-MF system[J]. Journal of Membrane Science, 2011, 371: 99-107.
    [145] Zhang M, Li C, Benjamin M M, et al. Fouling and natural organic matter removal in adsorbent/membrane systems for drinking water treatment. Environmental Science and Technology, 2003, 37 (8): 1663-1669.
    [146] Meier J. Mechanical influence of PAC particles on membrane processes. Journal of Membrane Science, 2010, 360: 404-409.
    [147]李永红,张伟,张晓健,等. PAC及颗粒物对超滤膜有机物污染的影响[J].清华大学学报(自然科学版),2010,50(9):1392-1395.
    [148] Xia S J, Liu Y N, Li X, et al . Drinking water production by ultrafiltration of Songhuajiang River with PAC adsorption[J] . Journal of Environmental Sciences, 2007, 19( 5): 536-539.
    [149]瞿芳术,梁恒,王辉,等. PAC-UF工艺处理沉淀池出水试验[J].哈尔滨工业大学学报,2010,42(11):1779-1782.
    [150]潘若平,邓慧萍,胥红,等.粉末活性炭-超滤膜组合工艺处理微污染原水试验研究[J].水处理技术,2010,36(8):104-107.
    [151]杨伟,金奇庭.活性炭-超滤膜联用技术的研究与进展[J].市政技术,2007,25(1):34-37.
    [152] Thiruvenkatachari R, Shim W G, Lee J W, et al. A novel method of powdered activated carbon (PAC) pre-coated microfiltration (MF) hollow fiber hybrid membrane for domestic wastewater treatment. Colloids and Surfaces A, 2006, 274: 24-33.
    [153] Li X Y, Chu H P. Membrane bioreactor for drinking water treatment of polluted surface water supplies[J]. Water Research, 2003, 37 (19): 4781-4791.
    [154]郝爱玲,张光辉,张颖,等. MBR和MCR处理微污染水的膜污染比较[J].中国给水排水,2004,20(7): 49-53.
    [155]郝爱玲,陈永玲,顾平.膜生物反应器用于微污染地表水处理的中试研究[J].化工学报,2006,57(l): 136-139.
    [156] Tian J Y, Liang H, Li X, et al. Membrane coagulation bioreactor (MCBR) for drinking water treatment [J]. Water Research, 2008, 42 (14): 3910-3920.
    [157] Sagbo O, Sun Y X, Hao A L, et al. Effect of PAC addition on MBR process for drinking water treatment[J]. Separation and Purification Technology, 2008, 58 (3): 320-327.
    [158] Williams M D, Pirbazari M. Membrane bioreactor process for removing biodegradable organic matter from water[J]. Water Research, 2007, 41 (17): 3880-3893.
    [159] Treguer R, Tatin R, Couvert A, et al. Ozonation effect on natural organic matter adsorption and biodegradation-Application to a membrane bioreactor containing activated carbon for drinking water production[J]. Water Research, 2010, 44 (3): 781-788.
    [160] Bouhabila E H, Aim R B, Buisson H. Fouling characterisation in membrane bioreactors[J]. Separation and Purification Technology, 2001, 22-23 (1-3): 123-132.
    [161] Lee W, Kang S, Shin H. Sludge characteristics and their contribution to microfiltration in submerged membrane bioreactors[J]. Journal of Membrane Science, 2003, 216 (1-2): 217-227.
    [162] Li L S, Zhu W P, Zhang P Y, et al. AC/O -BAC processes for removing refractory and hazardous pollutants in raw water3[J]. Journal of Hazardous Materials, 2006, 135(1-3): 129-133.
    [163] Chen J, LeBoeuf E J, Dai S, et al. Fluorescence spectroscopic studies of natural organic matter fractions[J]. Chemosphere, 2003, 50 (5): 639-647.
    [164] (?)wietlik J, Sikorska E. Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone[J]. Water Research, 2004, 38 (17): 3791-3799.
    [165]唐书娟,王志伟,吴志超,等.膜-生物反应器中溶解性有机物的三维荧光分析[J].中国环境科学, 2009, 29 (3) : 290-295.
    [166] Gone D L, Seidel J L, Batiot C, et al. Using fluorescence spectroscopy EEM to evaluate the efficiency of organic matter removal during coagulation-flocculation of a tropical surface water (Agbo reservoir) [J]. Journal of Hazardous Materials, 2009, 172 (2-3): 693-699.
    [167] Hudson N, Baker A, Reynolds D. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters-a review[J]. River Research and Applications, 2007, 23 (6): 631-649.
    [168] Wang Z W, Wu Z C, Tang S J. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2009, 43 (6): 1533-1540.
    [169] Peiris R H, HalléC, Budman H, et al. Identifying fouling events in a membrane-based drinking water treatment process using principal component analysis of fluorescence excitation-emission matrices[J]. Water Research, 2010, 44 (1): 185-194.
    [170] Zhang T, Lu J F, Ma J, et al. Fluorescence spectroscopic characterization of DOM fractions isolated from a filtered river water after ozonation and catalytic ozonation[J]. Chemosphere, 2008, 71 (5): 911-921.
    [171] Kimura K, Naruse T, Watanabe Y. Changes in characteristics of soluble microbial products in membrane bioreactors associated with different solid retention times: Relation to membrane fouling[J]. Water Research, 2009, 43 (4): 1033-1039.
    [172] Peiris R H, Budman H, Moresoli C, et al. Understanding fouling behaviour of ultrafiltration membrane processes and natural water using principal component analysis of fluorescence excitation-emission matrices[J]. Journal of Membrane Science, 2010, 357 (1-2): 62-72.
    [173] Meng F G, Liao B Q, Liang S, et al. Morphological visualization, componential characterization and microbiological identification of membrane fouling in membrane bioreactors (MBRs) [J]. Journal of Membrane Science, 2010, 361 (1-2): 1-14.
    [174] Lee J M, Ahn W Y, Lee C H. Comparison of the filtration characteristics between attached and suspended growth microorganisms in submerged membrane bioreactor[J]. Water Research, 2001, 35 (10): 2435-2445.
    [175] Meng F G, Zhang H M, Yang F L, et al. Characterization of cake layer in submerged membrane bioreactor[J]. Environmental Science and Technology, 2007, 41 (11): 4065-4070.
    [176] Her N, Amy G, McKnight D, et al. Characterization of DOM as a function of MW by fluorescence EEM and HPLC-SEC using UVA, DOC, and fluorescence detection[J]. Water Research, 2003, 37 (17): 4295-4303.
    [177] Saravia F, Zwiener C, Frimmel F H. Interactions between membrane surface, dissolved organic substances and ions in submerged membrane filtration[J]. Desalination, 2006, 192 (1-3): 280-287.
    [178] Coble P G. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy[J]. Marine Chemistry, 1996, 51 (4): 325-346.
    [179] Baker A. Fluorescence excitation–emission matrix characterization of some sewage-impacted rivers[J]. Environmental Science and Technology, 2001, 35 (5): 948-953.
    [180] Lee E K, Chen V, Fane A G. Natural organic matter (NOM) fouling in low pressure membrane filtration-effect of membranes and operation modes[J]. Desalination, 2008, 218(1-3): 257-270.
    [181] Baker A, Inverarity R, Charlton M, et al. Detecting river pollution using fluorescence spectrophotometry: case studies from the Ouseburn, NE England[J]. Environmental Pollution, 2003, 124 (1): 57-70.
    [182] Henderson R K, Baker A, Murphy K R, et al. Fluorescence as a potential monitoring tool for recycled water systems: A review[J]. Water Research, 2009, 43 (4): 863-881.
    [183] Reynolds D M. The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy[J]. Journal of Chemical Technology and Biotechnology, 2002, 77 (8): 965-972.
    [184] Wang Z W, Wu Z C, Tang S J. Characterization of dissolved organic matter in a submerged membrane bioreactor by using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2009, 43 (6): 1533-1540.
    [185] Chen J, Gu B, LeBoeuf E J, et al. Spectroscopic characterization of the structural and functional properties of natural organic matter fractions[J]. Chemosphere, 2002, 48: 59-68.
    [186] (?)wietlik J, Dabrowska A, Raczyk-Stanis1awiak U, et al. Reactivity of natural organic matter fractions with chlorine dioxide and ozone[J]. Water Research, 2004, 38 (3): 547-558.
    [187] Uyguner C S, Bekbolet M. Evaluation of humic acid photocatalytic degradation by UV-vis and fluorescence spectroscopy[J]. Catalysis Today, 2005, 101 (3-4): 267-274.
    [188] Stedmon C A, Markager S, Bro R. Tracing dissolved organic matter in aquatic environments using a new approach to fluorescence spectroscopy[J]. Marine Chemistry, 2003, 82 (3-4): 239-254.
    [189] Sheng G P, Yu H Q. Characterization of extracellular polymeric substances of aerobic and anaerobic sludge using three-dimensional excitation and emission matrix fluorescence spectroscopy[J]. Water Research, 2006, 40 (6): 1233–1239.
    [190] Cho J, Song K G, Yun H, et al. Quantitative analysis of biological effect on membrane fouling in submerged membrane bioreactor[J]. Water Science and Technology, 2005, 51 (6-7): 9-18.
    [191] Ahmed Z, Cho J, Lim B R, et al. Effects of sludge retention time on membrane fouling and microbial community structure in a membrane bioreactor[J]. Journal of Membrane Science, 2007, 287 (2): 211-218.
    [192] Hong S H, Lee W N, Oh H S, et al. The effects of intermittent aeration on the characteristics of bio-cake layers in a membrane bioreactor[J]. Environmental Science and Technology, 2007, 41 (17): 6270-6276.
    [193] Drews A, Mante J, Iversen V, et al. Impact of ambient conditions on SMP elimination and rejection in MBRs[J]. Water Research, 2007, 41 (17): 3850-3858.
    [194] Schlichter B, Mavrov V, Chmiel H. Study of a hybrid process combining ozonation and membrane filtration-filtration of model solutions[J]. Desalination, 2003, 156 (1-3): 257-265.
    [195] Her N, Amy G, Plottu-Pecheux A, et al. Identification of nanofiltration membrane foulants. Water Research, 2007, 41 (17): 3936-3947.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700