用户名: 密码: 验证码:
空间质能交换及在轨对地攻击技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,空间技术的应用优势越来越显著,空间对抗在所难免,研究空间对抗相关技术,对于在未来军事斗争中争取主动,维护世界和平有着重要意义。空间对地定点攻击是空间对抗的一种重要模式,其相关理论与技术涉及一些前沿方面的问题。本文以空间对地定点攻击为背景,具体研究空间对地定点攻击中所涉及到的相关理论与空间技术。主要有:其一,在轨分离与补偿,如天基导弹、以及空间平台的燃料补充等等,存在空间质能交换理论以及在轨优化分离与在轨优化补偿等技术;其二,在轨对地定点攻击,存在优化变轨与优化制导等技术。为此,本文从两方面来研究,具体如下:
     第一,主要讨论空间质能交换概念与其基本规律,以及一些典型空间质能交换模式的相关技术,具体如下:
     1)详细定义了空间质能交换概念及其分类,归纳了不同类型的空间质能交换的特征与基本特性。对质能交换所遵循的动力学规律进行分析,得出了不同质能交换类型的动量定理与角动量定理。同时建立了质量变化、质量不变但发生流动、能量变化等几种典型的连续空间质能交换的动力学模型以及质量突变、能量突变等几种典型的离散质能交换的动力学模型;
     2)对空间质能交换的的影响进行了归纳,把其影响分为两类:力的效应与质量效应,并且对此进行了定义。同时,分别针对不同的空间质能交换类型,对其力学效应与质量效应的影响进行了详细分析;
     3)讨论了在轨分离与在轨补偿两种典型在轨对地攻击任务的空间质能交换模式,并且对其相关技术进行探讨:其一,对于在轨分离而言,分析了对平台的分离影响与平台防撞的限制条件,并以此作为约束条件研究了基于进化算法的空间在轨优化分离技术;其二,对于在轨补偿而言,分别研究了:①空间交会测量中自主测量技术--利用GPS的载波相位精密测量技术,并重点讨论了基于空间约束的整周模糊数求解关键技术;②空间交会对接中基于螺旋伴飞式的协同交会控制技术;③在轨优化补偿方面的问题;
     4)由于空间质能交换对空间平台的质心与姿态运动产生一定影响,以及在轨对地攻击对空间平台姿态机动有一定的要求,因此,本文详细分析了轨道保持控制技术,以及姿态机动与保持的解耦控制技术。
     第二,主要研究一些与定点攻击相关的技术,具体如下:
     1)分析了在轨对地定点攻击的几种模式及特点。根据轨道力学原理以及分离对轨道的影响,讨论了空间轨道上对地攻击的覆盖问题,并对远地点单脉冲变轨与一般单脉冲变轨的变轨窗口及基于进化算法的优化变轨技术进行了重点研究;
     2)由于在轨对地定点攻击过程地球扁率对轨道有一定的影响,本文在详细分析地球扁率的影响的同时,研究了基于仿真的优化理论消除地球扁率的影响的制导方法,并且进行了论证。
     本文主要研究在轨对地定点攻击这一具体的空间任务所涉及的理论与技术,并且在空间质能交换特别是空间质量流动问题属于率先研究。在一些相关技术研究上本文侧重一些新方法的探讨。本文的研究对今后的空间运输、空间分离、空间补偿,以及对地定点攻击将有极其重要意义。
At present, the application advantages of space technology are increasingly significant in military struggles. Space confrontations are inevitable. Researches on space confrontation related technologies are of vital importance in gaining the initiative in future military struggles, and in maintaining world peace.
     The space-based pinpoint attack ground is a mode of space confrontation, whose theories and techniques are involved in some forefront problems, and the research on the space-based pinpoint attack ground has a certain academic value and significance of engineering applications. Base on the space-based pinpoint attack ground,this thesis has a specific study on the related theories and space techniques. it contain two aspects: First, separation and compensation on-orbit, such as the launch of space-based missiles, space-based laser or microwave weapons, and the refueling, etc., which contains a series of optimized techniques of separation on-orbit and compensation on-orbit; Second, the space-based pinpoint attack ground. Due to the change of the space-time of ground targets, as well as the environmental impact, there can be orbit maneuver optimization and guidance optimization techniques. Therefore, in this thesis, researches are as follows:
     Part 1 the concept of mass-energy transfer on-orbit and the basic laws, and the techniques of some typical mass-energy transfer patterns are discussed, as follows:
     1) The concept of mass-energy transfer on-orbit is detailed defined and classified. The characteristics and basic features of different types of space mass-energy transfer are concluded. Analysis on the kinetics of mass-energy transfer reveals the momentum and angular momentum theorems of different types of mass-energy transfer. Meanwhile, based on the concept and characteristics of mass-energy transfer, kinetic models are established for several typical types of continuous space mass energy transfer, such as quality changed, quality unaltered but flowing and energy changed, etc., also for discrete conditions, such as quality or energy mutations.
     2) The impacts of mass-energy transfer on-orbit are summed up and divided into two categories: power effects and quality effects, and gave a definition. Meanwhile, the power effects and quality effects of different types of space mass-energy transfer are analyzed in details.
     3) Two typical mass energy transfer modes and related techniques of separation and compensation on-orbit are discussed: First, referring to separation on-orbit, by analyzing the relative motion of the platform and the separated part, the characteristics of different separation modes are acquired, while by analyzing the impacts of separation on the platform, regard it as a constraint condition– the impacts on platform and the constraint conditions of preventing crash, optimization techniques of separation on-orbit based on evolutionary algorithm are seriously researched; Second, referring to compensation on-orbit, based on its characteristics, space rendezvous and docking , compensation on-orbit are respectively discussed:①In the measurement of space rendezvous, there is a detailed discussion on the space independent measurement technology - precision measurement technology that uses GPS carrier phase, the measurement principles, the full cycle fuzzy solution based on space constraints and other issues are focused on.②In space rendezvous and docking, this thesis presents a cooperative control technology for rendezvous based on helix-approach orbit.③There is a detailed discussion on the impacts of space compensation on-orbit. Based on the power and quality effects, on-orbit compensation problems are discussed.
     4) Since mass-energy transfer has a certain impact on spacecraft (platform), this thesis detailedly analyzed the orbit deviation of the impact, and discussed on the orbit maintaining control techniques based on orbital perturbation theory. The impact of space mass-energy transfer has a feature that not only the space platform is affected by the disturbance torque caused by reverse thrust, but also its own structural changes. Therefore, it will strengthen attitude coupling, and increase the difficulty of attitude stability control and adjust control. This thesis focuses on a series of decoupling control technologies.
     Part 2 mainly discusses the orbit changing problems of the space-based pinpoint attack ground, and techniques related to pinpoint attack, as follows:
     1) To reach the aim of the space-based pinpoint attack ground, several separation modes are detailedly analyzed, together with their advantages and disadvantages. Based on orbital mechanics and the impacts of separation on-orbit, the ground attack coverage problems of space orbits are analyzed, while two types of pinpoint releasing orbit transfer modes - apogee single pulse and the general single pulse orbit transfer modes are discussed, and the orbit transfer windows are analyzed. Based on evolutionary algorithm, the orbit transfer optimization problems of the space-based pinpoint attack ground are detailedly discussed. Further more, examples of apogee single pulse and the general single pulse orbit transfer modes are calculated.
     2) Since the oblateness of the earth has certain impact on the process of the space-based pinpoint attack ground, while detailedly analyzed the impacts of the oblateness, this thesis researches on and demonstrated the guide approach that can eliminate the influence of oblateness using optimization theories based on simulation.
     This thesis mainly has a research on the related theories and techniques of the space-based pinpoint attack ground. There is a vanward research on space mass flow problems, while the research of some related techniques are emphasized particularly on some new approaches. The studies in this thesis will be extremely important to space transportation, space separation , space compensation, and the space-based pinpoint attack ground in the future.
引文
[1]. Zalmay Khalilzad, Jeremy Shapiro,United States Air and Space Power in the 21st Century[M] RAND, 2002.
    [2]. 美国航天司令部长远规划——2020 年设想.
    [3]. Air Force Space Command Strategic Master Plan FY2004 and Beyond, US Air Force Space Command, Peterson Air Force Base, Colorado, November, 2003.
    [4]. Ralph Millsap, D.B.Posey, Organizational Options for the Future Aerospace Force. Aerospace Power Journal, Summer2000. 48-52.
    [5]. 邹振宇,空间力量拓展与制天权探析[J],中国航天 2004,11.
    [6]. Sen. Bob Smith. The Challenge of Space Power. Airpower Journal, Spring 1999:32-40.
    [7]. Howard D.Belote, The Weaponization of Space, Aerospace Power Joumal, Spring2000:46-52.
    [8]. http://www.af. mil/ library/ posture/ AF _ TRANS /FLIGHT_PLAN2003. pdf.
    [9]. Larry G. Sills. Prompt Global Strikes through space what military value ? College, Mar 2000.
    [10]. Simon Peter Worden. The Air Force and Future Space Directions. Aerospace Power journal spring2001,50-55.
    [11]. 袁俊,美军太空战略与太空战武器新进展,中国航天,2005,2.
    [12]. 刘晓恩,转型下美军空间力量发展,中国航天,2004,11.
    [13]. Peter L. Hays, United States Military Space: Into the Twenty-arst Century , U.S. Air Force Institute for National Security Studies, September 2002,pp. 124–130.
    [14]. Cynthia A.S.Mckinl. The Guardians of Space, Aerospace Power Journal, Spring 2000:37-46.
    [15]. 张永红,赵利平,美军卫星系统战时保障,现代军事,2006,6.
    [16]. 童雄辉,才满瑞,齐艳丽,陈允宗,美俄空间攻防武器装备的发展趋势,导弹与航天运载技术,2004,6.
    [17]. 太空军备各显神通美俄两国大闹天空,当代世界,2006,6.
    [18]. Robert Wall, The Next Space War, Aviation Week & Space Technology, July 28, 2003, p. 27.
    [19]. 常显奇,军事航天学[M],北京:国防工业出版社,2002.
    [20]. 李博,翁华明,军事航天技术及太空战,国防科技 2005,1
    [21]. 李守林,李剑,世界各国应对未来太空战的举措,国防科技,2005,10.
    [22]. Stephen,Clark, Japan Enters Spy Satellite Arena with Rocket Launch, Space Flight Now ,March 2003.
    [23]. Michael Krepon,Christopher Clary, Space Assurance or Space Dominance? The Case Against Weaponizing Space, The Henry L.Stimson Center, 2003, p. 30.
    [24]. Peter Hays, Karl Mueller. Aerospace Integration, the Space Commission, and the Air Force Vision for Space, Aerosvace Power spring 2001,34-49.
    [25]. Simon Peter Worden.The Air Force and Future Space Directions. Aerospace Power Journal,Spring 2001:50-55.
    [26]. 赵健康 天战系统与模型框架研究,国防报告 2002.7,NUDT/D01-00067.
    [27]. Donald G. Cook, Robert Allardice, ed. Strategic Implications of the Expeditionary Aerospace Force, Aerospace Power Journal, Winter2000:6-14.
    [28]. Michael Sirak, Holding the higher ground, Janes Defence Weekly, October, 2003.
    [29]. 赵健康,天基导弹概念及作战机理研究,国防报告,2004,8 NUDT/D03-00031.
    [30]. 赵健康,空间攻击平台及作战单元概念及作战机理研究,国防报告,2006,9 GFA0084290.
    [31]. Commission To Assess United States National Security Space Management And Organization . Congress Report, January , 2001.
    [32]. 张莉英,张启明,王辉,反卫星武器技术及其防御措施浅析,飞航导弹,2004,3.
    [33]. 苑立伟,杨健军,美国反卫星武器综述,中国航天,2004,10.
    [34]. Bruce M. DeBlois, The Advent of Space Weapons, Astropolitics, Vol. 1, No. 1 (Spring 2003), pp. 29–53.
    [35]. http://www.crionline.cn/2005-11-14.
    [36]. http://www.xinhuanet.com/mil/xyzb.htm.
    [37]. Pentagon to Demonstrate On-orbit Refueling of Spacecraft, Space News, p. 17,vol. 12, no. 17, April 2001.
    [38]. Leon J. Hastings, S.P. Tucker,R.H. Flachbart,Marshall Space Flight Center In-Space Cryogenic Fluid Management Program Overview AIAA 2005-3561 10-13 July 2005.
    [39]. Hastings, L., Hedayat, A., and Brown, T., Analytical Modeling and Test Correlation of Variable Density Multilayer Insulation for Cryogenic Storage, NASA TM—2004–213175, May 2004.
    [40]. Andrew E. Turner,Orbital Fueling Benefits for Geosynchronous Spacecraft AIAA 2002-2006 12-15 May 2002.
    [41]. Dr. Daniel Hastings, The Effect of Uncertainties in Architectural Design Elements on Potential Non-Commercial On-Orbit Satellite Servicing Markets AIAA 2005-6699 September 2005.
    [42]. Dr. David J. Chato Low Gravity Issues of Deep Space Refueling AIAA 2005-1148 10-13 January 2005.
    [43]. Haijun Shen. and Panagiotis Tsiotras Optimal Two-Impulse RendezvousBetween Two Circular Orbits Using Multiple-Revolution Lambert’s Solutions AIAA 2002-4844 August 2002.
    [44]. Lewis, J., Advanced Mating System Development, NASA white paper for Code T, May, 2004
    [45]. Li Renjie ,Qiao Yongfen ,Meng J un. Form invariance of Gibbs-Appell equations for variable mass holonomic systems [J]. Acta Physica Sinica ,2002 ,51(1) :1 - 5.
    [46]. Purohit, G. P., Smolko, J. W., and Ellison, J. R., Propellant Management Device Performance During an Off-Nominal Transfer Orbit Mission, AIAA 98-4033, July 1998.
    [47]. Akin D.L,Bowden M.L,EVA, Robotic and cooporactive assembly of large space structures,Proceedings of the 2002 IEEE Aerospace conference Big sky montana 2002,07:3599-3609.
    [48]. Air Force Doctrine Document 2-2 Draft. Space Operations. Headquarters AF Doctrine center sep 2000.
    [49]. http ://www. cesaroni . net/ falcon_fs[ 2005206225 ]. pdf
    [50]. EdRiel,Matthew,G. Marks. Simulation Based R&D for Space Vehicle Concepts. Universal Svace Lines, Inc, Dec 2000.
    [51]. United States AF Scientific Advisory Board, Quick Look Report on USAF Battlelab, SAB-TR-00-04, August 2000.
    [52]. 万自明 杨宇光等,国外动能轨道武器概念与发展动向,现代防御技术,200,2
    [53]. 杨来伍,梅凤翔,变质量系统力学[M],北京:北京理工大学出版社,1989,12
    [54]. 陈占清,缪协兴,荆武兴.变质量挠性体动力学普遍方程(一)[J].湘潭大学自然科学学报,2001,23(4).
    [55]. 缪协兴,陈占清,荆武兴.变质量挠性体动力学普遍方程(二)[J].哈尔滨工业大学学报,2001,33(6).
    [56]. McPhee ,Dubey J ,Dynamic R N. Analysis and Computer Simulation of Variable-mass multi-rigid-body system[J],Int J Numer Method Eng, 1991, 32 (8) :1711-1725.
    [57]. 王树勇,梅凤翔,变质量完整力学系统的形式不变性与 Lie 对称性[J],江西科学,2002,20(2).
    [58]. 张相武,变质量完整力学系统的高阶运动微分方程[J],物理学报,2006,4(4)
    [59]. 方建会,转动变质量系统的相对论性动力学方程和变分原理[J],物理学报 2000,6(6).
    [60]. 孙明贵,唐平,陈占清.时变边界系统动力学行为研究展望[J].常德师范学院学报(自然科学版),2003,15(2).
    [61]. Lutzky M. Dynamical symmetries and conserved guantities[J] . J Phys A,1979 ,12(7) :973 - 981.
    [62]. Prince G,Elizer C. On the Lie symmetries of the classical Kepler problem[J] ,J Phys A ,1981 ,14 :578 - 596.
    [63]. Mei F X. Form invariance of Lagrange system[J],J of Beijing Institute of Technology ,2000 ,9(2) :120 - 124.
    [64]. Wang S Y,Mei F X. On the form invariance of Nielsen equations[J],Chinese Physics ,2001 ,10(5) :373 - 375.
    [65]. J.W. Griffin. Background and Programmatic Approach for the Development of Orbital Fluid Resupply Tankers. AIAA-86-1601.
    [66]. Z. Kirkland, J. Tegart,On-Orbit Propellant Resupply Demonstration. AIAA 84 -1342.
    [67]. David J. Chato. Technologies for Refueling Spacecraft On-Orbit. AIAA –2000 –5107.
    [68]. A.S. (Nick) Johnston, Mel Ryder, Tony Tyler,Orbital Fluid Transfer System. AIAA-98-5233.
    [69]. David J. Chato,Vented Tank Resupply Experiment—Flight Test Results. AIAA –97–2815.
    [70]. Joseph M. Cardin,A Standardized Spacecraft Resupply Interface. AIAA -91 -1841-CP.
    [71]. 肖福根,航天器在轨流体补给系统的概念研究,国际太空,2003,1.
    [72]. 林来兴,自主空间交会对接技术进展[J] ,载人航天, 2005,(4) :1317.
    [73]. 李紫峰,对接靠拢段的一种相对导航算法研究[J],航天控制,2005,5.
    [74]. 费蔚春,飞行器交会对接相对位置和姿态的估计方法[J],系统工程与电子技术,2004,26(9).
    [75]. 郭海林,曲广吉.航天器空间交会过程综合变轨策略研究[J],中国空间科学技术,2004(3).
    [76]. 朱仁璋,尹艳,空间交会最终平移段控制策略[J],中国空间科学技术,2005,8(4).
    [77]. 朱仁璋,汤溢,尹艳,空间交会最终平移轨迹安全模式设计[J],宇航学报,2004, 25 (4) : 443~448.
    [78]. 朱仁璋,尹艳,论空间交会最终平移段的制导设计[J],中国空间科学技术,2004,24 (5) : 1~8.
    [79]. 荆武兴,耿云海,杨旭,吴瑶华,空间交会寻的最优轨道机动[J],中国空间科学技术,1998,4(2).
    [80]. 林来兴,王立新,空间交会对接的双脉冲最优控制[J],航天控制,1996 (1):17~ 18.
    [81]. Machula, M, Sandhoo, G, Chevray, K., Crain, T., Lamoreux, J., Lewis, J, Autonomous Rendezvous &Docking (AR&D), NASA/JSC white paper forCode T, May, 2004.
    [82]. Sengenes P , Goester J , Legenne J . Optimal Strategies for Hermes Autonomous Guidance and Control During Orbital Flignt . Malaga , Spain , 1987.
    [83]. Carrou P. Spaceflight Dynamics. France , Cepadues-Editions , 1995.
    [84]. 余是洋,空间交会对接的智能控制,中国空间科学技术,1995,2(4).
    [85]. 赵健康,戴金海,基于螺旋伴飞式航天器交会控制技术,空间科学学报,2006,2.
    [86]. Hari B Hablani , Myron Tapper , David Dana-Bashian. Guidance Algorithms for Autonomous Rendezvous of Spacecraf t with a Target Vehicle in Circular Orbit . A01237204 , 2001.
    [87]. RJ.M. Bennis, Q.P. Chuf, J.A. Mulder,Adaptive Fuzzy control for Rendezvous and Docking by Reinforcement Learning AIAA-2001-4354 August,2001.
    [88]. 王志刚,袁建平,陈士橹,伴随卫星最优小推力释放与回收控制[J],西北工业大学学报,2003,6
    [89]. 林来兴,空间交会对接技术[M],北京:国防工业出版社,1995,1
    [90]. Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics, AIAA Education Series, AIAA, Reston, VA, 1999.
    [91]. 任萱,人造地球卫星轨道动力学[M].长沙:国防科技大学出版社,1988.
    [92]. Haijun Shen, Panagiotis Tsiotras.Optimal Two-Impulse Rendezvous Between Two Circular OrbitsUsing Multiple-Revolution Lambert’s Solutions AAS /AIAA Astrodynamics Specialist Conference,August 16–18,1999.
    [93]. Lion, P. M. and Handelsman, M. Primer Vector on Fixed-TimeImpulsive Trajectories. AIAA Journal, Vol. 6, No. 1, 1998, pp. 127–132.
    [94]. Jezewski, D. J. and Rozendaal, H. L.An Efficient Method for Calculating Optimal Free-Space N-Impulse Trajectories.AIAA Journal,Vol. 6, No. 11, 1998, pp. 2160–2165.
    [95]. Richards,Jonathan How,Performance Evaluation of Rendezvous using Model Predictive Control,AIAA 2003-5507 August 2003.
    [96]. B. J. Naasz, Classical Element Feedbhack Control for Spacecraft Orbital Maneuvers,Journal of Guidance, Control and Dynamics, 2004.
    [97]. 赵健康,戴金海,基于进化算法的在轨对地定点着陆优化变轨分离技术[J],国防科技大学学报 2005,6.
    [98]. B. J. Naasz, M. M. Berry, H. Y. Kim, and C. D. Hall.Integrated Orbit and Attitude Control for a satellite with Power Constraints. AAS/AIAA Space Flight Mechanics Conference, Ponce, Puerto Rico, February, 2003. AAS 03-100.
    [99]. 杨嘉墀,航天器轨道动力学与控制[M],北京:宇航出版社,1995.
    [100]. 邹广瑞,中国航天器轨道和姿态控制技术的进展[M],20 世纪中国航天器技术的进展.北京:宇航出版社,2002.
    [101]. 李恒年,李济生,黄永宣,轨道机动过程中推力加速度的在线最小方差估计[J],空间科学学报,2002,22(4).
    [102]. Bong Wie,Thrust Vector Control of Solar Sail Spacecraft AIAA 2005-6086 August 2005.
    [103]. 程雪梅,李言俊,一类非线性奇异摄动系统的轨道机动控制,航天控制,2001,4.
    [104]. Dachwald, B., Optimization of Interplanetary Solar Sailcraft Trajectories Using Evolutionary Neurocontrol, Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2003, pp. 66-72.
    [105]. 董云峰 , 苏建敏 , 利用小波分析识别空间目标的轨道机动 [J], 宇航学报,2004,3(2).
    [106]. 杨维廉,近圆轨道控制的分析方法[J],中国空间科学技术,2003,10(5).
    [107]. George J. Bennett,Karl P. Sebelius,Andrew L. Barth,Louis H. Nguyen,ISS Russian Segment Motion Control System Operating Strategy during Orbiter Repair Maneuver,AIAA 2005-5855,August 2005.
    [108]. Walker, S., LoPresti, J., Schrock, M., Hall, R., Space Shuttle R-bar Pitch Maneuver for Thermal Protection System Inspection, Paper AIAA-2005-5983, AIAA Guidance, Navigation, and Control Conference and Exhibit,San Francisco , CA,Aug. 15-18, 2005.
    [109]. Bodin, P. et al., Initial In-Flight Performance Of The SMART-1 Attitude and Orbit Control System, Proceedings of the International Lunar Conference 2003:ILEWG 5, AAS Science and Technology Series, Vol. 108, AAS, San Diego, CA, 2004, pp. 317-328.
    [110]. Glenn Creamer, et al. Attitude Determination and Control of Clementine During Lunar Mapping,Journal of Guidance Control & Dynamics,Vol.19,No.3,1996.
    [111]. Jongrae Kim,Spacecraft Attitude Control Using Approximate, Receding -Horizon Model-Error Control Synthesis,AIAA Guidance,Navigation,and Control Conference and Exhibit,15-18 August 2005,AIAA 2005-6178.
    [112]. 于占东,王庆超.飞行器姿态的一种鲁棒自适应模糊解耦控制[J].宇航学报,2003,24(4).
    [113]. 赵健康 戴金海,基于模糊算法的预测跟踪控制技术[J],计算机仿真,2004,6
    [114]. Huey-Jian Uang,Bor-Sen Chen.Robust adaptive optimaltracking design for uncertain missile systems: a fuzzy approach. Fuzzy Sets and Systems 126 (2002) 63287.
    [115]. Peter F,Gath,Walter Fichter and Michael Kersten.Drag Free and Attitude Control System Design for the LISA Pathfinder Mission.AIAA,2004,8.
    [116]. Kim, J. and Crassidis, J. L., Fundamental Relation of Approximate Receding Horizon Optimization to The Simple Mass Spring Damper System, AIAAGuidance, Navigation and Contol Conference, Austin, TX, Aug. 2003, AIAA -2003-5663.
    [117]. 朱民雄,非线性空间飞行器系统的解耦滑模控制[J],北京航空航天大学学报,2000,26(5).
    [118]. Zhiqiang Zhou, Richard Colgren, Nonlinear Attitude control for large and Fast Maneuvers, AIAA Guidance, Navigation, and Control Conference and Exhibit,15-18 August 2005,AIAA 2005-6177.
    [119]. Inalhan, G., Tillerson, M., and How, J. P., Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits, Journal of Guidance, Control, and Dynamics, Vol. 25, No. 1, Jan.-Feb. 2002, pp. 48–59.
    [120]. Jovan D, Sai Ming L , Raman K. Robust Adaptive Variable Structure Control of Spacecraft Under Control Input Saturation.Journal of Guidance,Control,and Dynamics,2001,24(1):14-22.
    [121]. Jay L Sm ith. Attitude Determination and Control Suitable for Micro- Spacecraft,IEEE Aerospace Conference Proceedings, 2000: 143-165.
    [122]. LoS, Chen Y. Smooth Sliding-Mode Control for Spacecraft Attitude Tracking Maneuvers.Journal of Guidance,Control,and Dynamics, 1995,18(6):1345-1349.
    [123]. Crassidis J ,Markley F.,Sliding Mode Control Using Modified Rodrigues Parameters,Journal of Guidance, Control, and Dynamics,1996,19(6):1381-1383.
    [124]. Jongrae Kim, Spacecraft Attitude Control Using Approximate Receding -Horizon Model-Error Control Synthesis, AIAA Guidance, Navigation, and Control Conference and Exhibit,15-18 August 2005,AIAA 2005-6178.
    [125]. Xie Y-C, Sawada H, Hashimoto T, et al, Adaptive Model Following Control Method for Actively Controlled Magnetic Bearing Momentum Wheel. 5th International Symposium on Magnetic Suspension Technology, Santa Barbara, America, 1999.
    [126]. Crassidis, J., Vadali, S., and Markley, L., Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers, Journal of Guidance, Control, and Dynamics, Vol. 23, No. 3, 2000, pp. 564-566.
    [127]. 冯纯伯,非线性控制系统分析与设计[M]. 东南大学出版社,2001.
    [128]. 陈洪波 杨涤,美国空间攻防对抗概念体系下空间武器平台,现代防御技术 2006,3.
    [129]. 肖福根,在未来空间攻防战中的天基武器技术[J],国防技术基础,2002,4.
    [130]. 袁国雄 白涛 任章,天基对地攻击武器的一种混合制导方法研究[J],战术导弹控制技术,2005,3.
    [131]. 于小红,空间平台在空间对抗中的应用研究[J],装备指挥技术学院学报 2003,8(4).
    [132]. 赵健康等,空间在轨加注方法及影响分析,863 项目技术报告,2004,6.
    [133]. Tegart.J,Kirkland.Z, On-Orbit Propellant Resupply Demonstration –Flight Test Results AIAA 85-1233, July 1985.
    [134]. Atilla Dogan,and Shinya Sato, Flight Control and Simulation for Aerial Refueling, AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005,AIAA 2005-6264.
    [135]. Fravolini, M., Ficola, A., Napolitano, M., Campa, G., and Perhinschi, M., Development of Modelling and Control Toolsfor Aerial Refueling for Uavs, AIAA Guidance, Navigation, and Control Conference and Exhibit, Austin, TX, Aug 2003.
    [136]. M.Von Allmen,Laser-Beam Interaction with Materials physical principies and Applications,Sping-verlay Berlin 1987.
    [137]. V.I.Meachukin,A.A.Samokhin,Sov.J Quantum electron 14(1984),1608.
    [138]. C.Duzy etal,Appl phys lett 37(1980),N.6,542.
    [139]. A.N.pirri,phys of Fluids 16(1973),No,9,1435.
    [140]. Jan P.B. Vreeburg, David J. Chato. Models for Liquid Impact Onboard Sloshsat FLEVO. AIAA–2000–5152.
    [141]. Atilla Dogan,and Shinya Sato, Flight Control and Simulation for Aerial Refueling, AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005,AIAA 2005-6264.
    [142]. Aydelott, J.C., Modeling of Space Vehicle Propellant Mixing NASA TP-2107, January,1983.
    [143]. Symons, Eugene P., Interface Stability During Liquid Inflow to Initially Empty Hemispherical Ended Cylinders in Weightlessness NASA TM X-2003, April 1970.
    [144]. Andrew Long,Daniel Hastings,A Unique Opportunity for the Development of an On-Orbit Satellite Servicing Infrastructure AIAA 2004-6051 28-30 September 2004.
    [145]. Jason M. Molinsky Flow Modeling of the Galaxy XII Dual Mode Bipropellant Propulsion Subsystem AIAA 2004-3665 11-14 July 2004.
    [146]. Bentz, Michael D., Tank pressure control in low gravity by jet mixing NASA-CR-191012, March 1993.
    [147]. Bentz, M. D, Knoll, R. H, Hasan, M. M, Lin, C. S., Low-g fluid mixing - Further results from the Tank Pressure Control Experiment AIAA 93-2423, Jun. 1993.
    [148]. Bentz, Michael D, et. al., Tank Pressure Control Experiment - Results of three space flights AIAA Paper 97-2816, July 1997.
    [149]. Aydelott, J.C., et al., Numerical Modeling of On-Orbit Propellant Motion Resulting from an Impulsive Acceleration NASA TM-89873, 1987.
    [150]. Venkataramanan, S. and Dogan, A., Dynamic Efects of Trailing Vortex withTurbulence & Time-varying Inertia in Aerial Refueling, Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, August 2004, AIAA paper 2004-4945.
    [151]. Eddleman, David E., Blackmon, James B, and Moser, Marlow D., Reciprocating Feed System for In-Space Propulsion Systems. Joint Propulsion Conference, Huntsville, AL, 20-23 July 2003.
    [152]. Brackbill, J.U., Kothe, D.B., Zemach, C., A Continuum Method for Modeling Surface Tension Journal of Computational Physics v100 n2, June 1992.
    [153]. Arif, H., Aydelott, J. C., and Chato, D. J., Evaluation of Supercritical Transfer Systems for Future NASA Missions Journal of Propulsion and Power v8 n2, March 1992 pp 332-338.
    [154]. David J. Chato, Melissa Van Dyke, J. Clair Batty and Scott Schick. Status and Design Concepts for the Hydrogen On-Orbit Storage and Supply Experiment. NASA/TM-1998-206615.
    [155]. Hyungjoo Yoon. and Panagiotis Tsiotras, Adaptive Spacecraft Attitude Tracking Control with Actuator Uncertainties AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005,AIAA 2005-6392.
    [156]. Son-Goo Kim,John L. Crassidis, Yang Cheng,,Adam M. Fosbury, Kalman Filtering for Relative Spacecraft Attitude and Position Estimation AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005,AIAA 2005-6087.
    [157]. Wolfe, J.D., and Speyer, J.L., Effective Estimation of Relative Positions in Orbit Using Differential Carrier-Phase GPS, AIAA Paper No. 2004-4777, Proceedings of the AIAA Guidance, Navigation, and Control Conf., August, 2004.
    [158]. Andrew E. Turner. Orbital Fueling Benefits for Geosynchronous Spacecraft. AIAA 2002-2006.
    [159]. Aaron B. Hoskins, and Ella M. Atkins,Spacecraft Formation Optimization with a Multi-Impulse Design AIAA 2005-5835 AIAA Guidance, Navigation, and Control Conference and Exhibit,August 2005.
    [160]. Tao.G,Adaptive control Design and Analysis[M] NewYork Wiley-Interscience 2003.
    [161]. Nico Sneeuw, Hanspeter Schaub.Satellite clusters for future gravity field missions IAG International Symposium Gravity, Geoid and Space Missions Porto, Portugal Aug. 30 ,Sept, 2004.
    [162]. 张玉锟,卫星编队飞行的动力学与控制技术研究[工学博士论文] .国防科技大学研究生院,2002.
    [163]. 王小平, 曹立明,遗传算法(理论、应用与软件实现)[M],西安:西安交通大学出版社,2002.
    [164]. 张守信,GPS 卫星测量定位原理与应用 国防科技大学出版社,1996.
    [165]. 赵健康,利用 GPS 载波相位测量快速确定动态载体的姿态及精度分析,国防科技大学学报,1999,21(4).
    [166]. L.E.SjQberg,Unbiased vs Biased Estimation of Gps Phase Ambiguities From Dual-frequency Code and Phase Observables, Journal of Geodesy 2002 ,73:118-124.
    [167]. Venkataramanan, S. and Dogan, A., Dynamic Efects of Trailing Vortex with Turbulence & Time-varying Inertia in Aerial Refueling, Proceedings of the AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, RI, August 2004, AIAA paper 2004-4945.
    [168]. 赵健康,GPS/INS 组合定姿技术报告,2003,6.
    [169]. Schweighart.Developement and Analysis of a High Fidelity Linearized J2 Model for Satellite Formation Flying, Master’s Thesis, Department of Aeronautics and Astronautics, assachusetts Institute of Technology, June 2001.
    [170]. D.Cliff,Evolution of market mechanism through acontinuous space of auction types Ⅱ:Two-sidedauction mechanisms evolve in response to marketshocks Agents for business Automation,LasVegas,June 2002.
    [171]. Guelman M , Kogan A , Gipsman A. Asymptotic Optimization of Very Long , Low Thrust Propelled Inter-Orbital Maneuvers,Acta Ast ronautica, 2000 ,47:489~502.
    [172]. Marino R,Tomei P,Adaptive control of linear Time_varying System Automatics 2003 39(4):651-659.
    [173]. G. Q. Xing and S. A. Parvez, Nonlinear Attitude State Tracking Control for Spacecraft, Journal of Guidance, Control,and Dynamics, vol. 24, pp. 624–626, May-June 2001.
    [174]. Wen-june Wang Stability and Stabilization of Fuzzy Large-Scale Systems IEEE Transactions on Fuzzy System Vol 12 No 3 June 2004.
    [175]. C.H.Lee and C.C.Teng ,Tuning PID controller of unstable processes A Fuzzy Neural NetWork Approach Fuzzy Sets and Systems Vol128 No1 pp95-106 2002.
    [176]. Kiforenko B M , Pasechnik Z V , Kyrychenko S B , Vasiliev I Y. Minimum Time Transfer of Low Thrust Rocket in Strong Gravity Fields. Acta Ast ronautica , 2003 , 52 : 601~611.
    [177]. Fernandes S D S. Optimum Low-Thrust Limited Power Transfer between Neighboring Elliptic Non-Equatorial Orbit s in an Non-Central Gravity Field. Acta Ast ronautica , 1995 , (35) : 763~770.
    [178]. 贾沛然等,弹道导弹弹道学,国防科技大学出版社,1980.
    [179]. 张守信,外弹道测量与卫星轨道测量基础,国防工业出版社,1992.
    [180]. Busse, F.D., How, J.P., and Simpson, J., Demonstration of Adaptive Extended Kalman Filter for Low-Earth-Orbit Formation Estimation Using CDGPS, Navigation, Vol. 50, No. 2, Summer 2003, pp. 79-93.
    [181]. Mark L. Psiaki,and Shan Mohiuddin,Modeling, Analysis, and Simulation of GPS Carrier Phase for Spacecraft Relative Navigation,AIAA Guidance, Navigation, and Control Conference and Exhibit 15-18 August 2005, AIAA 2005-6053.
    [182]. 赵健康,空间在轨对地攻击分离技术研究,国防报告,2006,9 ,GFA0084292.
    [183]. 赵健康 , 空间在轨对地释放与分离优化模式研究 , 国防报告 ,2006,9 GFA0084291.
    [184]. 赵健康,空间平台姿态控制技术研究,国防报告,2006,9,GFA0084293.
    [185]. 赵健康,空间在轨对地释放制导技术研究,国防报告,2006,9 GFA0084294.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700