用户名: 密码: 验证码:
航天器悬停特性分析与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航天器悬停技术将成为未来航天器在轨服务的重要支撑技术。为实施应急救援、在轨维护、在轨监视、模块更换、在轨加注、轨道清理、非合作目标操作等方面的任务提供重要的技术支持。
     本文分析了航天器悬停的轨道特性,并对航天器悬停构型保持的控制方法进行了研究。重点讨论了任务航天器相对于目标航天器实现悬停的轨道设计方法和实施途径,并提出了一种保持航天器悬停构型稳定的控制思路。全文的工作主要包括以下几个方面的内容:
     给出了航天器悬停定义的描述方式。在相对运动坐标系中,采用悬停距离、悬停方位角和悬停俯仰角对任务航天器悬停位置状态进行描述。
     研究了任务器相对于圆轨道、椭圆轨道航天器悬停的补偿运动学方法。对任务器相对于圆轨道、椭圆轨道目标器实现任意位置悬停飞行分别进行了受力分析,推导出了任务器保持悬停构型需要的标称控制加速度和速度增量的计算公式,给出了悬停具体实施途径。在推导公式的过程中,并未使用任何形式的近似简化,可认为最后得到的计算公式是精准的。通过仿真计算,对不同工况悬停任务的能量需求进行对比分析,认为航天器实现悬停是可行的。
     对任务航天器相对目标航天器悬停的轨道动力学方法进行了研究。基于航天器相对运动动力学原理,建立任务器和目标器绝对加速度之差的表达式,根据悬停的定义,以椭圆轨道目标器为对象,给出了任务器对目标器进行悬停飞行的设计方法。并与补偿运动学方法进行对比验证,仿真结果表明此种计算方法满足精度要求。该方法适用于任务器相对椭圆轨道、圆轨道目标器进行任意位置悬停的轨道设计。
     最后,对航天器悬停构型的保持进行了控制方法研究。以T-H方程作为状态方程,采用LQR控制方法,针对悬停状态存在初始位置偏差和速度偏差的情况进行了控制器设计。仿真结果表明文中设计的控制系统可以使得任务器快速、准确地到达期望的悬停位置并保持悬停构型稳定。
     航天器悬停轨道特性与控制方法是航天器悬停技术研究的基础,本文所做的工作为航天器悬停前的接近技术研究和悬停轨迹安全分析等打下了一定基础。
Hovering technology of spacecraft will become the important support for future on-orbit servicing, such as urgent rescue, on-orbit maintenance, on-orbit surveillance, module replacement, on-orbit injection, orbit clearing and operation on uncooperate target.
     The orbital characteristics of hovering spacecraft were analysed in this dissertation, and the control method for keeping spacecraft hovering formation was researched. The means of designing hovering orbit and the way to perform the hovering mission between the mission spacecraft and target spacecraft were discussed. Besides, a measure for keeping spacecraft hovering formation stable was given. The main work and achievements in this dissertation are summarized as follows:
     Firstly, the definition of spacecraft hovering was provided. The hovering distance, azimuth angle and pitching angle were chosen to describe the mission spacecraft’s hovering location and direction in the relative motion coordinate.
     Then, the kinematic method for mission spacecraft hovering around a target spacecraft which operate on a circular or an elliptical orbit was studied. Through dynamics analysis, the formulas to calculate the standard control acceleration and speed increment for keeping hovering state wre presented. Furthermore, the way to carry out the hovering was proposed. Any simplification was not adopted when researched these formulas, so the equations were precise, and we called them“model one”. By simulation, the hovering energy requirement for different mission was taken into contrast, and the conclusion proved that the hovering technology was feasible.
     Subsequently, a hovering method at any selected position on elliptical or circular orbit was presented in this thesis.This method was proposed based on orbit dynamics theory. By comparing this method with the model one, we got the conclusion that this calculation method was satisfied with our requirement.
     Finally, the control method for keeping hovering formation was studied in this thesis. Using T-H equation and LQR control, a controller was designed to eliminate the initial position and speed error. The simulation result proved that the control system was able to make the mission spacecraft adjusted to its correct position rapidly and accurately ,and keep the hovering formation stable.
     The spacecraft hovering orbit characteristics and control are the foundations for the overall hovering technology. And the work in this dissertation can be used for the further studies on the approach method before hovering and the security design for hovering orbit.
引文
[1]黄敏超,胡小平等.空间科学与工程引论[M].长沙:国防科技大学出版社,2006:1-3
    [2] M.Donald,Waltz.On-Orbit Servicing of Space Systems[M].Krieger Publishing Company,Malabar,Florida,1993
    [3]陈小前,袁建平等.航天器在轨服务技术[M].北京:中国宇航出版社,2009
    [4]张玉军,冯书兴等.美国典型空间飞行试验分析[C].飞行力学与飞行试验第26届学术交流年会.2010:384-389
    [5] P. Motaghedi.On-orbit performance of orbital express capture system[C].Proc. of SPIE Vol.6958
    [6] J.Shoemaker,M.Wright.Orbital express space operations architecture program[C].Proc.of SPIE Vol.6958
    [7]张少波,谢泽兵.从美、日空间试验情况看空间攻防的发展趋势[J].863先进防御技术,2007(11):1-43
    [8] S. Amico,E. Gill,O. Montenbruck.Relative orbit control design for the PRISMA formation flying mission[C].AIAA Guidance,Navigation,and Control conference and Exhibit,Keystone,Colorado,August 2006
    [9] P. Bodin,R. Larsson,F. Nillsson,et al.PRISMA:An In-orbit Test Bed for GNC Experiments [C].AIAA Guidance,Navigation,and Control conference and Exhibit,Honolulu,Hawaii,August 2008
    [10] L. Tarabini,J. Gil,F. Gandia,et al.Ground guided CX-OLEV rendezvous with uncooperative geostationary satellite.Acta Astronautica 61 (2007) 312-325
    [11] C. Kaiser,F. Sjoberg ,J.M. Dlecura,SMART-OLEV:An orbit life extension Vehicle for servicing commercial spacecrafts in GEO.Acta Astronautica 63 (2008) 400-410
    [12]唐国金,罗亚中等.空间交会对接任务规划[M].北京:科学出版社,2008
    [13]王华.交会对接的控制与轨迹安全[D].博士学位论文.长沙:国防科学技术大学,2007
    [14]林来兴.空间停靠动力学与控制[J].宇航学报,1999,20(2):14-21
    [15]袁建平,朱战霞.空间操作与非开普勒运动[J].宇航学报,2009,30(1):42-46
    [16]李俊峰,龚胜平.非开普勒轨道动力学与控制[J].宇航学报,2009,30(1):47-53
    [17] L. Breger,J.P. How.Safe Trajectories for Autonomous Rendezvous ofSpacecraft[C].AIAA Guidance,Navigation,and Control Conference and Exhibit,Keystone,Colorado,AIAA Paper 2006-6584
    [18] D. J. Scheeres.Stability of Hovering Orbits around Small Bodies[J].AAS/AIAA Spaceflight Mechanics Meeting,February 1999,99-159
    [19] S. Sawaim,D.J. Scheeres.Control of hovering spacecraft Using Altimetry[J]. Journal of Guidance,Control and Dynamics,2002,25(4):786-795
    [20] S. Broschart,D.J. Scheeres.Control of hovering spacecraft near small bodies:Application to asteroid 25143 Itokawa [J].AIAA Journal of Guidance,Control and Dynamics,2005,28(2):343-354
    [21] E.T. Lu,S.G. Love.Gravitational tractor for towing asteroids[J].Nature,2005,438:177-178
    [22] Bong Wie.Dynamics and Control of Gravity Tractor Spacecraft for Asteroid Deflection[J].Journal of Guidance,Control and Dynamics,2008,31(5):1413-1423
    [23] Martin Gehler,Sina Ober-Bl?baum.Optimal Control of Gravity Tractor Spacecraft near Arbitrarily Shaped Asteroids[J].1stIAA Planetary Defense Conference:Protecting Earth from Asteroids,April 2009
    [24]雷静,周凤岐,周军.月球探测器悬停控制技术的研究[J].航天控制,2007,25(1):36-39
    [25] Shi Dele,Ye Peijian.Lunar Lander Precise Location and Safely Landing Technology[J].航天器工程,2007,16(3):9-16.
    [26]刘智勇,何英姿.慢旋稳定非合作目标绕飞悬停分析研究[C].空间操作自主控制专题研讨会.2009:414-426
    [27]林来兴,黎康.卫星对空间目标悬停的轨道动力学与控制方法研究[J].中国空间科学技术,2008,28(1):9-12
    [28]闫野.卫星相对空间目标任意位置悬停的方法研究[J].中国空间科学技术,2009,29(1):1-5
    [29]闫野,朱亚文.对非圆轨道卫星实现共面悬停的方法研究[J].中国空间科学技术,2010,30(2):41-48
    [30]王功波,孟云鹤等.基于轨道动力学的椭圆轨道悬停方法[J].宇航学报,2010,31(6):1527-1532
    [31]薛白,佘志坤等.基于混杂系统的空间飞行器悬停控制[J].中国空间科学技术,2010,30(2):61-67
    [32]段广仁,谭峰等.卫星轨迹跟踪控制的参数化方法[J].空间控制技术与应用,2008,34(5):3-7
    [33]宋旭民,范丽等.相对空间目标任意位置悬停闭环控制方法研究[J].中国空间科学技术,2010,30(1):41-45
    [34]宋旭民,陈勇等.空间悬停LQR控制方法研究[C].空间非开普勒轨道动力学与控制专题研讨会,2009:562-566
    [35]顾大可,张世杰等.卫星对空间目标悬停的最优控制[C].空间非开普勒轨道动力学与控制专题研讨会,2008:410-416
    [36]李元凯,郭忠良等.连续有限推力下圆轨道目标相对动力学悬停控制[C].空间非开普勒轨道动力学与控制专题研讨会,2008:362-368
    [37] G.W. Hill.Researches in the Lunar Theory[J].American Journal of Mathematics,1887,1(1):5-26
    [38]郗晓宁,王威等.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003
    [39] W.H. Clohessy,R.S. Wiltshire.Terminal Guidance System for Satellite Rendezvous[J].J. Aerospace Sci,1960,27(9):635-658
    [40]何淼,谈细春.空间交会对接中Hill方程的计算误差特性研究[J].中国空间科学技术,1998,18(6):7-14
    [41]张振民,许滨等.航天器相对运动与Hill方程的使用性分析[J].中国空间科学技术,2002,22(1):1-8
    [42] A. Sparks.Satellite Formation Keeping Control in the Presence of Gravity Perturbation[C].Proceeding of the American Control Conference,Chicago,Illinois,June 2000
    [43] M. Humi,T.E. Carter.Rendezvous Equations in a Central-Force Field with Linear Drag[J].Journal of Guidance,Control,and Dynamics,2002,25(1)
    [44]黄福铭等.航天器飞行控制与仿真[M].北京:国防工业出版社,2004
    [45]杨嘉墀等.航天器轨道动力学与控制[M].北京:宇航出版社,2001
    [46]张育林,曾国强等.分布式卫星系统理论及应用[M].北京:科学出版社,2008:117-120
    [47] D.F. Lawden.Optimal Trajectories for Space Navigation[M].London:Buttersworths,1963
    [48] J. Tschauner,P. Hempel.Optimale Beschleunigungs-programme fur des Rendezvous Manover[J].Astronautica Acta,1964,10(5):296-307
    [49] E.M. Cliff.Clohessy-Wiltshire Analysis[C].1998
    [50] T. E. Carter,M. Humi.Fuel-Optimal Rendezvous near a Point in GeneralKeplerian Orbit[J].Journal of Guidance,Control,and Dynamics,1987,10(2):567-573
    [51] T.E. Carter.New Form for the Optimal Rendezvous Equations near a Keplerian Orbit[J].Journal of Guidance,Control,and Dynamics,1990,13(1):183-186
    [52] T.E. Carter.Closed-Form Solution of an Idealized,Optimal,Highly Eccentric Hyperbolic Rendezvous Problem[J].Dynamics and Control,1996,6:293-307
    [53] K. Yamanaka,F. Ankersen.New Sate Transition Matrix for Relative Motion on an Arbitrary Elliptical Orbit[J].Journal of Guidance,Control,and Dynamics,2002,25(1):60-66
    [54] G. Inalhan,M. Tillerson,J. P. How.Relative Dynamics and Control of Spacecraft Formation in Eccentric Orbits [J].Journal of Guidance,Control,and Dynamics,2002,25(1):48-59
    [55] R.G. Melton.Relative Motion of Satellites in Elliptical Orbits[J].Advances in the Astronautical Sciences,1997,97(2):2075-2094
    [56] R.G. Melton,Time-Explicit Representation of Relative Motion Between Elliptical Orbits[J].Journal of Guidance,Control,and Dynamics,2000,23(4):604-610
    [57]李四平,刘锦阳等.非开普勒轨道问题的探讨[C].全国第十三届空间及运动体控制技术学术年会论文集,2008:148-152
    [58] M. Tillerson,J.P. How.Formation Flying Control in Eccentric Orbits[A].In:AIAA Guidance,Navigation,and Control Conference and Exhibit [C].Montreal,Canada,2001:1-11.AIAA 2001-4092
    [59] M. Tillerson,J.P. How.Advanced Guidance Algorithms for Spacecraft Formation-keeping[A].In:Proceedings of the American Control Conference [C].Anchorage,AK,2002:2830-2835
    [60] L. Breger,P. Ferguson,J.P. How.Distributed Control of Formation Flying Spacecraft Built on OA[A].In:AIAA Guidance,Navigation,and Control Conference and Exhibit[C].Austin,Texas,2003:1-11.AIAA 2003-5366
    [61]于萍,张洪华.椭圆轨道编队飞行的典型模态与构型保持控制方法[J].宇航学报,2005,26(1):9-12
    [62]王德进.H2和H∞优化控制理论[M].哈尔滨:哈尔滨工业大学出版社,2001:
    [63] Reichard L. Burden,J. Douglgs Faires.Numerical Analysis[M].New York:Thomson Learning,Inc.2001:272-208

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700