用户名: 密码: 验证码:
新型类锥杆式对接机构的碰撞过程分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着21世纪人类在空间领域的不断突破,日益增长的无人自主在轨服务需求和激烈的国际竞争对空间对接机构的自主性、多样性、稳健性、可靠性及其总体性能提出了越来越高的要求。从美国、俄罗斯、日本等航天大国的已有经验来看,要保证航天器空间对接的高成功率、高可靠性,不但要重视对接机构的设计、研制和试验,还必须十分重视对接机构的仿真研究。本文从提高对接机构的设计水平,改进对接机构的工作性能出发,结合课题组目前正在开展的航天器在轨服务技术研究,对一种新型类锥杆式对接机构的碰撞过程进行了建模与仿真分析。
     首先,对空间对接技术新的应用需求、发展特点以及空间对接机构的发展概况等进行了总结,分析了类锥杆式对接机构的优点,并对空间对接过程的建模与仿真技术进行了研究。
     其次,针对本文所研究的新型类锥杆式对接机构的结构特点,定义了系统的坐标系,并对系统碰撞过程中各部分之间的运动学关系进行了研究。另外还研究了对接系统的欧拉动力学方程,接触碰撞问题求解模型,碰撞力系数与材料的杨氏模量、泊松比以及侵入量之间的数学关系式等。在此基础上,进一步对碰撞过程的动力学模型进行了综合研究,推导了各种惯性力以及广义力的虚功率形式,并得到了碰撞过程的动力学模型。
     然后,采用几何法对类锥杆式对接机构的碰撞点计算模型进行了研究。根据笛卡儿空间坐标系的“点”投影不变性原理和类锥杆式对接机构的结构特点,论文提出将碰撞点的计算分为对接杆中心轴与对接锥中心轴共面和异面两种情况来分别进行研究,并相应得到了这两种情况下的碰撞点计算模型。
     最后,研究了对接机构在空间对接过程中不同对接初始条件下的动力学特性,并针对影响对接机构碰撞过程的诸多因素进行了大量的仿真分析,得到了许多有价值的结论。在上述仿真分析的基础上,还对对接锥型面改进设计方法进行了研究,并得到了满足改进设计要求的新型对接锥型面。
     论文对类锥杆式对接机构的接触碰撞过程建模理论进行了系统研究,并将其应用于所研究对象的工作特性仿真分析中,为进一步提高结构的总体设计水平奠定了良好的基础。
With mankind ceaselessly breaking new ground in the field of space at the 21st century, the growing demands for autonomous on-orbit servicing and fierce international competitions are putting forward higher and higher requirements to the autonomy, diversity, robustness, reliability and the overall performance of the space rendezvous and docking mechanism. From the existing experience of the United States, Russia, Japan and other space powers, to ensure high success rate and high reliability of the spacecrafts docking process in space, attentions should be paid not only on the design, development and test of the docking mechanism, but also should be paid on the simulation of docking process. In this paper, enhancing the design levels of the docking mechanism and understanding the working conditions of the docking process are aimed at. Combining with our team’s current research on the spacecraft’s on-orbit servicing technology, docking process of a new type quasi probe-cone docking mechanism are analyzed by modeling and simulation.
     Firstly, new application requirements and development characteristics of space docking technology are analyzed, development of docking mechanism and merits of the quasi probe-cone docking mechanism are summarized, and the technology of modeling and simulation for space docking process is studied.
     Secondly, according to the features of the new type quasi probe-cone docking mechanism, systematic coordinates are defined, and the kinematical relationships of various parts during the collision process are studied, as well as research on the Euler's dynamic equations, the contact-impact solving models, along with the mathematical relationships between the coefficient of collision force and the material Young's modulus, Poisson's ratio, the intrusion amount are done for the docking problem. On that basis, a further comprehensive study of the collision dynamics models is made with the virtual power principle. A variety of inertial force and non-inertial force is deduced to the virtual power form, and a complete dynamic model for the collision process has been studied as a vector form.
     Thirdly, detecting and calculating models of the collision points as the quasi probe-cone docking mechanism colliding with each other are studied by geometric methods. According to the principle of "point" projection invariance in the Cartesian space coordinate system and the structural symmetrical characteristics of the quasi probe-cone docking mechanism, for the first time this paper proposes to divide the problem of detecting and calculating the collision points into two kinds of circumstances, that is coplanar and non-coplanar between the centrosymmetric axis of the docking pole and the centerline of the passive docking cone, then the detecting and calculating models of the collision points for the both cases has been deduced.
     Finally, the kinematical and dynamic characteristics of the docking mechanism in different initial conditions during the collision process are studied, as well as a large number of simulation analyses are made to understand many factors of impacting the collision process, moreover a number of significant guidance conclusions are acquired as a result. In addition, on the basis of above simulation analyses, the docking cone innovation design technique is studied and a new satisfied doking cone is obtained.
     To sum up, the theory of modeling the contact and collision process for the quasi probe-cone docking mechanism is systematically studied in this paper, and it is applied to the simulation analyses of the object’s working characteristics. The research work establishes a good foundation for further improvement of structural system design quality.
引文
[1]陈宝东,唐平.空间对接机构技术及其研制[J].上海航天, 2005, (5):6~8.
    [2]张崇峰.空间对接机构综述[J].世界科学, 2003.1.
    [3] Fehse W,李东旭,李智译.航天器自主交会对接技术[M].长沙:国防科技大学出版社,2009.
    [4]徐福祥.卫星工程概论[M].北京:中国宇航出版社,2003.10.
    [5]陈小前,袁建平,姚雯,赵勇著.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [6] Gralla E L. Strategies for Launch and Assembly of Modular Spacecraft [D]. Massachusetts Institute of Technology(Doctor),2006.
    [7]刘鲁华.航天器自主交会制导与控制方法研究[D].长沙:国防科技大学(博士),2007.
    [8] Joppin C. On-Orbit Servicing for Satellite Upgrades [D]. Massachusetts Institute of Technology (Doctor),2004.
    [9] Zimpfer D. Autonomous Rendezvous, Capture and In-Space Assembly: Past, Present and Future[C] AIAA 1st Space Exploration Conference: Continuing the Voyage of Discovery Orlando Florida: 2005: 1~12.
    [10]韩世杰.服务于在轨卫星的自动服务卫星[J].国际太空, 2004:6~8.
    [11] King D. Hubble Robotic Servicing: Stepping Stone for future Exploration missions[C] AIAA 1st Space Exploration Conference: Continuing the Voyage of Discovery. Orlando Florida: 2005.
    [12] Akin D L, Roberts B, Pilotte K. Robotic Augmentation of EVA for Hubble Space Telescope Servicing[C] AIAA Space 2003. Long Beach California: 2003.
    [13] Mohan S. Reconfiguration Methods for On-orbit Servicing, Assembly, and Operations with Application to Space Telescopes [D]. Massachusetts Institute of Technology(Doctor),2007.
    [14] Oda M. Experiences and Lessons Leaned from the ETS-VII Robot Satellite[C] IEEE International Conference on Robotics and Automation. San Francisco: 2000.
    [15]罗开元.航天及其基础技术未来发展分析[J].中国航天, 2002, (3):26~30.
    [16] Stamm S, Motaghedi P. Orbital Express Capture System: concept to reality [J]. SPIE, 2004, 5419:78~91.
    [17]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空, 2005, (2):23~27.
    [18]陈烈民.航天器结构与机构[M].北京:中国科学技术出版社,2005.
    [19]林来兴.空间对接机构[M].航空工业出版社,1992.
    [20]娄汉文,曲广吉,刘济声.空间对接机构[M].北京:航空工业出版社,1992.
    [21]曲艳丽.空间对接机构差动式缓冲系统动力学建模与仿真[D].沈阳:中国科学院沈阳自动化研究所(博士),2002.
    [22]叶长宏.空间对接机构捕获锁的仿真与试验研究[D].哈尔滨:哈尔滨工业大学(硕士),2002.
    [23]关英姿.航天器对接过程的动力学及仿真技术研究[D].黑龙江:哈尔滨工业大学(博士),2000.
    [24]卢娜.航天器对接过程的接触碰撞动力学研究[D].哈尔滨:哈尔滨工业大学(硕士),2005.
    [25]宋红运.基于虚拟样机技术的空间对接试验台的建模与仿真[D].哈尔滨:哈尔滨工业大学(硕士),2004.
    [26] Donald M, Waltz. On-Orbit Servicing of Space Systems [M]. Florida:Krieger Publishing Company,1993.
    [27] Meller D. A Docking System for Microsatellite Based on MEMS Actuator Arrays[C] 42nd AIAA/ASME/ASCE/AHS/ASC Structures,Structural Dynamics, and Materials Conference and Exhibit. Seattle WA: 2001.
    [28] Motaghedi P, Stamm S. 6 DOF Testing of the Orbital Express Capture System [J]. SPIE, 2005, 5799:66~81.
    [29] Oda M, Kibe K, Yamagata F. ETS-VII, Space Robot In-Orbit Experiment Satellite[C] IEEE International Conference on Robotics and Automation. Minneapolis Minnesota: 1996.
    [30] Hays A B, Tchoryk P, Pavlich J C. Dynamic simulation and validation of a satellite docking system [J]. SPIE, 2003, 5088:77~88.
    [31] Hays A B, Pavlich J C. Advancements in design of an autonomous satellite docking system [J]. SPIE, 2004, 5419:107~118.
    [32] Rivera D E, Hays A B. Modeling and Simulation of the Michigan Aerospace Autonomous Satellite Docking System II [J]. SPIE, 2005, 5799:82~91.
    [33]李强,黄奕勇,陈小前, et al.基于ADAMS的在轨加注航天器对接锁紧装置的动力学建模与仿真[C]中国力学学会学术大会’2009.郑州: 2009.
    [34]王兴贵,赵阳,曹喜滨, et al.周边式对接机构航天器的对接动力学仿真(第1部分)运动学约束方程[J].系统仿真学报, 2001, 13 (3):284~287.
    [35]王兴贵,赵阳,曹喜滨, et al.周边式对接机构航天器的对接动力学仿真(第2部分)约束动力学[J].系统仿真学报, 2001, 13 (3):512~516.
    [36]尤超蓝,洪嘉振,章杰.周边式对接机构对接捕获阶段的三体力元动力学模型[J].宇航学报, 2004, 25 (439~442).
    [37]曾辛,于登云,曲广吉.周边式对接机构的运动学问题[J].航天器工程,1994:36~41.
    [38]关英姿,崔乃刚,康为民,张崇峰.考虑缓冲装置惯性及接触变形的对接动力学仿真研究[J].空间科学学报, 2001, 21 (3):280~287.
    [39]于伟,杨雷,曲广吉.空间对接机构动力学仿真分析[J].动力学与控制学报, 2004, 2 (2):38~42.
    [40]翟光,仇越,梁斌, et al.在轨捕获技术发展综述[J].机器人, 2008, 30 (5):467~480.
    [41]杨芳.空间飞行器对接机构和对接过程动力学分析与仿真研究[D].中国空间技术研究院(博士),1999.
    [42]刘铸永,洪嘉振.柔性多体系统动力学研究现状与展望[J].计算力学学报, 2008, 25 (4):411~416.
    [43]安雪斌,潘尚峰.多体系统动力学仿真中的接触碰撞模型分析[J].计算机仿真, 2008, 25 (10):98~101.
    [44]洪嘉振,尤超蓝.刚柔耦合系统动力学研究进展[J].动力学与控制学报, 2004, 2 (2):1~6.
    [45]李强,黄奕勇,陈小前, et al.中小型航天器空间对接地面模拟平台研究[C]空间环境与材料科学首届论坛报告会.北京: 2009.
    [46]程昌钧,王颖坚,马文华,李家仁.弹性力学[M].北京:高等教育出版社,1999.
    [47] Muthukumar S, Desroches R. A Hertz contact model with non2linear damping for pounding simulation [J]. Earthquake Engineering and Structural Dy namics, 2006, 35:811~828.
    [48] Guo P A, Hong Z J, Yan H G. A dynamic model with substructures for contact-impact analysis of flexible multibody systems [J]. Science in China, 2003, 46 (1):33~40.
    [49]贾沛然,陈克俊,何力.远程火箭弹道学[M].长沙:国防科技大学出版社,1993.
    [50]李强,黄奕勇,陈小前, et al.面向在轨服务的卫星对接过程建模与仿真分析[C]系统仿真及其应用技术.宜昌: 2009: 635~640.
    [51]孙世贤,黄圳圭等.理论力学教程[M].长沙:国防科技大学出版社,1997.
    [52]黄圳圭.航天器姿态动力学[M].长沙:国防科技大学出版社,2006.
    [53]郗小宁,王威,高玉东.近地航天器轨道基础[M].长沙:国防科技大学出版社,2003.
    [54]洪嘉振.多体系统动力学——理论、计算方法和应用[M].上海:上海交通大学出版社,1992.
    [55]洪嘉振,杨长俊.理论力学[M].北京:高等教育出版社,2002.
    [56] G.M.L.Gladwell,范天佑译.经典弹性理论中的接触问题[M].北京:北京理工
    [57]盛秋峰,洪嘉振,刘铸永, et al.含接触碰撞的变拓扑系统动力学仿真[J].上海交通大学学报, 2008, 42 (8):1233~1237.
    [58]丁遂亮,洪嘉振.柔性多体系统接触碰撞动力学研究[J].上海交通大学学报, 2003, 37 (12):1927~1930.
    [59]金栋平,胡海岩.碰撞振动与控制[M].北京:科学出版社,2005.
    [60]郭安萍,洪嘉振,杨辉.柔性多体系统接触碰撞子结构动力学模型[J].中国科学(E辑), 2002, 32 (6):765~770.
    [61] Brach R. Rigid body collisions [J]. ASME J Applied Mechanics, 1989, 56:133~138.
    [62]罗绍凯,张永发.约束系统动力学研究进展[M].北京:科学出版社,2008.
    [63]武际可.力学史[M].重庆:重庆出版社,2000.
    [64]陈滨.分析动力学[M].北京:北京大学出版社,1987.
    [65]刘延柱,杨海兴,朱本华.理论力学[M].北京:高等教育出版社,2001.
    [66]刘森石,符绩桄,张新建.高等数学[M].长沙:国防科技大学出版社,2000.
    [67]王志强,洪嘉振,杨辉.碰撞检测问题研究综述[J].软件学报,1999, 5:545~551.
    [68] Jalon J G d, Unda J, Avello A. Natural coordinates for the computer analysis of multibody systems [J]. Computer Method in Applied Mechanics and Engineering, 1986, 56:309~327.
    [69]苏金明,阮沈勇. MATLB实用教程[M].北京:电子工业出版社,2005.
    [70] Hanselman D, Littlefield B,朱仁峰译.精通MATLAB7 [M].北京:清华大学出版社,2006.
    [71]李金宗,逯仁贵,马子墨, et al.空间交会对接技术[M].哈尔滨:哈尔滨工业大学出版社,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700