用户名: 密码: 验证码:
通透肋式拱梁隧道变形规律分析与结构荷载简化模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通透肋式拱梁隧道是一种全新的半明半暗异型隧道结构型式,其受力模式与承载机理尚不清楚,其设计理论有待建立,因此,开展通透肋式拱梁隧道相关问题研究具有重要意义。
     依托黄(山)塔(岭)桃(林)高速公路龙瀑隧道工程,采取现场勘察、室内试验、理论分析和数值模拟相结合的方法,对肋式拱梁隧道变形规律、结构荷载模式开展了系统的研究,揭示了肋式拱梁隧道的变形特性,提出了肋式拱梁隧道的结构荷载简化模型?
     本文的主要内容和成果如下:
     1、开展了龙瀑隧道工程场址地质调查,全面地评价了龙瀑隧道工程场址的工程地质特性,为肋式拱梁隧道修建提供了基础性资料。
     2、针对黄(山)塔(岭)桃(林)高速公路龙瀑隧道段,进行了道路结构型式比选。方案比选表明:肋式拱梁隧道具有边坡扰动小、环境破坏少、结构简洁轻盈、外形美观、通透性佳的优点。在此基础上,提出了通透肋式拱梁隧道方案。
     3、简要分析了肋式拱梁隧道的变形特性,并开展了不同开挖方式下隧道及边坡的受力变形数值模拟对比研究。研究表明:开挖方式对隧道应力与变形影响较大,对边坡的应力与变形影响较小。采用后施作肋梁方案时,肋梁内力仅约为先施作肋梁时的50%,隧道边坡的应力在拱顶处也较先施作肋梁时小。开展了黄(山)塔(岭)桃(林)高速公路龙瀑隧道数值模拟分析,并与现场监测数据进行对比,对比表明:两者变形规律基本一致,应力大小、分布基本吻合,数值模拟真实地揭示了隧道的受力状态。
     4、对肋式拱梁隧道的边坡破坏模式进行了对比分析,研究表明:均质围岩下,围岩强度较低时,隧道的破坏模式为由拱脚附近开始,沿着某一斜直线的楔体滑移;围岩强度较高时,自身承载能力强,不会因岩体内材料的破裂而屈服,隧道边坡内不会发生楔体滑移;非均质围岩下,隧道破坏模式仍为沿着某一斜直线的楔体滑移,且滑移发生在浅层强度较低的岩层中,这表明浅埋隧道的结构荷载主要为浅层围岩的松动荷载。破坏模式分析表明:肋式拱梁隧道的边坡破坏模式符合《公路隧道设计规范》中关于浅埋隧道破坏模式的假定,故肋式拱梁隧道的结构荷载模型可参考《公路隧道设计规范》中浅埋偏压隧道荷载计算方法确定。
     5、对边坡破裂角计算方法进行了对比分析,对比表明:《公路隧道设计规范》推荐解法引入了围岩内摩擦角、边坡坡角、滑移面摩阻力等影响参数,考虑因素相对全面,能与数值计算结果较好吻合,适合用于肋式拱梁隧道边坡的破裂角计算。
     6、提出了肋式拱梁隧道结构荷载简化模型。分析了不同的切坡深度、不同围岩条件下结构荷载模型的变化规律,分析表明:结构荷载简化模型能正确地反应切坡深度、围岩性状改变引起的荷载变化规律。定量对比表明:由于边坡坡面临空,开挖引起的偏压荷载更突出,故须对结构荷载简化模型的横向荷载进行修正;围岩性状的改变引起松动破坏区域的改变,而结构荷载简化模型对围岩性状改变不敏感,故对结构荷载简化模型进行了改进。利用实测数据验证了改进结构荷载模型。
     相关成果已成功应用于黄(山)塔(岭)桃(林)高速公路龙瀑隧道工程,直接指导了工程建设,取得了良好的技术效果和社会效益。
Drafty tunnel with ribbed arch beam is a new tunnel structure type which is half-embedded and half-uncovered. Its stress mode and load mechanism is still unknown and the design theory remains to be established. Thus studying on drafty tunnel with ribbed arch beam has a significant meaning.
     Relying on the Long-Pu tunnel engineering of Huang (shan)-Ta(ling)-Tao(lin) highway, the systemic research is done for the deformation law of tunnel with ribbed arch beam and the structural load mode by combining field investigation, laboratory test, theoretical analysis and numerical simulation. The deformation characters of tunnel with ribbed arch beam have been revealed and its simplified model of structural load has been put forward.
     The main content and results of this paper are listed as following:
     The site geological survey of Long-Pu tunnel engineering was completed, its engineering geological characteristic was evaluated comprehensively, and the basic information for construction of drafty tunnel with ribbed arch beam was obtained.
     According to the Long-Pu tunnel section of Huang(shan)-Ta(ling)-Tao(lin) highway, the structure types of tunnel are compared and selected. Compared with other schemes, tunnel with ribbed arch beam has many advantages such as small disturbance of slope, little environmental disruption, simple and lightness structure, nice shape, good drafty performance. Based on this, the scheme of drafty tunnel with ribbed arch beam is proposed.
     The deformation characters of tunnel with ribbed arch beam were analyzed briefly; the comparative study of forced deformation of tunnel and slope under different excavation methods was developed by finite element method. It is conclude that the excavation method has an obvious effect on deformation and stress of tunnel and a tiny effect on deformation and stress of slope. Comparing the results of scheme imposing ribbed beam later with those of scheme imposing ribbed beam first, it shows that: the force on ribbed beam of the former is about 50% of that of the latter. The forces on anti-slide pile and inside liner of tunnel have little difference for these two situations, and as well as the stress and the deformation of slope. Thus the effect of different excavation methods on slope can be ignored. Developing the numerical analysis of the Long-Pu tunnel of Huang-Ta-Tao highway and comparing it with the field monitoring data, it shows that: their deformation laws are basically identical with each other; the value and distribution of stress anatomize basically each other; and the simulation results can really reflect the stress states of tunnel.
     The comparative analysis of slope failure mode of tunnel with ribbed arch beam was developed. The results are listed as follows: for the case of homogeneous surrounding rock, the failure mode of tunnel starts from the area adjacent to skewback and a wedge body along a certain leaning line slips when the strength of surrounding rock is low; the failure mode of tunnel changes and the slip can not be considered as a wedge body slip when the strength of surrounding rock is high. For the case of heterogeneous surrounding rock, failure mode of tunnel is still the wedge body slip along a certain leaning line and the slip happens in the shallow rock stratum with a low strength. It means that structural load of shallow tunnel is mainly the loosening load of shallow rock stratum. According to the analysis of failure mode, it is concluded that: slope failure mode of tunnel with arch beam of costal type coincide with the assumption about failure mode of shallow tunnel in“Code for Design of Road Tunnel”. So structural load model of tunnel with ribbed arch beam can be drawn lessons from the calculating method of load for shallow and bias tunnel in“Code for Design of Road Tunnel”.
     A comparative analysis of the calculating methods for fracture angle of slope and tunnel was developed, the analysis shows that results using the method recommended in“Code for Design of Road Tunnel”accord with the numerical calculating results, for its considering factors are comprehensive and it introduces many influence parameters such as internal friction angle of surrounding rock, slope angle, frictional resistance of slip plane and so on. Thus this method is fit for calculating the fracture angle of slope of tunnel with ribbed arch beam.
     A suitable simplified model of structural load for tunnel with ribbed arch beam was proposed and the change laws of structural load model under different slope cutting depth and different surrounding rock were analyzed. Analysis shows that structural load model can basically reflect load change laws caused by the changes of slope cutting depth and surrounding rock properties. Comparing results show that because the slope surface is free surface, the inclined press load caused by excavation is more outstanding. So it is necessary to modify the horizontal load of simplified model of structural load. Change of properties of surrounding rock causes change of loosening failure area, while the simplified model of structural load is not sensitive to change of properties of surrounding rock. Thus the simplified model of structural load is improved. Using the measured data, the improved structural load model is verified.
     The related achievements have been applied to the Long-Pu tunnel engineering of Huang(shan)-Ta(ling)-Tao(lin) highway and give a direct guidance to the engineering construction. A good technical effect and social benefit has been obtained.
引文
[1] 交通部规划研究院.国家高速公路网规划 [EB].2004,9.
    [2] 黄成光.公路隧道 [M].人民交通出版社,2001
    [3] 孙钧,侯学渊.地下结构 [M].北京:科学出版社,1987.
    [4] 冯卫星.铁路隧道设计 [M].北京:中国铁道出版社,1998.
    [5] 关宝树.隧道工程设计要点集 [M ].北京:人民交通出版社,2003.
    [6] 谷兆祺,彭守拙,李仲奎.地下洞室工程 [M].北京:清华大学出版社,1994.
    [7] Kim, Hak Joon. Estimation for tunnel lining loads (D).Canada: University of Alberta, 1997.
    [8] 沈明荣.岩体力学 [M].上海:同济大学出版社,1991
    [9] 同济大学隧道及地下工程研究所.公路隧道围岩分级指标体系与动态分类方法研究 [R].2004 .
    [10] Bhawani Singh, R. K. Goel, J. L. Jethwa. Supportp ressure assessment in arched underground openings through poor rock masses [J]. Engingeering Geology 1997 (48): 59-81.
    [11] Goel, R.K, Jethwa, J. L, 1991. Prediction of Support Pressure using RMR Classification. Proc. Indian Geotechnical Conf. Surat, India, December 1991.
    [12] Goel, R.K, 1994. Correlations for Predicting Support Pressures and Closures in tunnels Ph. D. Thesis, Nagpur University India, p. 308.
    [13] Goel, R. K. Jethwa, J. L, Paithankar, A. G. Indian experiences with Q and RMR system [J]. Tunneling Underground Space Technology, 1995, 10 (1):97-109.
    [14] TB10003-2005,铁路隧道设计规范[S].
    [15] JTG D70-2004,公路隧道设计规范[S].
    [16] 谢家杰.浅埋隧道的地层压力[J].土木工程学报,1964.6.
    [17] SL279-2002,水工隧洞设计规范[S].
    [18] 重庆建筑工程学院等.岩石地下建筑结构[M].北京:中国建筑工业出版社,1982.
    [19] 张清,王东元,李建军.铁路隧道衬砌结构可靠度分析 [J].岩石力学与工程学报,1994,(03):209-218.
    [20] 莫勋涛,金德银,张清.用隧道围岩站立时间确定复合式衬砌的荷载分配 [J].岩石力学与工程学报, 2001,20 (3):370-373.
    [21] 朱汉华,潘明军.山岭隧道围岩压力计算及支护设计探讨 [J].中外公路,2002,(06):53-55.
    [22] 重庆建筑工程学院,同济大学.岩体力学 [M].北京:中国建筑工业出版社,1981.127-136.
    [23] Y. J iang, H. Yoneda, Y. Tanabashi. Theoretical estimation of loosening pressure on tunnels in soft rocks [J]. Tunnelling and Underground Space Technology,2001 (16) :99-105.
    [24] 马念杰,张益东.圆形巷道围岩变形压力新解法[J].岩石力学与工程学报,1996,15 (1):84-89.
    [25] 房营光,孙钧.地面荷载下浅埋隧道围岩的粘弹性应力和变形分析[ J ].岩石力学与工程学报,1998,17(3):239-247.
    [26] 范文,俞茂宏,石耀武等.围岩塑性松动压力 Caquot 公式的推广和改进[J].长安大学学报(地球科学版),2003.25(1):33-36.
    [27] 王立忠,郭东杰.偏压隧道二次应力场分析及应用 [J].力学与实践,2000,22(4):25–28.
    [28] 傅鹤林,韩汝才,朱汉华.破碎围岩中单拱隧道荷载计算的理论解[J].中南大学学报(自然科学版) ,2004,35(3):478-483.
    [29] 陆文超,钟政,王旭.浅埋隧道围岩应力场的解析解[J].力学季刊,2003,24 (1):50-54.
    [30] 谢康和,周健.岩土工程有限元分析理论与应用 [M].北京:科学出版社,2002
    [31] Dasari, G.R., Rawlings, C.G., Bolton, M.D.Nu2mericalModelling of a NATM Tunnel Construction in London Clay [A].Geotechnical Aspects of Under2ground Construction in Soft Ground [C]. Balkema, London, UK, 1996: 491-496.
    [32] Oreste, P. P., Peila, D., Poma, A. Numerical Study of Low Dep th Tunnel Behaviour [A]. World Tunnel Congress on Challenges for the 21st Century [C].Balkema, Oslo, Norway, 1999:155-162.
    [33] Swoboda, G., Abu-Krisha, A. Three – dimensional numericalmodeling for TBM tunneling in consolidated clay [J]. Tunneling and Underground Space Technology, 1999, 14 (3): 327-333.
    [34] MarcioMuniz de Farias, Alvaro HenriqueMoraes Junior, Andre Pacheco de Assis. Disp lacement control in tunnels excavated by the NATM:3-D numerical simulations[J]. Tunneling and Under-ground Space Technology, 2004 (19):283-293.
    [35] 蒋树屏,胡学兵.云南扁平状大断面公路隧道施工力学响应数值模拟[J].岩土工程学报.2004,26(2): 178-182.
    [36] JTJ 064-98,公路工程地质勘察规范 [S].中华人民共和国行业标准.北京:人民交通出版社,1999.
    [37] 毕继红,丛蓉.各种形状洞室的围岩压力分析,地下空间,2004,24(1):23-26.
    [38] 毕继红,钟建辉,丛蓉.浅埋洞室围岩压力有限元分析 [J].铁道工程学报,2004,4:77-81.
    [39] 常艄东.管棚法超前预支护作用机理的研究[D].成都:西南交通大学.1999.
    [40] 王戍平.破碎围岩隧道的模拟试验研究 [D].杭州:浙江大学博士论文, 2004.
    [41] 谢锦昌,王兵.浅埋隧道荷载的试验研究[J].铁道标准设计,1995,11.
    [42] 王兵,谢锦昌.偏压隧道模型试验及可靠度分析 [J].工程力学,1998,15(1):85-92.
    [43] Xu Zhenxiang. Tunnel Design Method Using Field Measurement Data [A ]. ISRM Symposium: Design and Performance of Underground Excavation [C].London, England. 1984:221-229.
    [44] 蒋洪胜,侯学渊.软土地层中的圆形隧道荷载模式研究 [J].岩石力学与工程学,2003,22 (4):651-658.
    [45] 赵广占,谢永利,杨晓华.黄土公路隧道衬砌受力特性测试研究[J].中国公路学报,2004,17 (1):66-69.
    [46] 刘小兵.复合衬砌支护压力的简捷推算法[J].地下空间,1996,16 (4):193-198.
    [47] L Yang, R L Sterling. Back Analysis of Rock Tunnel Using Boundary Element Method [J]. Journal of Geotechnical Engineering, 1989, 115 (8):1163-1169.
    [48] P K Kaiser, Daihua Zou, P A Lang. StressDetermina tion by Back-Analysis of Excavation Induced Stress Change sa Case Study [J]. Rock Mechanics and Rock Engineering, 1990, 23 (3):185-200.
    [49] K. Najm, Y. Ishijima. Back Analysis of Tunnel Lining Deformation: Development and Application of Passive Resistance Method [J] , Rock Mechanics and Rock Engineering, 1993, 26 (1) , 71 79.
    [50] 杨林德等.岩土工程问题的反演理论与工程实践 [M ].北京:科学出版社,1996.
    [51] 王勖成,邵敏. 有限单元法基本原理和数值计算. 北京:清华大学出版社,1997.
    [52] 朱永全,景诗庭.隧道支护结构荷载作用的随机反演[J].岩土力学,1996.17(2):57-63.
    [53] 景诗庭,朱永全,宋玉香.隧道结构可靠度[M].北京:中国铁道出版社,2002.11.
    [54] 潘卫东,张鲁新,朱元林,吴亚平.坡体病害地段利用隧道变形规律预测山体灾害的方法 [J].岩石力学与工程学报,2001,20(4):502-507.
    [55] 王勖成,邵敏. 有限单元法基本原理和数值计算. 北京:清华大学出版社,1997
    [56] 钱家欢,殷宗泽. 土工原理与计算. 北京:中国水利水电出版社,2003
    [57] 张悼元,王兰生,王士天.工:程地质分析原理 [M].北京:地质出版社,1994.
    [58] 陈守真,许长新.两种地压理论的分析及其思考 [J].水利科技,2001(3):22-24.
    [59] 徐宏光,王飞,陈善雄,余飞.浅埋傍山隧道拱顶节理岩体边坡稳定性研究 [J].土工基础,2007,12(6):39-42.
    [60] 王晓形.浅埋洞室围岩压力若干问题研究[D].上海:同济大学硕士学位论文.2006.
    [61] Barton N, L ien R, Lunde J. Engineering classification of rock masses for the design of tunnel support [J].RockMech, 1974, 6 (4) : 183-236.
    [62] Bieniawski Z T. Engineering RockMass Classi – fication [M]. Znc: JohnWiley & Sons, 1989: 1-105.
    [63] Bhasin. R, Grimstad. E, 1996. The Use of Stress-Strengh Relationship in the Assessment of Tunnel Stability. Proc. Recent Advances in Tunneling Technology, New Delhi, India.
    [64] 莫勋涛.围岩的站立时间与初期支护荷载的关系研究[D].北京:北京交通大学,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700